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the thickness is given by h = V/A one finds that the height of a lipid molecule
is a few nanometers. Irving Langmuir took these ideas much further in the
early 20th century by measuring the relationship between the tension it takes
to squish this surface layer and the area itself. These impressive measurements
and inferences permitted Langmuir to figure out not only the length of different
lipid molecules but also their cross-sectional area, the number of lipid tails per
molecule and whether the bonds in those tails are saturated or unsaturated,
inducing kinks.

Our “feeling for the organism” in the form of an intuition for molecular
scales can be built around Figure 1.1 (p. 28) where we see the key classes of
macromolecules of cells all depicted on a similar scale, illustrating the place of
prominence of the nanometer scale when thinking about these macromolecules.
Figure 1.3 (p. 31) gave us an impression of the molecular scales associated with
the great molecule of heredity. Similarly, Figure 1.4 (p. 32) shows the amino
acids, the building blocks of proteins with their characteristic nanometer scale
dimensions and ≈ 100 Da mass. We see that all of the amino acids are essentially
the same size.

Besides the scales set by the sizes of the molecules of life, perhaps the most
important concept we can carry with us a scalpel of intuition is the idea of the
thermal energy scale. The point is that as we shrink the physical dimensions of
objects to ever smaller scales, their interactions with the surrounding medium
(i.e. the solution that serves as their “thermal reservoir”) become ever more
important. Indeed, at molecular scales, the scaling rule of thumb that we will
carry throughout the book is that each degree of freedom has an average of
kBT ≈4 pN nm of energy. It is the random kicks to molecules due to this
thermal energy to which we owe the Brownian motion (or diffusive motions)
that will serve as biology’s dynamical null hypothesis as will be explored in
chap. 5 (p. 277).

2.4.2 Cellular Scaling

More than a century of cell biology, bolstered each generation by imaginative
new microscopies with higher and higher resolution, has revealed a variety of
quantitative trends relating the size of cells to the organelles within them. In
this section, we explore a variety of different examples that give a sense of the
kind of empirical scaling relations that have emerged from these studies, followed
by a first pass at delving more deeply into the scaling of the nucleolus size in
C. elegans embryos.

One of the signature features of cells is compartmentalization, a topic so
important that we have devoted an entire chapter to it (chap. 14, p. 1161). One
of the predominant examples of cellular compartmentalization is the organelles
seen in Figure 2.43. Familiar names such as the nucleus, the endoplasmic retic-
ulum, the Golgi apparatus and the mitochondria indicate distinct spatial com-
partments that are the seat of a myriad of different processes, including the
ATP synthesis so central to the cellular economy found in the mitochondria.

Figure 2.44 provides a gallery of examples of how organellar size scales with



2.4. SCALING ACROSS SCALES 139

actin
filaments
peroxisome

ribosomes in cytosol

Golgi apparatus
Golgi apparatus

intermediate
filaments

plasma membrane

nucleolus

nucleus

nucleus

endoplasmic
reticulum

endoplasmic
reticulum

mitochondrion

mitochondria

lysosome

lysosome

microtubule

centrosome with
pair of centrioles

chromatin (DNA)

nuclear pore

nuclear envelope

extracellular matrix

vesicles

5 mm

5 mm

Figure 2.43: Eukaryotic cell and its organelles. The schematic shows a eukary-
otic cell and a variety of membrane-bound organelles. A thin-section electron
microscopy image shows a portion of a rat liver cell approximately equivalent
to the boxed area on the schematic. A portion of the nucleus can be seen in
the upper left-hand corner. The most prominent organelles visible in the image
are mitochondria, lysosomes, the rough endoplasmic reticulum, and the Golgi
apparatus. (Electron micrograph from D. W. Fawcett, The Cell, Its Organelles
and lnclusions: An Atlas of Fine Structure. Philadelphia, W. B. Saunders &
Co., 1966.)



140 CHAPTER 2. SETTING THE SCALES OF THINGS

cell size. For example, Figures 2.44(A) and (B) show how cell volume and the
nuclear size in fission yeast are correlated. Those same kinds of scaling relations
are shown in Figures 2.44(C) and (D) where we see how the mitotic spindle
size scales with the size of the volume within which it is enclosed. In this case,
the experiments were done in a biochemical setting within droplets, but similar
scaling is observed in the in vivo context as well. Figures 2.44(E) and (F)
bring similar sensibilities to bear on the question of the size of mitochondria in
budding yeast. As with the previous two examples, we see that mitochondrial
volume scales with cell size. The final example shown in Figures 2.44(G) and (H)
reveal how the centrosome volume scales with the cell size. All of these examples
reveal a compelling, reproducible example of cellular scaling that demand some
deeper explanation. Rather, given our dictum that quantitative data demands
quantitative models, these scaling results leave important theoretical challenges
in their wake.

Not all organelles are membrane bound. Indeed, as we will see through-
out the book, one of the most important discoveries in cell biology in the last
few decades is the realization that there are whole classes of membraneless
organelles. In the case of these organelles, such as the nucleoli shown in Fig-
ure 2.45, the compartmentalization emerges as a result of phase separation, a
topic we take up in detail several times throughout the book. Before exploring
the phenomenology of scaling for these organelles, we first remind ourselves of
their important role in the lives of eukaryotic cells. Already in this chapter,
we have seen the central role of ribosomes in bacterial cell biology and these
important molecular machines are central to the behavior of eukaryotes too.
The nucleolus can be thought of as a little localized ribosome factory within the
nucleus.

Figure 2.45(A), shows that, during the early development of C. elegans,
cells divide repeatedly without any change to the overall size of the embryo.
Throughout development, the size of the nucleolus can be measured by fluores-
cently labeling a protein known as a well conserved part of the nucleolus such
as fibrillarin-1 (FIB-1). The simultaneous measurements of cell, nuclear and
nucleolar size reveals that, with each cell division, the nuclei become smaller as
do their nucleoli, indicating a scaling of nucleolar size with nuclear size. This
scaling is quantified in Figure 2.45(B), where see a linear relation between these
two quantities.

A key feature of the experiment shown in Figure 2.45(A) and (B) is the
fact that, while nuclear size changes, the concentration of nucleolar constituents
such as FIB-1 remains constant. A second very clever experiment explores
the question of nucleolar size by tuning different knobs. In the case shown
in Figure 2.46(A), RNAi was used to knockdown specific genes that result in
worm embryos of different overall sizes but having the same number of cells.
Interestingly, while these genetic changes affect the overall embryo size, they
leave the total number of nucleolar proteins per cell unchanged. As a result, the
number of FIB-1 molecules (as opposed to its total concentration) is constant
in all embryo mutants. As shown in Figure 2.46(B), in this case it is seen that
the size of the nucleolus decreases with increasing nuclear volume.
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Figure 2.44: Scaling of organelle size with cell size. (A) Wild-type fission yeast
cells grown under different conditions and mutant cells have different sizes, which
can be quantified by the cell volume. (B) The volume of the nucleus of fission
yeast cells is proportional to the cell volume; different colors correspond to dif-
ferent growth conditions and different mutants. (C) Mitotic spindles assembled
in Xenopus egg extract confined to droplets of different size. (D) The size of
the spindle, characterized by its length, is proportional to the diameter of the
droplet. (E) Labeled mitochondria in a yeast cell. (F) Scaling of mitochondrial
size with cell size. (G) Centrosomes in RP cells. (H) Scaling of centrosome
volume with cell volume. HG to RP: Need to add references
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Figure 2.45: Scaling of nucleolar size in developing C. elegans embryos. (A)
During the early development of the worm C. elegans, cells divide without any
growth of the embryo. Therefore, cells become smaller with each cell cycle as
shown at the top. The bottom row shows that the nuclei become smaller with
each round of cell division and furthermore, that the fluorescence intensity of
the nucleolar protein fibrallarin also decreases. (B) Plotting measurements for
many cells from many embryos on the same axes we can appreciate that there
is a roughly linear scaling between the volume of the nucleus and the intensity
of the labeled nucleolar protein. (Adapted from S. Weber and C. Brangwynne,
Curr. Biol. 25:641, 2015.) HG: Add cartoon or snapshots of developing
worms.
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Figure 2.46: Engineering nucleolar scaling. (A) As an alternative to exploring
how nucleolar size changes as cell size decreases during C. elegans development,
cell size can be engineered by disruption of particular genes using RNAi. The
images on the left show wild-type and mutant embryos at the 8-cell stage. Next
to the transmitted light image of each embryo is the corresponding fluorescence
image showing the intensity of fibrallarin in a single nucleus at that stage. (B)
Plotting many measurements from many individual embryos, this time all at
the 8-cell stage, but in these four different genetic backgrounds, we now see an
inverse relationship between nuclear volume and nucleolar intensity. (Adapted
from S. Weber and C. Brangwynne, Curr. Biol. 25:641, 2015.)
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Figures 2.45 and 2.46 show quite distinct scaling results, both of which can
be explained by a simple model of phase separation as will be shown later in
the book in Chapter 7 (p. 521). For now, we content ourselves with a simple
first introduction not only to nucleolar size, but also provide a first look at how
we will use rate equations to describe a myriad of different phenomena.

We begin invoking a simple cartoon model of nucleolar formation which
is shown schematically in Figure 2.47. Here, we assume that the nucleus of
volume V contains a total of N FIB-1 molecules. M of these molecules are
assembled into the nucleolus. FIB-1 molecules are constantly coming onto and
off of the nucleolus, processes that we can describe using chemical rate equations.
Specifically, individual FIB-1 molecules are incorporated into the nucleolus at a
rate koncfree, where we define the concentration of free FIB-1 molecules as

cfree =
(N −M)

V
, (2.17)

while they leave the nucleolus at a rate koff . Note that as we will see repeatedly,
kon has units of M−1 s−1 and koff has units of s−1. Given these definitions, we
develop a simple intuitive kinetic model of the rate of growth of the nucleolus
in the form

dM

dt
= kon

(N −M)

V
− koff , (2.18)

where the essence of the first term on the right is the idea that the rate of addi-
tion of molecules to the nucleolus is given by the on rate times the concentration
of free nucleolar proteins which, in turn, is given by (N −M)/V . If we now
solve for the steady-state value of the nucleolar size, by setting dM/dt = 0, we
find the simple result

M = N − koff
kon

V, (2.19)

which can be rewritten as

M =

(
N

V
− koff

kon

)
V. (2.20)

We find it convenient to define the total concentration as ctot = N/V and the
critical concentration above which one forms the nucleolus as c∗ = koff/kon. In
light of these definitions, the number of molecules in the nucleolus itself is given
by

M = (ctot − c∗)V. (2.21)

We are now ready to bring our simple model to bear against the experimental
data shown in Figures 2.45 and 2.46. For the case in which the total concentra-
tion is fixed, the nucleolar size is given by eqn. 2.20, revealing a linear scaling
of that size with the volume of the nucleus. Interestingly, the slope of that
linear relationship is dictated by the excess of the total concentration above the
critical concentration c∗. Figure 2.45(B) shows the experimental relationship
between nucleolus size and nuclear volume. In this case, with each successive
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Figure 2.47: Simple model of nucleolar assembly. A nucleus of volume V con-
tains a total of N FIB-1 molecules, M of which are assembled into the nucleolus.
Single FIB-1 molecules are incorporated into the nucleolus at a rate kon, and
are separated from the nucleolus at a rate koff .

cell division, the size of the cells and nuclei become smaller and hence the nu-
cleoli become smaller as seen in the images of Figure 2.45(A) and as predicted
by eqn. 2.20.

A more subtle effect was seen in the experiments reported in Figure 2.46(A).
Here using RNAi to knockdown genes that control embryo size, an inverse nu-
cleolar size scaling was found as revealed by Figure 2.46(B). This effect can also
be understood by appealing to eqn. 2.19, where now what is fixed is N , mean-
ing that for larger embryos, ctot will be smaller implying smaller nucleoli as the
nuclei get bigger. Specifically, this result becomes

M = N − c∗V, (2.22)

implying the inverse scaling slope is −c∗ and the y-intercept is N .
The qualitative agreement between our model and the data shown in Fig-

ures 2.45 and 2.46 is certainly encouraging. However, we can go beyond these
qualitative comparisons and explore how well theory and experiment agree quan-
titatively. Specifically, as noted above, eqn. 2.21 predicts that, in the case of
fixed FIB-1 number, the y-intercept of the scaling relation will be given by the
total number of molecules N , while the slope will be determined by the critical
concentration c∗. By fitting a line to the experimental data, we can thus ex-
tract these two key model parameters, as shown in Figure 2.48(A), obtaining a
y-intercept that implied N = 7.5 arbitrary fluorescence units, and a slope that
indicates c∗ = 0.025 a.u./µm3.

Now, using these two parameters inferred for the case of fixed number of
FIB-1 molecules, we seek to predict the outcome of the experiment performed
at fixed FIB-1 concentration using eqn. 2.20. To make this possible, we need
to know the values of ctot and c∗. c∗ was already determined directly form the
slope of the fit shown in Figure 2.48(A). To calculate ctot, we use the value of
the total number of FIB-1 molecules given by N and inferred from the fit shown
in Figure 2.48(A) and divide by the nuclear volume V at the 8-cell stage at
which the measurements at fixed FIB-1 number were performed. This nuclear
volume can be directly read out from the x-axis value of the last data point
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Figure 2.48: Testing the predictive power of the simple model of nucleolar as-
sembly. By fitting the model to the data corresponding to a constant FIB-1
number, we obtain the total number of FIB-1 molecules N and the critical
concentration c∗. (B) These parameters can be used to calculate ctot − c∗ for
the experiment performed at fixed FIB-1 concentration in order to predict the
nucleolar scaling with nuclear volume without any free parameters.

in Figure 2.45(B). As a result, we now have the two parameters necessary to
predict nucleolar volume as a function of nuclear volume without the need to
invoke any other free parameters. The outcome of this calculation is shown in
Figure 2.48(B) where we see that, indeed, this model can predict the nucleolar
scaling under the conditions of fixed FIB-1 concentration. Thus, the case study
of the scaling of nucleolar volume with nuclear volume not only gives a flavor
of the interesting phenomenon of organellar size scaling, but also demonstrates
how we can write down simple models that help us develop intuition for, and
predictive power over, the of cellular structures scaling.RP: extra topics to come

back to. same size salaman-
der, but different cell sizes
RP: smallest bacterium can’t
be smaller than such and
such cell size and DNA con-
tent ATP synthase scaling -
this is where we then intro-
duce surface to volume Scal-
ing of spindle size - Rebecca
Scaling of amphibian - Evy
and Heald 2015

Our discussion thus far focused on the way that organelles within cells scale
with cell size. Another fascinating kind of scaling shows up in thinking about
embryogenesis as we will discuss in greater detail in chap. 15. Specifically, as
seen in Figure 2.49, the body plans of different species of Drosopholids (i.e.,
fruit flies) scale proportionally so that the structures of the body plan occur
in the right places. One of the key mechanisms for establishing body plans
that we will discuss later in the book is positional information, the idea that
some absolute coordinate system is laid down in the embryo giving cells an
“address” within the embryo. Examples of these morphogen gradients in several
species of fruit fly are shown in Figure 2.49. Mathematically, the results of these
experiments can be visualized as shown in Figure 2.50. This figure provides a
first introduction to an approach that we will use again and again throughout
the book, namely, the method of data collapse. Here we see that if we use
the “natural variables” of the problem, the concentration normalized by its
maximum value and the position normalized by the length of the embryo, then
all the morphogen gradients collapse onto a single master function.RP: this is an orphan figure

that needs to be moved some-
where else
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Figure 2.55: Estimating the height of mountains. A mountain can be thought
of as a column of rock that is a weight sitting on its base. When the mountain
gets sufficiently high, the weight of that column of rock is sufficient to crush the
rock at its base.

2.4.4 Mechanics and Organism Size

Like all material objects, biological systems have mechanical limits beyond
which they will fail. A beautiful and instructive example that will help us
understand mammalian body plans and teach us about the kind of scaling ar-
guments that are one of the central preoccupations of this chapter is an estimate
of the height of mountains. How might such a thing help us understand mam-
malian body plans? Because for legs and mountains alike, there is a critical
weight of material that will induce the structures that support them to fail as
shown in Figure 2.55.

Let’s consider the case of a mountain. We can think of the mountain as a
giant weight that is resting on the rock at its base. A crude estimate of the
force due to that weight is given by

weight of column of rock = mg = ρAhg. (2.23)

To turn this weight into a criterion for failure we now need to invoke a fundamen-
tal material parameter that has emerged from generations of experimentation
and phenomenological thinking, namely, the compressive yield stress. The com-
pressive yield stress attempts to capture in a single number how much stress is
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needed to cause the material to permanently deform. Anyone who has stepped
on a piece of chalk has seen the compressive yield stress in action, and clearly
this material parameter is different for chalk than for granite! A characteristic
scale for rock is σY ≈ 100 MPa.

If our readers are anything like us, they may have a residue of confusion about
the difference between stress and strain. As we will see in later chapters, strain
is a geometric idea that tells us how a body has been deformed. Specifically,
strain tells us how different parts of a material move relative to each other upon
deformation of the material. By way of contrast, stress tells us about the force
acting on a unit area of some surface within the material, hence with units of
force/area = N/m2.

To implement the failure criterion for the rock, we search for the condition
at which the stress due to the weight of the rock is equal to the failure stress of
the rock material itself, namely,

σY =
ρAhg

A
= ρhg (2.24)

implying that the height of the mountains is

h =
σY
ρg
. (2.25)

Given this result, we can now estimate the height of mountains on planet Earth
(and other planets as well if we replace our g with the gravitational acceleration
at the surface of those planets). Specifically, we have

h =
σY
ρg
≈ 100× 106Pa

3000kg/m3 × 10m/s2
≈ 104

3
m! (2.26)

For such a crude estimate, we have arrived to within roughly a factor of two
of the observed maximum height of mountains on planet earth, and further,
learned how the heights of mountains scale with the strength of gravity on a
given planet. Note that our result can be recast in the form of a dimensionless
number,

Cr = crushing number =
σY
ρhg

. (2.27)

When Cr > 1, the rock can sustain the load and when Cr < 1, it can’t.
Our estimate of the height of mountains offers more than a fun diversion

in geophysics. Exactly this same kind of thinking comes into play in trying
to understand animal body plans as shown in Figure 2.56. What is it that
makes the legs of an antelope or gazelle so different from those of an elephant?
As with the height of mountains, the answer lies in the analysis of mechanical
instability. In the case of the mountains, the critical stress corresponded to the
compressive yield stress. For the case of the leg, we will evaluate the propensity
for a one-dimensional rod to undergo a buckling instability.

Figure 2.56 presents the key parameters that we suspect will dictate the
buckling force for an elastic rod. The physics behind these choices will unfold
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in detail in chap. 10. First, we see that the critical force should depend upon
the elastic properties of the one-dimensional rod as measured by the Young
modulus. The Young modulus tells us how the stress (σ = force/area) and
the strain (ε= change in length/length) relate to each other via Hooke’s law,
σ = Eε. All of us have the intuition that the thicker a rod is, the harder it is
to bend. As we will explain in chap. 10, that intuition is formalized in the areal
moment of inertia, I, a geometric quantity with dimensions L4 that reveals that
the force required to achieve beam bending scales as the fourth power of the
radius of that beam. The other critical parameter that will govern the buckling
force is the length of the beam. Here too, our intuition playing with straws
should remind us that if we create a double straw that is twice as long as an
ordinary straw and stand it on a table, the force required to buckle the straw
changes (and is reduced).

As shown in the right column of Figure 2.56, we are interested in the buck-
ling force. Recall through Newton’s second law of motion (F = ma) that the
dimensions of force are [F ] = ML/T 2. We hypothesize that the buckling force
takes the form

Fbuckle = EαIβ`γ . (2.28)

We see directly that E is the only quantity that features bothM and T , requiring
that α = 1. Given this choice, we then require that 2 = 4β+ γ. We expect that
γ < 0 since larger ` corresponds to smaller buckling force. The simplest choice
corresponds to β = 1 which implies that γ = −2. Intuitively, the resulting
buckling force scales as we might expect: larger cross sectional radius of legs (as
imposed by I) leads to larger buckling forces and the longer the leg (as measured
by `), the smaller the buckling force.RP: need to figure out how

this whole story depends
upon animal size. Galileo
made estimates. See Steven
Vogel on Biomechanics.

RP: decide later if we keep
here or make a problem

Animals are not the only living organisms that construct structures that
must support mechanical loads. Indeed, the vast majority of biomass on planet
Earth is associated with plants, and giant Sequoias, redwoods and baobabs
remind us of the mechanical stresses faced by these wooden giants.

Our scaling estimates tell us that, as with the problem of the heights of
mountains, the essential comparison is between the weight of the structure itself
and the critical force that will engender an instability. Here we perform a naive
estimate of the buckling of a tree trunk by imagining that all of the weight of
the trunk is applied at the top of the trunk, leading to a criterion for buckling
of the form

trunk weight = buckling force (2.29)

which we can rewrite as

ρhr2g = E
r4

h2
, (2.30)

where we have suppressed all numerical factors due to the cylindrical geometry
of the tree trunk. Solving this equation for the tree height yields

h =

(
Er2

ρg

)1/3

=

(
1010N/m

2
(5 m2)

600 kg/m310 m/s2

)1/3

≈ 215 m, (2.31)
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Figure 2.56: Estimating the buckling force of animal legs. The left panel hy-
pothesizes the parameters that influence the buckling force of a one-dimensional
beam subjected to a compressive load. The right panel shows how scaling ar-
guments can be used to estimate the buckling force. HG: Note that, as
presented, β and γ are not uniquely defined.
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Figure 2.57: Estimating the buckling force of tree trunks under their own weight.
(A) The tallest tree in the world, Hyperion. (B) Estimating the buckling force
for a tree under the force of its own weight on the naive assumption that the
entirety of its mass is concentrated at the top of the trunk.

where we used a diameter for a Redwood of roughly 4 m. This naive estimate
is to be compared with the height of the tallest tree known on Earth, a lonely
redwood named Hyperion, with a towering height of 115 m. Note that this
analysis reflects but one possible hypothesis for what limits the height of trees
in much the same spirit that earlier we outlined different hypotheses for what
controls the growth rate of bacterial cells. An alternative hypothesis for tree
heights is that there is a certain height above which water could not be brought
to the top of the trees.RP: scaling across species

Thomas Gregor stuff, Cas-
sandra Extavour the rules of
scaling in body plans - paper
2019

2.4.5 Scaling in Ecosystems

RP: not yet started

RP: Species-area relation-
ships island biogeography,
the great human experiment 2.5 Dimensional Analysis

The examples above of estimating the heights of mountains and the buckling
force for animal legs are specific examples of a much broader principle exploited
in physics, namely, dimensional analysis. One of the most brilliant practitioners
of the scaling arts was Lord Rayleigh, who used scaling arguments to work
out the strength of bridges, the velocity of surface waves on water, vibration of
tuning forks and drops of falling water, the color of the sky, the decay of charge of
an electrical circuit and many others. On the subject of dimensional analysis,
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he had this offering: “I have often been impressed with the scanty attention
paid even by original workers to the great principle of similitude. It happens
not infrequently that results in the form of laws are put forth as novelties on the
basis of elaborate experiments, which might have been predicted a priori after
a few minutes consideration.” In this part of the chapter, we explore this great
principle of similitude.

2.5.1 Bird Migrations and Energy Expenditure

Long-distance migrations are one of the greatest wonders of the natural world.
The issues of navigation that arise in contexts ranging from monarch butterflies
to salmon to the bar-tailed godwit with its 10,000 km voyage from Alaska to
New Zealand offer a picture of nearly zero tolerance for error. In addition to
the navigational challenges, unlike humans, many animals are subject to huge
changes in their body mass as a normal part of their lifestyle. For the bar-tailed
godwit, there have been claims that these migratory birds lose 1/3rd of their
body mass during their 10-day uninterrupted journey. In this section, we set
the stage for understanding such loss of body mass by exploring the work these
birds need to do to overcome the drag force due to the surrounding air.

Figure 2.60 sketches how we can use arguments from dimensional analysis
to evaluate the drag force. In the left column of the figure, we amass the
various physical parameters that we imagine will dictate the drag force with
their attendant units. The right column then does exponent balancing to try
to figure out what combination of density, speed and bird length scale together
conspire to give rise to the drag force. As seen in the figure, the dimensions of
force are M L/T 2. Since on the right side the only quantity that features the
mass is the density, we see that the density must enter the problem to the first
power. Now like falling dominoes, we see that this in turn implies that the drag
force must scale as the speed squared since speed is the only quantity involving
time which appears in the denominator to the second power. The final domino
to fall then is the recognition that the drag force must scale as the second power
of the length scale of the bird.

2.5.2 The Length Scale of Morphogen Gradients

The point of the kinds of estimates we are exploring in this section is to develop
facility with dimensional analysis and order-of-magnitude thinking. As a second
example, we consider the way that animal body plans are laid down through
gradients of transcription factors. The classic example of this phenomenon is
offered by the Bicoid gradient in the early fruit fly embryo as hinted at in
Figure 2.61. As seen in the figure, mechanistically, the morphogen gradient is
set up as a competition between two distinct effects. At the anterior end of the
embryo, the mother has deposited the mRNA that will be used to translate the
Bicoid protein. Once synthesized, these proteins can diffuse, exercising a random
walk which we idealize as a strictly one-dimensional process. However, at each
instant, the protein is also subject to degradation with a rate of approximately
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Figure 2.58: GotwidFlightMap.pdf. (Adapted from R. E. Gill Jr et al., Proc.
R. Soc. B 276:447–457, 2009.)
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Figure 2.59: GotwidFlightSpeed.pdf. (Adapted from R. E. Gill Jr et al., Proc.
R. Soc. B 276:447–457, 2009.)

1/τ , where τ is the degradation time. This means that the farther towards
the anterior a protein is, the older it is and thus those proteins will have had
longer to be degraded. This interplay between diffusion and degradation sets
a characteristic length scale which we can find through dimensional analysis,
though later in the book we will work it out by solving the relevant partial
differential equation known as the reaction-diffusion equation.

We now follow the procedure in Figure 2.61 to work out the length scale
of the morphogen gradient. Once again, in the left column of the figure, we
amass the various physical parameters that we imagine will dictate the length
scale adopted by the morphogen gradient, namely, the diffusion constant which
determines how quickly the proteins wander from their point of translation at
the anterior end of the embryo and the degradation time, which provides a
measure of the average survival time of a protein after synthesis. We posit then
that the length scale is given by `morphogen = Dατ beta and use the process of
elimination to figure out these exponents. For example, since D is the only
quantity harboring a length, we must choose the exponent α = 1/2. Like in our
previous example, then like falling dominoes, we have no choice but to choose
β = 1/2 as well. As advertised by the Lord Rayleigh quote about the great
principle of similitude, a very modest effort has taken us all the way to the
answer of the critical “what sets the scale of X?” problem.

2.5.3 The Buckingham Pi Theorem

The strategy that unfolded in the case studies given above are all specific exam-
ples of a much more general idea known as the Buckingham Pi theorem. This
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Figure 2.60: Dimensional analysis argument to determine the drag force on mi-
grating birds. The left column shows the parameters we hypothesize determine
the drag force on a flying bird. Each such parameter has a particular set of
units. The right column shows how the relevant parameters can be assembled
to differing powers resulting in a quantity with units of force.
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theorem is in some ways a mathematical statement from linear algebra about
matrices and vectors. However, for our purposes we are not going to think of it
as a mathematical result, but rather focus on the intuition it brings as a method
of reasoning about the parameters that set the scale of a given process or phe-
nomenon and how they combine together to yield observables. At the outset,
we need to make sure the reader understands the difference between units and
dimensions. The units refer to the particular subjective choice a given scientist
makes about their units of mass (i.e., kilograms or grams, etc), length (i.e.,
meters or feet, etc.), time (i.e., seconds or minutes), temperature (i.e., degrees
Kelvin or centigrade) and so on. The dimensions, on the other hand, tell us
about the intrinsic physical makeup of a given quantity. Acceleration has di-
mensions of L/T 2, no matter what units we decide to use. The Buckingham
Pi theorem allows us to formalize the relation between the different parameters
that appear in our analysis of a given problem strictly on the grounds of making
sure that the dimensions are consistent.

Part of the art of determining the relevant dimensionless parameters that
govern a given phenomenon is making the right guesses about what governing
variables influence the process. For example, in Figure 2.61, we made the guess
that only two governing variables influence the length scale of morphogens in de-
veloping embryos, namely, the diffusion coefficient and the protein degradation
time. To give the reader an idea of other examples, Figure 2.62(C) shows a list
of governing variables that influence phenomena ranging from the drag experi-
enced by migratory birds to the buckling force of animal legs and tree trunks.
The art of doing dimensional analysis is to make the right guesses about the pa-
rameters in the central column (governing variables) that determine our process
of interest. For the flying bird, in Figure 2.60, we made the guess that the bird’s
speed, the bird’s size and the density of the air were the governing variables of
interest. However, for the motion of E. coli when swimming, our guess will be
different and instead will argue that the drag force depends upon the size of the
bacterium, the viscosity of the medium through which it is swimming and its
speed. Once we have assembled this set of governing variables, the Buckingham
Pi theorem tells us how many dimensionless parameters it takes to describe the
given problem of interest.

Specifically, the theorem of Figure 2.62 tells us that if we want to figure out
how many different dimensionless variables (Np) characterize a given problem
of interest, we can determine this through the relation

Np = Nv −ND, (2.32)

where ND is the number of physical dimensions (i.e. M , L, T or θ (temper-
ature)) that appear in the problem and Nv is the number of control variables
that appear in the problem. To get a sense of the power and insight that derive
from this theorem, we appeal to the revolutionary studies of Galileo that helped
usher in the modern era in science. While still a very young man, he apparently
entered a cathedral in Pisa and was intrigued by the idea of figuring out the
period of oscillation of a chandelier. Later, while laboring intensively to under-
stand mechanics, focused on the “toy problem” of projectile motion as shown
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Figure 2.62: The Buckingham Pi Theorem. (A) Dimensional analysis result
for the critical force for buckling. Construction of a dimensionless ratio to
characterize the propensity for a one-dimensional rod to buckle as applied to
the case of animal legs. (B) The Buckingham Pi theorem relates the number
of independent dimensionless parameters to the number of variables needed to
describe the problem of interest and the number of distinct physical dimensions.
Each column gives examples of each of these categories. There is no significance
to the particular rows. Only the columns in the diagram have a classification
significance.
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Figure 2.63: Galileo’s studies on parabolic motion. The page from Galileo’s
notebook reveals him discovering the famed s = 1/2gt2 result. The schematic on
the right illustrates how Galileo was able to stop the projectile at various points
in its trajectory by adjusting the height of the platform which the projectile
landed on.

in Figure 2.63, he worked out the laws that relate the speed of the projectile,
the distance it travels and the acceleration due to gravity, g. These two classic
case studies which were at the center of the birth of modern mechanics can both
be explored in the context of the Buckingham Pi theorem. For the case of the
pendulum, we are interested in how it’s period depends upon the length of the
pendulum, `, the acceleration due to gravity g (i.e., we would speculate that
the period would differ on the moon for the same pendulum), the initial angle
θ0 and the mass m. According to the Buckingham Pi theorem, we have five
governing variables (τ , `, g, m and θ0) and three (M , L and T ) physical dimen-
sions, so we expect two dimensionless governing groups. For the pendulum, we
can directly see that the only parameter involving dimensions of time is g and
thus we can guess the relation

τ =

√
`

g
f(θ0). (2.33)

Similar reasoning can be applied to the question of the distance traveled by a
projectile like that in Galileo’s experiment shown in Figure 2.63. We leave the
detailed analysis of both of these problems using the Buckingham Pi theorem to
the reader in the problems at the end of the chapter. On dimensional grounds
alone, we can already say much about both the mechanics of the pendulum and
projectile motion without any detailed mechanics calculations.RP: put problem on both pen-

dulum and projectile
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Figure 2.64: DropletBuddhaNumber.pdf

Another way of thinking about the insights born from the Buckingham Pi
theorem will be of great value through the entirety of the book and indeed
represent one of the foundational objectives of the physical biology mindset,
namely, the quest to find what we will call the “natural variables” of a problem.
The way we will explain this sometimes will be through the distinction between
what we will refer to as “pipettor’s variables” and “natural variables.” For ex-
ample, when we consider ligand-receptor binding, we can, of course, consider
the pipetting of our ligand at some concentration c. However, this is not the
concentration that the receptor itself “cares” about. The receptor’s response is
based on the dimensionless variable c/Kd, the normalized concentration. When
the occupancy probability is plotted as a function of this dimensionless concen-
tration for simple binding, all receptors fall onto one universal curve, belying
the idea that each receptor type is its own new intellectual adventure. Over and
over, we will attempt to understand what the natural variables are for a given
problem, and often, that act will lead to a much more sophisticated intuition.

2.6 Surface-to-Volume Problems

2.6.1 ATP Synthesis

An abiding example of Rayleigh’s principle of similitude that shows up in scien-
tific contexts of all kinds is the interplay between surface area and the volume
it encloses. The surface-to-volume ratio permits us to understand diverse phe-
nomena such as the critical size of a volume of material in order to overcome a
nucleation barrier, the relationship between the volumetric metabolic processes
and the ability of the surface to carry away heat and so on. Here we use such
scaling ideas to formulate a hypothesis about energy production in cells and
how such production might imply the necessity for mitochondria once cells get
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above a certain critical size.
As we saw earlier in the chapter in the context of bacterial growth, rapidly

dividing bacteria require a power density of roughly 106 ATP/µm3s. But recall,
all of this ATP is synthesized on the bacterial surface through the action of the
ATP synthases as shown in Figure 2.65. The figure raises a very interesting
question. How large would a spherical cell have to be before the ATP synthases
on the surface are not able to keep up with the demands of the interior volume
for ATP?

The key point for the purposes of a scaling estimate is that each ATP syn-
thase contributes roughly 100 ATP/s. We can formalize our thinking by intro-
ducing the power density

Pv = 106 ATP

µm3s
, (2.34)

which is the power consumed per unit volume. The corresponding maximal
power produced per unit area of membrane is given by

Ps = 3× 106 ATP

µm2s
, (2.35)

where as shown in the right panel of Figure 2.65, this production rate corre-
sponds to packing the membrane as fully as possible with ATP synthases, an
unrealistic proposition given the need for other membrane proteins as well. We
can use these two numbers to find the critical cell size at which the surface
production can’t keep up with the volume consumption as

4

3
πR3Pv = 4πR2Ps, (2.36)

which implies that the critical size is given by

R = 3
Ps
Pv

= 3
3× 106 ATP

µm2s

106 ATP
µm3s

≈ 10 µm. (2.37)

This very interesting estimate argues that any cell greater than 10 µm in radius
(and actually less because the membrane has to accommodate other membrane
proteins as well) cannot produce ATP fast enough to keep up with the demands
of its volume. Figure 2.66 shows a resolution to the conundrum in the form of
moving ATP production off of the exterior cell membrane and onto convoluted
membrane structures in the cellular interior, namely, the mitochondria.

2.7 Combinatorial Scaling
RP: RP: this section is going
to be on how a variety of im-
portant biological processes
are subject to a combinato-
rial explosion and how that
explosion scales with number
of objects.

One of the most famous types of scaling of all will take center stage in chap. 7
where we will explore the entropy, a quantity that reflects the way that the
number of different ways of configuring a system scales with the size of the
system. What we will find is that biological systems feature numbers that are
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Figure 2.65: Examination of the ability of ATP synthase in the plasma mem-
brane to keep up with bulk consumption of ATP. A toy model of a spherical cell
imagines the plasma membrane decorated with a density σ of ATP synthases
per unit area. For the small cell, the ATP synthases are sufficient to keep up
with the demands of ATP synthesis.
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Figure 2.66: Membrane area for ATP synthases and mitochondria. Once the
cell reaches a certain critical size, internal structures such as mitochondria are
required to maintain ATP production at a high enough rate to keep up with the
demands of the cytoplasm.
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bigger than astronomical. They are so large, as we will show below, that we
have to find new ways of representing huge biological numbers and to that end,
we will introduce the Slog scale.

Perhaps the easiest ways to see the power of combinatorial scaling is with
reference to the size of biological conformation and sequence spaces. Several
molecular examples that are of great significance concern the space of different
post-translational modifications available to a collection of proteins or the space
of different antibody sequences available to the human immune system as a
result of the process of V(D)J recombination. Or, perhaps most dizzying of
all is to consider the total number of genomes that have been explored in the
history of life and how that number compares to the total number of possible
genomes.

To get a feeling for the problem, let’s consider what has been referred to
poetically as nature’s way to escape from genetic imprisonment, namely, the
amendment of proteins by the addition of chemical groups such as phosphate
groups. The point is that proteins are all made up of the same 20 amino
acids. But once those proteins are synthesized, some residues such as threonine,
serine and tyrosine, can be modified through the addition of phosphate groups
(there are a host of other post-translational modifications such as acetylation,
palmitoylation and methylation, to name a few). If we consider amino acid
usage, we find that roughly 10% of the residues are available for phosphorylation.
Our aim here is to make a simple estimate of the number of distinct states of
phosphorylation there are for a typical protein. Such a typical protein has
roughly 300 amino acids and a simple estimate (see the problems at the end of
the chapter) tells us that 2/3s of them are available close enough to the protein
surface to suffer post-translational modification. Out of these 200 amino acids,
if 10% of them are targets for phosphorylation, that means there are 20 potential
phosphorylation sites on any given protein. Each such site can be in one of two
states and hence there are 220 ≈ 106 distinct states of phosphorylation. Given
that there are several million proteins in a given E. coli cell, this means that
there are

number of possible proteins in one bacterium ≈ (106)f×106

, (2.38)

distinct possible proteins in one bacterium! We really don’t have any good way
to think about these kinds of huge numbers.

We playfully illustrate some examples of both physical and biological signifi-
cance in Figure 2.68 which introduces the slog scale, a way of capturing numbers
that defy even the logarithmic scale. For example, if our number of interest has
a slog of 4 that means that we can write out number in the form

2222

= 65, 536 (2.39)

or if it has a slog of 5, the we can write the number as

22222

≈ 2× 1019728. (2.40)
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Figure 2.67: Estimate of number of distinct states of phosphorylation for a
“typical” globular protein.

One thing is certain. Each step up the slog ladder represents a hallucinatingly
large increase in the size of our numbers of interest. As seen in the figure, a
great variety of interesting physical and biological numbers fall between Slog 5
and Slog 6, illustrating the weight of combinatorial scaling, that is, the rapid
scaling of our sequence spaces and post-translational modification spaces with
the addition of more nucleotides, or phosphorylation sites, respectively.

• Lucas Pelkmans, Jan Ellenberg - JT

• Dan Needleman evolution stuff

Concepts to raise:

• Different definitions of models: we need to draw the distinction to statis-
tical models

2.8 Problems

Key to the problem categories: •Model refinements and derivations, •Estimates,
•Data interpretation
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