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Homework 3: A Feeling for the Numbers and Bacterial
Growth

(Due 2/13/20 at 3:30pm)

Hernan G. Garcia

“Their exercises are unbloody battles, and their battles bloody exercises.” - Flavius Josephus
on Roman legionares

A Feeling For the Numbers

1 A Feeling for the Numbers in Biology: Your Turn
Over the semester, we will do many estimates about each biological phenomenon we address.
To cement these skills, you will prepare two short estimates. Your first estimate will consist
of a written vignette in the style of Cell Biology by the Numbers. You will present your
second estimate in a 5-minute presentation at the end of the semester. Some examples of
interesting estimates are

• How many proteins are in a viral capsid?

• What is the energy cost to a host cell in order to create a new virus after it has been
infected?

• What is the cell-to-cell variability in the number of copies of the lacZ gene?

• What is the largest osmotic shock a cell can suffer without bursting?

Your first task is to write a short paragraph describing the estimate you’re interested in
writing a vignette about. Note that the objective at this point is not for you to have a
finished estimate, but to have an outline of the calculation you plan to do so that we can
give you feedback. Send this paragraph as an email to Hernan, Yang Joon and Jake by the
homework due date.

2 The height of mountains on Mars
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As a prelude to thinking about the buckling force of one-dimensional rods in the context of
animal legs, we examined the physics behind mountain height. Using a simple relationship
between mountain height and the weight of a column of rock and the stress needed to crush
rock, we made an estimate of mountain height. In this problem, we use the observed height
of the Olympus Mons on Mars which is 22 km high, to estimate the gravitational acceleration
on the Red Planet.

(a) The estimate given in class was very hand wavy. In this part of the problem, let’s do
better. Specifically, the street fighter approach adopted in class argued that the mountain is
a cylinder. Now consider a conical mountain with base radius R and height h and improve
our earlier estimate. Explain the relationship you choose between h and R by commenting
on some real world mountains.

(b) Given the scaling estimate for mountain height derived above, work out the ratio of
mountain heights on Mars and those on Earth. Make sure to state all of your assumptions
in constructing this ratio and then solve for gMars.

(c) As a second approach, use the observed gMars to make an estimate of the height of the
tallest mountain on Mars.

A Feeling for Proteins

3 Protein Sequences: The Frances Arnold Estimate Problem

In a 2001 Bioengineering seminar at Caltech, Professor Frances Arnold made a startling
remark that it is the aim of the present problem to examine. The basic point is to try and
generate some intuition for the HUGE, ASTRONOMICAL number of ways of choosing
amino acid sequences. To drive home the point, she noted that if we consider a protein with
300 amino acids, there will be a huge number of different possible sequences.

(a) How many different sequences are there for a 300 amino acid protein?

But that wasn’t the provocative remark. The provocative remark was that if we took only
one molecule of each of these different possible proteins, it would take a volume equal to five
of our universes to contain all of these different distinct molecules.

(b) Estimate the size of a protein with 300 amino acids. Justify your result, but remember
it is an estimate. Next, find an estimate of the size of the universe and figure out whether
Frances was guilty of hyperbole or if her statement was on the money.

4 Post-Translational Modifications and “nature escape from genetic imprison-
ment”
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In a very interesting article (“Post-translational modification: nature escape from genetic
imprisonment and the basis for dynamic information encoding”), Prof. Jeremy Gunawardena
discusses how we should think about post-translational modifications as a way of expanding
the natural repertoire of the 20-letter amino acid alphabet. Similarly, Prof. Christopher
Walsh (also at Harvard) wrote a whole book entitled “Posttranslational Modifications of
Proteins: Expanding Nature’s Inventory”, again making the point that by adding chemical
groups to proteins we can significantly change their properties.

(a) Provide at least one mechanistic idea about how adding a chemical group to a protein
can alter its structure or function. Your answer should be offered in less than a paragraph,
but should be concrete in its assertions about how these modifications change the protein.
Why does Gunawardena refer to this process of post-translational modification as “escape
from genetic imprisonment”?

(b) As a toy model of the combinatorial complexity offered by post-translational modifica-
tions, let’s imagine that a protein has N residues that are able to be phosphorylated (NOTE:
please comment on which residues these are - the answer is different for bacteria and eu-
karyotes). How many distinct states of the protein are there as a result of these different
phosphorylated states? Make an approximate estimate of the mass associated with a phos-
phate group and what fraction of the total mass this group represents. Similarly, give some
indication of the charge associated with a phosphate group. What ideas do you have about
how we can go about measuring these different states of phosphorylation?

(c) In this part of the problem, we make a very crude estimate of the number of sites on a
protein that are subject to phosphorylation. To do so, imagine that the protein is a sphere
with N residues. How does the radius of that sphere depend upon the number of residues in
the protein? Given that estimate, what is the number of residues that are on the surface?
Given that number, what fraction of those are phosphorylatable? Remember, these are crude
estimates. Work out these results for a concrete case of a typical protein with roughly 400
amino acids.

(d) Let’s close out these estimates by thinking about a bacterial cell. If all 3 × 106 proteins
in such a cell can be phosphorylated with the number of different phosphorylation states
that you estimated above, how many distinct cells could we make with all of these different
states of phosphorylation.

Bacterial Growth

5 Growth Curves and the Logistic Equation

In class, we discussed the exponential growth equation. This equation has been the basis
for the study of microbiology for years (read, for example, F. Neidhardt, Bacterial Growth:
Constant Obsession with dN/dt, J of Bacteriology 181:7405 (1999) provided on the course
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website). If the number of cells is given by N and the growth rate is r, then this equation
takes the form

dN

dt
= rN. (1)

We solved this equation in a variety of ways, both numerically and analytically, and found
a solution given by

N(t) = N0e
rt, (2)

where N0 is the number of cells at t = 0.

(a) Of course, the solution shown above cannot be correct forever. For fast-growing E. coli
estimate how long it would take for a single cell to produce enough progeny to cover the
whole surface of the Earth.

A more realistic scenario is to account for the fact that, sooner or later, bacteria will run
out of resources and halt their growth. For example, a liquid bacterial culture will saturate
at a density of about 109 cells/ml. To account for these limited resources, we introduce a
growth rate that depends on the number of cells, rnew

rnew = r
(

1 − N

K

)
, (3)

where K represents the maximum population size. Note that when N is very small compared
to K, rnew = r and growth is exponential. However, as N approaches K the growth rate
will decrease. Thus, we get the so-called logistic equation

dN

dt
= rnewN = rN

(
1 − N

K

)
. (4)

(b) What is the number of cells at which there is no growth and the population reaches
steady state? Justify how you impose steady state on the logistic equation in order to figure
out this number.

(c) In class, we wrote Python code to solve Equation 1 numerically. Modify your code to
now solve the logistic equation. For reasonable choices of r and K, plot number of cells as
a function of time for both exponential and logistic growth.
(d) Feel free to look at section “Computational Exploration: Growth Curves and the Logistic
Equation” on page 103 of PBoC2.
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