
MCB137L/237L: Physical Biology of the Cell
Spring 2020

Homework 8: Statistical Mechanics and Cellular
Decision-Making

(Due 4/9/20 at 3:30pm)

Hernan G. Garcia

“Biology is catching up” - PAM Dirac

Note to class: You can complement these problems by reading the paper “A First Exposure
to Statistical Mechanics for Life Scientists: Applications to Binding” on the course website.

1 A Feeling for the Numbers in Biology: Round two
Now that you have written your first estimate vignette in the style of Cell Biology by the
Numbers, it’s time to get ready for the second estimate! You will present this second estimate
in a 5-minute presentation at the end of the semester. You’re welcome to work in groups of
up to three people. In that case, you will have 5 minutes per group.

Write a short paragraph describing the estimate you’re interested in presenting about.
Note that the objective at this point is not for you to have a finished estimate, but to have
an outline of the calculation you plan to do so that we can give you feedback. Send this
paragraph as an email to Hernan, Yang Joon and Jake by 4/16 (when Homework 9 will
be due).

2 Ion channels and statistical mechanics

In this problem, we will derive a mathematical description of the current passing through a
voltage-gated ion channel. To model this channel, we assume that it can exist in an open or
closed configuration as shown in Figure 1A. The thermal fluctuations in the cell result in the
channel switching between these states over time as presented in Figure 1B. Figure 1C shows
how these fluctuations in channel state can be directly read out from the current flowing
through the channel.

(a) Use the statistical mechanics protocol (i.e. calculating the states and weights of the
system) to calculate the probability of the channel being in the open state, popen. Assume
that the open state has an energy εopen, and that the energy of the closed state is εclosed.
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(b) Plot popen as a function of ∆ε = εopen − εclosed. Explain what happens in the limits
εopen � εclosed and εopen � εclosed. What significance does ∆ε = 0 have for popen?

In a simple model of a voltage-gated ion channel, ∆ε = q(V ∗ − V ). Here, V is the voltage
applied to the membrane and q is the effective gating charge, which describes the movement
of charges along the membrane as the channel configuration changes. You can learn more
about this model in section 17.3.1 of PBoC2.

(c) What is the significance of V ∗? Namely, what happens to the probability of being open
when V = V ∗.

(d) On the website, you will find measurements of popen vs. V for a sodium-gated ion channel.
Write your expression for popen as a function of V instead of as a function of ∆ε. Estimate
V ∗ from the data using what you learned in (c). Now that you have V ∗, to estimate q, make
a plot where you overlay the data and the model prediction for three different values of q
corresponding to 1, 3 or 5 electron charges (note that q is positive, so here we are talking
about the absolute value of the electron charge).
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Figure 1: Current through an ion channels. (A) The ion channel can exist in a closed or
open configuration, (B) fluctuating in time between these two states. (C) The current flowing
through the channel is directly related to the state of the channel.

3 A feeling for the numbers: Hemoglobin

We have adopted hemoglobin as one of our molecules of interest to discuss the statistical
mechanics of binding reactions. In this problem, you will perform several estimates to get a
feeling for the numbers for hemoglobin.

(a) Do problem 4.1(c) from PBoC2 (shown below in Figure 2).

(b) Figure out roughly how many O2 molecules you bring in with each breath and how many
Hemoglobin molecules it would take to use each and every one of those oxygens. How does
this compare with the total number of Hemoglobins in your body calculated in (a)? Hint:
You will have to figure out our lung capacity and how many O2 molecules are contained
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within that volume using the ideal gas law.

Table 4.1: Typical values from a CBC. (Adapted from R. W. Maxwell, Maxwell
Quick Medical Reference, Maxwell Publishing, 2002.)

Test Value

Red blood cell count (RBC) Men: ≈ (4.3–5.7) × 106 cells/µL

Women: ≈ (3.8–5.1) × 106 cells/µL

Hematocrit (HCT) Men: ≈ 39–49%

Women: ≈ 35–45%

Hemoglobin (HGB) Men: ≈ 13.5–17.5 g/dL

Women: ≈ 12.0–16.0 g/dL

Mean corpuscular

hemoglobin (MCH)

≈ 26–34 pg/cell

MCH concentration

(MCHC)

≈ 31–37%

Mean corpuscular volume

(MCV)

≈ 80–100 fL

White blood cell count

(WBC)

≈ (4.5–11) × 103 cells/µL

Di�erential (% of WBC):

Neutrophils ≈ 57–67

Lymphocytes ≈ 23–33

Monocytes ≈ 3–7

Eosinophils ≈ 1–3

Basophils ≈ 0–1

Platelets ≈ (150–450) × 103 cell/µL

• 4.1 Structure of hemoglobin and myoglobin
(a) As in Problem 2.6, obtain the atomic coordinates for
hemoglobin and myoglobin. Measure their dimensions,
identify the different subunits and the heme groups.

(b) Expand the analysis of hemoglobin on p. 143 by
calculating the mean spacing between hemoglobin
molecules inside a red blood cell. How does this spacing
compare with the size of a hemoglobin molecule?

(c) Typical results for a complete blood count (CBC) are
shown in Table 4.1. Assume that an adult has roughly 5 L of
blood in his or her body. Based on these values, estimate:
(i) the number of red blood cells;
(ii) the percentage in volume they represent in the blood;
(iii) their mean spacing;
(iv) the total amount of hemoglobin in the blood;
(v) the number of hemoglobin molecules per cell;
(vi) the number of white blood cells in the blood.

Figure 2: Problem 4.1 from PBoC.

4 Dimoglobin: A Toy Model of Hemoglobin

In Homework 7, you derived the probability of a receptor being bound by a ligand using a
lattice model from the statistical mechanics perspective. This resulted in

pbound =
L
Ω
e−β∆ε

1 + L
Ω
e−β∆ε

, (1)

where L is the number of ligands in the solution and ∆ε = εb−εsol with εb being the binding
energy of a ligand to the receptor and εsol the energy of a ligand when in the lattice. Further,
Ω is the number of lattice sites.

(a) Write pbound in terms of the concentration of ligands [L]
Ωv

, where v is the volume of a lattice
box. Now, note that we can think of the inverse of v as a concentration c0 corresponding to
each lattice site being occupied by a ligand such that v = 1/c0. If the volume of a lattice site
is 1 nm3, what is the corresponding c0? In biochemistry this c0 is called the concentration
of the standard state. How does this concentration compare to those you’d usually pipette
in an experiment? What do you conclude about how dilute the solutions you usually deal
with in the lab are?

In class, we discussed how cooperativity in oxygen binding to hemoglobin makes it possible
for the binding curve to be switch-like. Now that we are experts at ligand-receptor binding,

3



we want to mathematically explore the consequences of cooperativity in the context of a toy
model of hemoglobin: dimoglobin. Unlike hemoglobin, which binds four oxygen molecules,
dimoglobin binds only to two oxygen molecules.

Figure 3 features a lattice model of dimoglobin. Here, oxygen molecules in solution have an
energy εsol, oxygen binds to either dimoglobin site with energy εb. Finally, when two oxygen
molecules are bound, they also interact with energy εint.

box of volume v oxygen
molecule

dimoglobin

εint

Figure 3: Cooperativity model of dimoglobin in a lattice. Different states the dimoglobin
molecule and the oxygen molecules in the lattice can be found in. An oxygen molecule in
solution has energy εsol, while it has a binding energy to dimoglobin of εb. Two oxygen
molecules bound to dimoglobin interact with an energy εint.

(b) Use the statistical mechanics protocol to calculate p0, p1 and p2, the probabilities of
having no, one, or two oxygen molecules bound to dimoglobin. Use these probabilities to
show that the average number of bound molecules is given by

〈N〉 =
2 [L]
c0
e−β∆ε + 2

(
[L]
c0

)2

e−β(2∆ε+εint)

1 + 2 [L]
c0
e−β∆ε +

(
[L]
c0

)2

e−β(2∆ε+εint)

, (2)

where [L] is the oxygen partial pressure (which is a measure of concentration) and c0 =
760 mmHg is the standard state partial pressure. Make sure to include and explain all steps
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in your derivation.

(c) Plot the average number of bound molecules as a function of oxygen partial pressure for
εint = −5 KBT and for εint = 0 on a linear-log plot in order to show the effect of εint on the
sharpness of the occupancy curve. Use ∆ε = −5 KBT for both curves.

(d) Plot p0, p1 and p2 as a function of oxygen partial pressure. Make one plot for εint =
−5 KBT and one for εint = 0 in order to show sharpness is achieved through εint by draining
probability from p1.

5 Dimerization of Lambda repressor

Lambda repressor monomers dimerize in solution before they can bind to the DNA. In class,
we explored how two adjacent Lambda repressor dimers on the DNA can interact with each
other leading to switch-like behavior. However, we did not take into account the effect of
the initial dimerization of Lambda repressor on the input-output function. In this problem,
we explore how this dimerization can also contribute to the Lambda switch.

(a) Let’s start by writing a model of Lambda repressor dimerization in solution. Use the
dynamics protocol to write a rate equation for the concentration of dimers [D] in terms of
the concentration of monomers [M ]. Assume steady state and show that you can define a
dissociation constant given by

Kdimer =
[M ]2

[D]
. (3)

Explain how Kdimer is determined by the rates of dimerization and monomerization.

Note that in the equation above, [M ] and [D] correspond to the free concentration of
monomers and dimers. The total amount of Lambda repressor monomers (that makes up
both free monomers and dimers) is given by [M ]tot = [M ] + 2[D].

(b) Calculate the concentration of free monomer [M ] as a function of the total monomer
concentration [M ]tot. To make this possible, you’ll have to make use of Equation 3 and of
the condition [M ]tot = [M ] + 2[D], and solve a quadratic equation.

(c) Calculate and plot the fraction of total monomers in monomeric and dimeric form as a
function of the total monomer concentration [M ]tot on the same graph on linear-log axis.
Make independent plots for a Kdimer of 0.1 nM, 1 nM and 10 nM. What feature of the curves
is controlled by the value of Kdimer?

In class, we calculated the fold-change in gene expression for simple repression and obtained

fold-change =
1

1 + R
NNS

e−β∆ε
, (4)

where R is the number of repressor molecules in the cell, ∆ε the difference between the
specific and non-specific binding energy, and NNS the number of non-specific binding sites.
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In the language of biochemistry, this same expression can be written as

fold-change =
1

1 + [R]
KDNA

. (5)

Here, [R] is the concentration of free repressor and KDNA the dissociation constant that
characterizes its binding to the DNA. With this equation in hand, we want to compare the
sharpness of the repression input-output function for a repressor that dimerizes in solution
such as Lambda repressor and for one that doesn’t such as Lac repressor.

(d) Plot the fold-change for regulation by Lac repressor. Define [R] = [I] as the Lac repressor
concentration and plot the fold-change as a function of [I] for KDNA = 1 nM on linear-log
axes.

(e) On the same axis, plot the fold-change for regulation by a Lambda repressor dimer as
a function of the total concentration of Lambda repressor monomers [M ]tot. To make this
possible, assume that [R] = [D], KDNA = 1 nM and Kdimer = 10 nM. Show graphically
how the fact that Lambda repressor dimerizes in solution contributes to sharpening the
input-output function.
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