
MCB137L/237L: Physical Biology of the Cell
Spring 2022
Homework 10

(Due 4/14/22 at 11:00am)

Hernan G. Garcia

NOTE FOR MCB237L STUDENTS: You don’t need to do problem (1). Please do
problem (2) and then choose to do (3) or (4). You can do more problems for extra credit
(15% of total possible score per extra problem).

1. Dimoglobin: A Toy Model of Hemoglobin

In Homework 9, you derived the probability of a receptor being bound by a ligand using a
lattice model from the statistical mechanics perspective. This resulted in

pbound =
L
Ω
e−β∆ε

1 + L
Ω
e−β∆ε

, (1)

where L is the number of ligands in the solution and ∆ε = εb−εsol with εb being the binding
energy of a ligand to the receptor and εsol the energy of a ligand when in the lattice. Further,
Ω is the number of lattice sites.

(a) Write pbound in terms of the concentration of ligands [L] = L
Ωv
, where v is the volume of

a lattice box. Now, note that we can think of the inverse of v as a concentration c0 corre-
sponding to each lattice site being occupied by a ligand such that v = 1/c0. If the volume
of a lattice site is 1 nm3, what is the corresponding c0? In biochemistry this c0 is called the
concentration of the standard state. How does this concentration compare to those you’d
usually pipette in an experiment? What do you conclude about how dilute the solutions you
usually deal with in the lab are?

In class, we discussed how cooperativity in oxygen binding to hemoglobin makes it possible
for the binding curve to be switch-like. Now that we are experts at ligand-receptor binding,
we want to mathematically explore the consequences of cooperativity in the context of a toy
model of hemoglobin: dimoglobin. Unlike hemoglobin, which binds four oxygen molecules,
dimoglobin binds only to two oxygen molecules.

Figure 1 features a lattice model of dimoglobin. Here, oxygen molecules in solution have an
energy εsol, oxygen binds to either dimoglobin site with energy εb. Finally, when two oxygen
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molecules are bound, they also interact with energy εint.

box of volume v oxygen
molecule

dimoglobin

εint

Figure 1: Cooperativity model of dimoglobin in a lattice. Different states the dimoglobin
molecule and the oxygen molecules in the lattice can be found in. An oxygen molecule in
solution has energy εsol, while it has a binding energy to dimoglobin of εb. Two oxygen
molecules bound to dimoglobin interact with an energy εint.

(b) Use the statistical mechanics protocol to calculate p0, p1 and p2, the probabilities of
having no, one, or two oxygen molecules bound to dimoglobin. Use these probabilities to
show that the average number of bound molecules is given by

⟨N⟩ =
2 [L]

c0
e−β∆ε + 2

(
[L]
c0

)2

e−β(2∆ε+εint)

1 + 2 [L]
c0
e−β∆ε +

(
[L]
c0

)2

e−β(2∆ε+εint)

, (2)

where [L] is the oxygen partial pressure (which is a measure of concentration) and c0 =
760 mmHg is the standard state partial pressure. Make sure to include and explain all steps
in your derivation.

(c) Plot the average number of bound molecules as a function of oxygen partial pressure for
εint = −5 KBT and for εint = 0 on a linear-log plot in order to show the effect of εint on the
sharpness of the occupancy curve. Use ∆ε = −5 KBT for both curves.
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(d) Plot p0, p1 and p2 as a function of oxygen partial pressure. Make one plot for εint =
−5 KBT and one for εint = 0 in order to show sharpness is achieved through εint by draining
probability from p1.

2. A minimal genetic switch

In class, we introduced how genetic switches can be constructed using two repressors that
repress each other’s gene expression. Here, we consider a simpler regulatory architecture
that can also result in a genetic switch. Specifically, we will model the self-activation of an
activator molecule. For this problem, you might find it useful, to review the phase portrait
concept we described in class for the case of mRNA production and degradation, as well as
the phase diagram of the logistic equation you had to draw earlier on in the semester.

Figure 2(A) presents a regulatory architecture, where an activator activates its own produc-
tion. Figure 2(B) shows the states and weights for our model. In this problem, we will ignore
mRNA and associate the rate indicated in the figure with the rate of protein production.
Here, a promoter has two activator binding sites in its vicinity. In the absence of activators,
or in the presence of only one activator, the rate of protein production is r0. When both
activators are bound, the rate is r. The activators bind with a dissociation constant Kd and
interact with a cooperativity factor ω = e−βεint , where εint is the interaction energy between
activators. A is the concentration of activator.

(a) Write down an equation describing the temporal evolution of the number of activators.
Consider the rate of production stemming from the model shown in Figure 2, as well as a
rate of protein degradation γ. Hint: Remember that the overall rate of production ⟨r⟩ of a
system is given by

⟨r⟩ =
∑
i

piri, (3)

where pi is the probability of the system being in state i, and ri is the rate of production
when the system is in that state.

(b) Plot the phase diagram for this equation in order to find how many equilibria the system
can support. Namely, plot the rates of production and degradation as a function of the acti-
vator concentration. Use Kd = 5 nM, γ = 0.1/min, r0 = 0.01 nM/min, and r = 0.5 nM/min.
Make plots for ω = 1 and ω = 10.

(c) Draw vectors indicating the direction of the concentration change under your plots as
we did in class for the mRNA production and degradation case, and as you explored in the
homework in the context of the logistic equation. How many equilibrium points do you find?
Indicate whether these points correspond to stable or unstable equilibria. You can review
the concept of phase portraits by reading “Computational Exploration: Growth Curves and
the Logistic Equation” on page 103 of PBoC2, paying special attention to vectors drawn on
the lower part of Figure 3.10.

(d) Solve the equation you derived in (a) for different initial conditions, and plot all of

3



them on the same graph. Choose initial conditions that help illustrate how the system can
converge to different levels of activator in steady state.
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Figure 2: A simple autoactivation switch model. (A) Cartoon of the autoactivation switch.
(B) States, weights and rates for the autoactivating genetic switch model.

3. Mutation correlation and physical proximity on the gene

(a) Read the section “Flies and the Rise of Modern Genetics” starting on page 170 of PBoC2.

(b) Do problem 4.4 from PBoC2.
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Table 4.2: Fraction of crossovers of six sex-linked factors in Drosophila.
(Adapted from A. H. Sturtevant, J. Exp. Zool. 14:43, 1913.)

Factors Fraction of crossovers

BR 115/324

B(C,O) 214/21736

(C,O)P 471/1584

(C,O)R 2062/6116

(C,O)M 406/898

PR 17/573

PM 109/458

BP 1464/4551

BM 260/693

• 4.4 Mutation correlation and physical proximity
on the gene

In Section 4.6.1, we briefly described Sturtevant’s analysis of
mutant flies that culminated in the generation of the first
chromosome map. In Table 4.2, we show the crossover data
associated with the different mutations that he used to draw
the map. A crossover refers to a chromosomal
rearrangement in which parts of two chromosomes
exchange DNA. An illustration of the process is shown in
Figure 4.26. The six factors looked at by Sturtevant are B, C,
O, P, R, and M. Flies recessive in B, the black factor, have a
yellow body color. Factors C and O are completely linked,
they always go together and flies recessive in both of these
factors have white eyes. A fly recessive in factor P has
vermilion eyes instead of the ordinary red eyes. Finally, flies
recessive in R have rudimentary wings and those recessive
in M have miniature wings. For example, the fraction of flies
that presented a crossover of the B and P factors is denoted

P

M

MP

(A)

(B)

(C)

MP

Figure 4.26: Crossing over of chromosomes. (A)
Chromosomes before crossing over showing two loci labeled P
and M. (B) Illustration of the crossing-over event. (C)
Chromosomes after crossover.

as BP. Assume that the frequency of recombination is
proportional to the distance between loci on the
chromosome.

Reproduce Sturtevant’s conclusions by drawing your own
map using the first seven data points from Table 4.2.

Keep in mind that shorter “distances” are more reliable than
longer ones because the latter are more prone to double
crossings. Are distances additive? For example, can you
predict the distance between B and P from looking at the
distances B(C,O) and (C,O)P? What is the interpretation of
the two last data points from Table 4.2?

Figure 3: Problem 4.4 from PBoC.

4. Bacterial foraging

Bacteria use swimming to seek out food. Imagine that the bacterium is in a region of low
food concentration. For the bacterium to profit from swimming to a region with more food,
it has to reach there before diffusion of food molecules makes the concentrations in the two
regions the same. Here we find the smallest distance that a bacterium needs to swim so it
can outrun diffusion.

(a) Make a plot in which you sketch the distance traveled by a bacterium swimming at a
constant velocity v as a function of time t, and the distance over which a food molecule will
diffuse in that same time. Indicate on the plot the smallest time and the smallest distance
that the bacterium needs to swim to outrun diffusion. You don’t need to use Python here,
just make the plot by hand and show the two curves schematically.
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(b) Calculate these minimum times and distances for an E. coli swimming at a speed of
30µm/s. The diffusion constant of a typical food molecule is roughly 500µm2/s.

(c) Estimate the number of ATP molecules the bacterium must consume (hydrolyze) per
second in order to travel at this speed, assuming that all of the energy usage goes into
overcoming fluid drag. The drag force felt by the bacterium is given by

F = 6πηRv, (4)

where R is the typical size of an E. coli, η is the viscosity (we can assume it’s swimming in
water) and v is the speed of the bacterium. The power necessary to move the bacterium at
a speed v against this viscous drag is

P = Fv. (5)

The amount of energy released from one ATP molecule is approximately 20 kBT . Note that
the bacterial flagellar motor is actually powered by a proton gradient and this estimate
focuses on the ATP equivalents associated with overcoming fluid drag.
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