
MCB137L/237L: Physical Biology of the Cell
Spring 2022

Homework 11:
(Due 4/21/22 at 11:00pm)

Hernan G. Garcia

This homework draws from biological phenomena and physical models we explored through-
out the semester. Note that this homework is for extra credit and that it is completely
optional. As we are already going to drop your two lowest-scoring homework, if you com-
plete this homework, we will use it to replace your third lowest-scoring homework. However,
we will only do so if it actually improves your grade.

Note to MCB237L students: Do problem (1), and one out of the remaining three prob-
lems. You can choose to do more problems for extra credit (15% of total possible score per
extra problem).

1. Counting Proteins with Partitioning Statistics

One of the great challenges in quantitative cell biology is to be able to turn the fluores-
cence values obtained from fusions to proteins to an actual absolute number of proteins.
While there are many ways to “calibrate” such measurements using standards of a known
concentration, in this problem, we will explore how we can use bacterial cell division, pure
thought and the binomial distribution in order to calibrate a fluorescent protein. To make
this possible, we will rely on the calculations on partitioning of carboxysomes that you did
during discussion with Yovan and Yasemin.

(a) Begin by reading the paper by Rosenfeld et al. entitled “Gene Regulation at the Single-
Cell Level” (posted on the website with the homework) and write a one paragraph commen-
tary on the paper with special reference to how they used the binomial partitioning as a way
to count repressor proteins. What is the experiment they did and what were they trying to
learn?

In the rest of the problem we work out for ourselves the ideas about binomial partitioning
introduced in the Rosenfeld et al. paper in order to consider the concentration of proteins
as a function of time in dividing cells. In particular, the point of this problem is to work out
the concentration of protein given that we start with a single parental cell that has N copies
of this protein. In the Rosenfeld experiment, at some point while the culture is growing, the
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production of the protein is stopped by providing a chemical in the medium and then the
number of copies per cell is reduced as a result of dilution as the cells divide.

Interestingly, this problem opens the door to one of the most important themes in physics,
namely, that of fluctuations. In particular, as the cells divide from one generation to the
next, each daughter does not really get N/2 copies of the protein since the dilution effect is
a stochastic process. Rather the partitioning of the N proteins into daughter cells during
division follows the binomial distribution. Analyzing these fluctuations can actually lead to
a quantification of the number of copies of a protein in a cell.

(b) We think of the N copies of the protein as being divided between the two daughters with
N1 going to daughter 1 and N −N1 going to daughter 2. Explain how the probability of N1

proteins going to daughter cell one is given by the binomial distribution

P (N1, N) =

(
N

N1

)
pN1qN−N1 , (1)

where the probability of a protein going to daughter cell 1 is p, and the probability of a one
protein going to daughter 2 is q = 1 − p. For your explanation you can choose to show a
formal mathematical derivation, or qualitatively walk us through the meaning of each term
in the equation. Remember that, while for most of the course we could use the “stadium
seating” approximation to think about how to place N1 spectators in N seats, here N and
N1 are of comparable magnitude. This situation, which already encountered in the context
of the DNA entropic spring, calls for the binomial coefficient

(
N
N1

)
.

We can also calculate the mean of the probability distribution (also called the first moment
of the distribution) by invoking a cool trick using the derivative with respect to p

〈N1〉 =
N∑

N1=0

N1

(
N

N1

)
pN1qN−N1 = p

∂

∂p

N∑
N1=0

(
N

N1

)
pN1qN−N1 . (2)

This equation can be rewritten as

〈N1〉 = p
∂

∂p

(
(p+ q)N

)
= pNmother(p+ q)N−1, (3)

where we made use of the fact that

N∑
N1=0

P (N1, N) = (p+ q)N . (4)

Using p+ q = 1, Equation 3 leads to

〈N1〉 = pN. (5)
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(c) Work out the expected averaged fluctuations squared in the partitioning process after
each division by noting that the averaged fluctuations can be written as 〈(N1−N2)

2〉, where
N1 and N2 are the number of proteins that end up in daughter cells 1 and 2, respectively.
Show that, if p = q = 0.5, the partitioning error is given by 〈(N1 −N2)

2〉 = N . To make
this possible, use the derivative trick twice such that

〈N2
1 〉 =

N∑
N1=0

N2
1

(
N

N1

)
pN1qN−N1 = p

∂

∂p

[
p
∂

∂p

(
N∑

N1=0

(
N

N1

)
pN1qN−N1

)]
(6)

as well as the result 〈N1〉 = pN described above. In addition, use the fact that N = N1+N2,
in order to calculate the average partioning error as

〈(N1 −N2)
2〉 = 〈[N1 − (N −N1)]

2〉 = 〈(2N1 −N)2〉. (7)

Remember that 〈N〉 = N , as N is a constant in our problem.

(d) Next, look at the Rosenfeld paper and explain how measuring fluorescence variations can
be used to calibrate the exact number of copies of the fluorescent protein in a cell. Specifi-
cally, assume that the fluorescence intensity in each cell can be written as I = αN , where α
is an as-yet unknown calibration factor and N the number of proteins in the cell. Explain
what this equation means and why you think it is justified. Derive an expression relating
I1, I2 and Itot using the result of part (c). Make a qualitative schematic showing a plot of
〈(I1 − I2)2〉 versus Itot and explain how to get the calibration factor α from this plot. Note
that we’re asking to draw up an explanation, not to actually make a plot with Python..

(e) Now we are going to repeat the Rosenfeld experiment numerically in order to fit the
calibration factor. Consider a fluorescent protein such that the calibration factor between
the intensity and the number of fluorophores is 50, that is I = 50N . Generate intensity
data by choosing N1 + N2 = 10, 50, 100, 1000 and 5000 and for each case, “partition” the
proteins from the mother cell to the two daughters 100 times (i.e. as if you are looking at
100 mother cells divide for each choice of the protein copy number). To make this possible,
flip a coin for each molecule in order to decide whether the molecule is going to daughter cell
1 or 2 (and remember how we’ve done something similar to this earlier in the course when
modeling diffision as coin flips). Then, make a plot of the resulting 〈(I1− I2)2〉 vs Itot just as
we did analytically in the previous problem. What I mean is that you need to make a plot
of all of your simulation results. Then, do a fit to your “data” using a numpy function (see
the note below) and see how well you recover the calibration factor that you actually put in
by hand. Plot the fit on the same graph as all of the “data”.

Note: You can use numpy.polyfit to perform a linear fit to your “data” using the syntax
numpy.polyfit(x, y, deg) where x is the data x-coordinate, y is the data y-coordinate,
and deg is the degree of the polynomial you’d like to fit to your data (for instance, you would
use deg = 1 for a linear fit). You can also use numpy.linalg.lstsq if you’d rather phrase
the problem as a matrix equation (this is reasonably simple to do as well, and an example
of a linear fit performed using this function is provided in the Numpy documentation linked

3

https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html


to above).

2. The Bleach-Chase Method

In class we talked about the molecular census. Synthesis of new proteins is not the only
kinetic process that governs how many proteins will be found in a given cell. An additional
kinetic process of great importance is the decay of the proteins. In a recent paper by Eden
et al. (see the course website for this paper), the rate of protein decay was measured using
a technique called “bleach-chase”.

(a) Read the paper and write a one paragraph summary of what the paper is about, the
essence of the method and the results. Note also that on all of the derivations that fol-
low in this problem, you will be graded not only on having the right equations but also
upon the clarity and logic of your presentation. Your job is to use the mathematics to
explain how this method works and to explain precisely what is measured and how it is
analyzed. This problem is an example of how we can take something right out of today’s
most very recent research results and turn it into a little story that you could explain to your
scientifically-minded friends. Further, the question of how to actually go about measuring
protein degradation rates is very hard and this paper shows us a very interesting answer to
that question.

(b) To make the degradation process accessible, these cells have a fluorescent protein fused
to some protein of interest whose degradation rate is the subject of enquiry. (NOTE: one
of the things that they worried about and we should worry about too as readers is that
maybe the act of tethering a big fluorescent protein to the protein of interest would alter
its degradation rate, the very quantity we are trying to measure.) In the absence of any
photobleaching, the evolution of the total number of fluorescent proteins, Nf , follows the
simple dynamical equation

dNf

dt
= β − αNf , (8)

which acknowledges a rate of protein production β and a degradation rate α. Explain what
this equation means and solve it as a function of time assuming that the initial number of
proteins is zero. You can solve it analytically or numerically using Matlab. If you solve
it numerically, plot it for a reasonable choice of parameters such as the Bicoid production
and degradation rates we considered for our homework assignments earlier in the semester.
What is the steady-state value of the number of fluorescent proteins per cell? What is the
characteristic time scale to reach this steady state in terms of parameters α and β?

(c) The problem of trying to infer the degradation rate from just looking at the amount of
fluorescent protein is, however, that its dynamics is dictated not only by the degradation
rate, but also by the production rate. The question is: can we create an experimental
condition where we measure a quantity that is solely determined by the degradation rate?
The experimental idea is that we have two populations of identical cells. What this means
is that these populations have the same genomes, have been subjected to the same growth
conditions and environmental stimuli. In practice, what this really means is that the average
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fluorescence intensity of our protein of interest in the two populations is the same. At
a certain instant in time, we then photobleach one of the two populations so that their
fluorescent intensity is now reduced relative to its initial value and relative to the value in
the unphotobleached population. We now have two populations. First, we have the number
of unbleached molecules, Nu. Second we have the number of bleached molecules, Np with a
conservation law which is that the total number of proteins of our species of interest is given
by Nu +Np.

A similar equation to Equation 8 describes the dynamics of the unphotobleached molecules
in the cells that have been subjected to photobleaching, with the number that are unphoto-
bleached given by Nu and described by the dynamical equation

dNu

dt
= β − αNu. (9)

On the other hand, the number of photobleached proteins are subject to a different dynamical
evolution described by the equation

dNp

dt
= −αNp, (10)

since all that happens to them over time is that they degrade. Explain why there are two
populations of proteins within the photobleached cells and why these are the right equations.

(d) Notice that, while the evolution of the unbleached population still depends on both
the production and degradation rates, the time evolution of the bleached species is only
dependent on the degradation rate. As a result, if we could track the amount of unbleached
molecules as a function of time we would have direct access to the degradation rate α.
The trick used by the authors in the paper is to evaluate the difference in the number of
fluorescent proteins in the two populations. An absolutely critical assumption then is that

dNf

dt
=
dNu

dt
+
dNp

dt
(11)

The point is that over time after photobleaching, the photobleached cells will become more
fluorescent again as new fluorescent proteins are synthesized.

The key idea here is then to plot the difference between the intensity of the cells that
were not disturbed by photobleaching and those that were. In particular, show the simple
result that

d(Nf −Nu)

dt
= −α(Nf −Nu). (12)

Note that this quantity is directly experimentally accessible since it calls on us to measure
the level of fluorescence in the two populations and to examine the difference between them.
Further, note that the dynamics depends only upon the one parameter that we are trying
to measure. Integrate this equation by solving it analytically or numerically in Matlab, and
show how the result can be used to determine the constant α that characterizes the dynamics
of protein decay. Explain what you would actually plot if you were making the measurements
and how that would yield the parameter α.
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1 µmnascent viruses

empty capsids following infection

Figure 1: Synthesis of new viruses in an infected bacterium.

(e) In the paper, they discuss both degradation and dilution. Explain the distinction be-
tween these two ideas. Comment on which you think is dominant in bacteria based on what
you learned from this paper.

3. Physical Biology of Viruses

In this problem, we take a random walk through the physical biology of viruses, honoring
them as one of the most sophisticated, interesting and scary parts of the biological world.

(a) One of the most important properties of a given infection is the so-called “burst size”,
the number of new viruses produced per infected cell. One of the original hypotheses (which
you will refute here) for what controls the burst size is the available volume within the host
cell. Given that for a typical bacteriophage infection the burst size is roughly 100 viruses,
what fraction of the volume is taken up by the newly synthesized viruses? Figure 1 shows
an electron microscopy image of an infected bacterium.

(b) How are viruses transmitted? Three key routes are through the respiratory tract, the
digestive tract and the reproductive tract. In all three cases, our bodies are set up with a
number of different tricks to resist infection including mucus and ciliary transport in our
respiratory and digestive tracts and harsh conditions in our digestive tract such as low pH.
The current coronavirus epidemic is apparently passed through the respiratory tract and in
this part of the problem, we appeal to Figure 2 for a look at the distribution of droplet sizes.
How many particles are contained in a typical cough or sneeze? How much volume is that?
Given a viral concentration in sputum of 106 to 1011 RNAs/ml, estimate how many virions
of SARS-CoV-2 will be carried in a typical droplet. A very interesting source of information
on this is the work of Prof. Lydia Bourouiba from MIT who does visualization experiments
on humans coughing. You can also see this excellent brief interview with Bourouiba on the
physics of sneezing and coughing.
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Figure 2: Distribution of droplet sizes after a sneeze.
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Figure 3: Problem 4.5 from PBoC2.

4. Saturation of mutant libraries

One of the most important aspect of genetic screens (and life in general) is to recognize
when you’ve reached the point of diminishing returns. To explroe this in the context of
the genetic screen by Wieschaus and Nüsslein-Volhard, do problem problem 4.5 form PBoC
shown in Figure 3. Note that Problem 4.4 mentioned to in the statement refers to Problem 3
of Homework 10. Figure 4.21 from PBoC is shown in Figure 4 while Figure 4.27 is shown in
Figure 5.
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Figure 4: Figure 4.21 from PBoC2.
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Figure 5: Figure 4.27 from PBoC2.
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