
MCB137L/237L: Physical Biology of the Cell
Spring 2022

Homework 4: Diffusion as the null model of biological
dynamics

(Due 2/17/22 at 11:00am)

Hernan G. Garcia

“We are not students of some subject matter, but students of problems. And problems may
cut right across the boundaries of any subject matter or discipline” - Karl Popper

Extra Credit. Provide comments on chap. 5, “Diffusion as Biology’s Null Hypothesis for
Dynamics” of the upcoming third edition of Physical Biology of the Cell. Note that this is an
unfinished draft of the chapter and I am not giving you the whole thing. Figure placements
are not necessarily correct and there are still a number of internal discussions amongst the
author team about how to finish things off. We are especially interested in mistakes, flaws
in logic, confusing figures, unclear discussions, etc., but are happy to entertain comments at
all scales. This extra credit will constitute an additional 15 points (out of 100) on your score
on the homework. Remember that, to turn this in, you either need to provide us with a red
ink comments throughout the PDF, or a referee report that refers to page numbers for each
comment you have. Just saying that you liked the chapter is not enough! Please submit the
PDF of your comments to Hernan by the homework due date.

1. DNA Synthesis Over Your Lifetime

Estimate the total length of DNA your body will produce over your lifetime. To make this
estimate, you can first figure out which cells are the most numerous in your body by reading
Sender et al., Cell 164:337 (2016), which is provided on the course website. Then, find out
how often these cells get renewed.

2. Ion channel currents

Figure 1A shows a single-channel recording of the current passing through a voltage-gated
sodium channel. The data reveal that the channel transitions between open and closed
states as shown in Figure 1B. When in the open state, Na+ ions can flow from one side of
the membrane to the other, resulting in a current across the membrane.

Given that ions have a typical diffusion constant of 1000 µm2/s, given the difference between
the sodium intracellular and extracellular concentrations shown in Figure 1C, and using a
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rough guess for the radius of an ion channel, estimate the current that flows through the ion
channel when in the open state.

Recall that the charge of one monovalent ion is 1.6×10−19 C (Coulomb), and that 1 A = 1 C/s
(Ampere = Coulomb/second). Compare your estimate to the current measured in Figure 1A.
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Figure 1: Electrical current flowing through an ion channel. (A) Current flowing through a
single voltage-gated sodium channel. (B) The channel recording reveals transitions through
an open and a closed state. (C) The concentration gradient of Na+ ions across the membrane
can be used to estimate the current when the channel is open. (A, adapted from B. U. Keller
et al., J. Gen. Physiol. 88:1, 1986; B, adapted from B. Hille, Ion Channels of Excitable
Membranes. Sinauer Associates, 2001)
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3. Measuring diffusion constants using FRAP

In class, we briefly introduced Fluorescence Recovery After Photobleaching (FRAP) as a
means to measure diffusion constants in living cells. Revisit FRAP by reading “Experiments
Behind the Facts: Measuring Diffusive Dynamics” on page 513 of PBoC. In this problem we
will simulate a FRAP experiment in E. coli. Specifically, we will consider a one-dimensional
E. coli cell with a uniform distribution of fluorescent proteins. The cell is 2 µm in length.
At time t = 0, a window of a width of 1 µm centered around the middle of the cell is
bleached as shown in Figure 2A. Here, we will solve for the fluorescence recovery dynamics
by discretizing E. coli into small boxes as shown in Figure 2B.

(a) Modify the code we wrote together in class in order to simulate the initial conditions
imposed by bleaching. Explain your choice for the number of boxes you will use to simulate
E. coli. Using a typical diffusion constant for a protein (D = 10 µm2/s), make a series of
plots that show fluorescence as a function of position along the cell for different time points.
Specifically, start by plotting the first and last time points of your simulation. Make sure
that, for this final time point, the molecules have reached a uniform distribution and explain
why this has to be the final outcome of the experiment. Then, plot three more time points
that illustrate the dynamics of the fluorescence recovery on top of these initial and final
curves. Your plot should look similar to that shown in Figure 2C.

(b) Estimate the recovery time as the time it takes for the fluorescence in the center of
the bleached region to reach 2/3 of its maximum value. To make this possible, perform
simulations for D = 2 µm2/s, D = 10 µm2/s and for D = 20 µm2/s and plot recovery time
as a function of D as shown in Figure 2D.

4. The length scale of morphogen gradients

Later in the course, we are going to introduce the important and fascinating topic of reaction-
diffusion equations as a window onto the process of pattern formation. One of the outcomes
of the careful analysis we will do there is the existence of solutions to the equations describing
morphogen dynamics that lead to morphogen gradients.

In this problem, we exploit the skills we have been working out on scaling analysis to figure
out how the length scale of the morphogen depends upon key molecular parameters. In
particular, we will think about the formation of the gradient of the Bicoid activator along
the anterior-posterior axis of the embryo shown in Figure 3. This protein gradient is formed
as a result of the translation of bicoid mRNA, which is provided by the mother and localized
at the anterior end of the embryo as shown in Figure 4. bicoid mRNA is stable throughout
this stage of development.

As the mRNA gets translated at a rate r, the resulting Bicoid molecules diffuse through the
embryo at a rate D, and are also subject to degradation with a decay rate γ. These processes
lead to the creation of the exponential-like concentration gradient of Bicoid throughout the
embryo shown in Figure 3.
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Figure 2: Simulating a bacterial FRAP experiment. (A) The center 1 µm of a 2 µm bacterium
expressing GFP is bleached. The time course of fluorescent recovery within the bleached
region is recorded. (B) Simulation of the FRAP process by considering the bacterium as a
one-dimensional array of boxes containing a given number of GFP molecules. At each time
step, every molecule jumps to the right or left with equal probability, except for the boxes
at each of the ends of the cell. (C) Simulated number of GFP molecules as a function of
position along the bacterium for different time points. (D) The time for the center box to
recover its fluorescent content can be used to determine the diffusion constant.
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Let’s begin by building some intuition for what we mean when we talk about the length
scale of a morphogen gradient. Let’s assume that the Bicoid gradient can be described by
the concentration profile given by

Bicoid(x) = Bicoid0 e
−x/λ, (1)

where x is the position along the embryo measured with respect to the embryo length of
approximately L = 480 µm, Bicoid0 is the concentration of the morphogen at x = 0, and
λ is the length scale of the gradient. Note that we’re ignoring the small decay in Bicoid
concentration toward the anterior end of the embryo.

(a) What is the meaning of λ? Specifically, what is the relative decrease in Bicoid concentra-
tion with respect to Bicoid0 when x = λ? Use your result to estimate the value of λ from the
data shown in Figure 3 both as a fraction of the embryo length and in absolute units (in µm).

(b) Let’s imitate the types of scaling analyses we have performed in class to find an expression
for the length scale λ in terms of the model parameters r, D and γ. First, we could posit
that the length scale is given by

λ = rαDβγδ. (2)

Note that, since r, D and γ have units of inverse time, it will not be possible to determine
the exponents α, β and δ uniquely. As a result, before we launch on dimensional analysis, we
need to use physical intuition to further constrain our calculation. Note that λ is a measure
of how far each Bicoid molecule gets due to diffusion (with diffusion constant D) before it is
degraded (with a degradation rate γ). As a result, how far a molecule goes is independent
of the rate with which molecules are produced such that α = 0 and our expression reduces
to

λ = Dβγδ. (3)

Now, use dimensional analysis to find the numerical values of the exponents β and γ. Make
sure to explain the units of each of the molecular parameters.

(c) Given a typical diffusion constant for proteins of D = 10 µm2/s and a degradation time
γ = 1/50 min−1, estimate the length scale of the Bicoid morphogen in the fly embryo and
compare it to your measurements from (a).

5. Diffusion on a microtubule

Read the great paper by Helenius et al. (provided on the course website) dissecting the
mechanism of microtubule depolymerization by the kinesin MCAK. Here, they show how
the MCAK molecular motor diffuses along the microtubule towards both ends, triggering
the depolymerization of a few tubulin dimers before falling off the microtubule.

(a) In their Figure 2b, they show the mean squared displacement of MCAK 〈x2〉 as a function
of time t. Remember that, using dimensional analysis, we concluded that 〈x2〉 = Dt, where
D is the diffusion constant (there’s a difference of a factor of two between our expression
and the one used by Helenius et al., but we can ignore that for now). Fit the data in the
figure (provided on the course website) “by eye” in order to determine the value of D. To
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Figure 3: The Bicoid morphogen. The Bicoid activator is distributed in an exponential
gradient. (Adapted from F. Liu et al., Proc Natl Acad Sci USA 110:6724 2013.)
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Figure 4: bicoid mRNA distribution. Using single molecule mRNA FISH, the localization
of individual bicoid mRNA molecules at the anterior end of the embryo can be revealed.
(Adapted from Petkova et al. (2014), Current Biology 24:1283.)

6



make this possible, plot the expected relation between 〈x2〉 and t for different values of D
and decide which value of D better recapitulates the data. EXTRA CREDIT: Write a chi2

minimization program to determine the diffusion constant. Make sure to plot the chi2 as a
function of D.

(b) In their Figure 3, they argue that a diffusive mechanism can be faster than one of directed
motion on short length scales. Explain how this assertion is supported by the plot shown in
their Figure 3b, and reproduce the plot in Python.
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