
MCB137L/237L: Physical Biology of the Cell
Spring 2020

Homework 5: Pattern Formation and Biological
Dynamics

(Due 2/24/22 at 11:00am)

Hernan G. Garcia

1 Analytical solution to the diffusion equation

In class, we derived the diffusion equation in 1D given by

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
, (1)

where c(x, t) is concentration of molecules, and D is the diffusion constant. Further, during
the discussion section, we solved this equation numerically by “spreading the butter” for an
initial condition corresponding to having N0 molecules centered at x = 0.

(a) The analytical solution to the diffusion equation under the inital conditions described
above is given by

c(x, t) =
N0√
4πDt

e−
x2

4Dt . (2)

Show that this is indeed a solution of the diffusion equation. To make this possible, plug in
the proposed c(x, t) above into the diffusion equation, do the derivatives on each side and

show that, indeed, ∂c(x,t)
∂t

is equal to D ∂2c(x,t)
∂x2

.

Remember what you learned in calculus about the product of derivatives and the chain
rule! Given a function f(x, y), you can think of the partial derivative ∂

∂x
as a measure of

the derivative as we walk along the x-direction as shown in Figure 1. Operationally, taking
a partial derivative is like taking a regular derivative: you just treat all other variables as
constants. For example, let’s define a function of x and y

f(x, y) = ax2y3. (3)

Now, we take the partial derivative with respect to x

∂f

∂x
= ay3

∂

∂x

(
x2
)
. (4)
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Note that we just thought of ay3 as constants and took them out of the derivative. As a
result, we get

∂f

∂x
= ay32x. (5)

Similarly,
∂f

∂y
= ax23y2. (6)

For more information on the partial derivative, please refer to “The Math Behind the Models:
the Partial Derivative” on page 212 of PBoC.
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Figure 1: Illustration of the concept of a partial derivative. (A) The plot shows the function
f(u1, u2) which depends upon the variables u1 and u2. If u2 is held fixed, the surface is
reduced to a curve and the partial derivative is nothing more than the ordinary derivative
familiar from calculus, but on this particular curve. (B) Planar cuts through the function
f(u1, u2).

(b) Now, let’s plot this analytical solution. Specifically, plot the concentration profile (i.e.,
concentration vs. position) for 0.01 ms, 0.1 ms, 1 ms, 5 ms and 10 ms in a single figure. Note
that we are not asking you to plot the t = 0 time point because Python won’t necessarily
know how to deal with the fact that, while the term N0√

4πDt
approaches infinity as t→ 0, the

term e−
x2

4Dt approaches 0 for the same limit. Use a typical diffusion constant for a protein in
the cell of D = 10 µm2/s. You’ll have to make reasonable choices for the model parameter
N0. Think hard about the range of x-values over which to plot this distribution. To define
this range of x-values to plot, you can use the “numpy.arange(xmin, xmax, step)” operation
as we did in class. You can also use the “numpy.linspace(xmin, xmax, Npoints)” command,
which you can look up in the Python help. You might note that your concentration peaks
beyond N0! This is because you’re plotting c(x, t), the concentration in an infinitesimal
box of size dx. This means that the integral

∫ +∞
−∞ c(x, t)dx = N0, indicating that the total

amount of molecules is N0. We will discuss this subtlety in class.

(c) Finally, we will check that our simulation makes sense by estimating the diffusion constant
from the plots you’ve made. How long does it take for the distribution to spread to about
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0.5 µm? Is this consistent with the diffusion constant you used for your simulation? Note
that we’re not after an exact result for D, but instead are performing a sanity check to see
whether our results make sense.

2. Creating morphogen gradients.

One of the most important ideas for how positional information arises in multicellular or-
ganisms is the idea of a morphogen gradient (another serious contender is a Turing pattern).
In this problem we will use a steady-state solution to the reaction-diffusion equation for
Bicoid to understand how the exponential profile shown in Figure 2 is set up. Stated simply,
the development of the Bicoid gradient can be thought of as resulting from a competition
between the diffusion of Bicoid protein that is synthesized at the anterior end of the embryo
(the mother deposits localized bcd mRNA there as shown in Figure 3) and the degradation
of this protein while it is diffusing around.
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Figure 2: The Bicoid morphogen. The Bicoid activator is distributed in an exponential
gradient. (Adapted from F. Liu et al., Proc Natl Acad Sci USA 110:6724 2013.)

(a) Give a brief description (a paragraph or less) of the Bicoid gradient in Drosophila and
how it is relevant to fly development.

(b) Make a derivation of the reaction-diffusion equation and use it to justify the form

∂Bcd(x, t)

∂t
= D

∂2Bcd(x, t)

∂x2
− Bcd(x, t)

τ
. (7)
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100 µm
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Figure 3: bicoid mRNA distribution. Using single molecule mRNA FISH, the localization
of individual bicoid mRNA molecules at the anterior end of the embryo can be revealed.
(Adapted from Petkova et al. (2014), Current Biology 24:1283.)

Make sure you explain carefully where all of these terms come from. To do so, you can build
on the derivation of the diffusion equation we did in class based on particules jumping be-
tween adjacent boxes. Specifically, begin with the usual way by considering a one-dimensional
concentration profile and by finding the rate of change of the number of Bicoid molecules in
the box at position x by considering the flux into (kN(x − a)) and out of (kN(x + a)) the
box, with a being the size fo the box and k the rate of jumping of a particle, using arguments
like those made in class. However, you need to generalize that treatment by accounting for
the fact that a Bicoid molecule has the probability r∆t of degrading in time interval ∆t,
where r ≈ 1/τ with τ being the degradation time.

(c) Now, show that Bcd(x, t) = Bcd0e
−x/λ, with λ being a decay length and Bcd0 being the

Bicoid concentration at x = 0, is a solution of the reaction-diffusion equation 7 in steady-
state. How is λ determined by the model parameters D and τ? EXTRA CREDIT: Solve this
equation in steady-state by finding the general solution subject to the boundary condition
that J(0, t) = j0 and J(L, t) = 0. Remember that you can use Fick’s law to relate the flux
to a change in Bicoid concentration over time. Make sure you explain what these boundary
conditions mean relative to the biology of the problem. Suggest approximations that can be
made to simplify the result, specifically, can you exploit the fact that the embryo is much
larger than the decay length to simplify the solution?

(d) The paper by Drocco et al. uses a photoactivatable fluorescent protein to measure the
lifetime of the Bicoid protein. Read the paper (available on the course website) and explain
the technique in one paragraph. You might find it useful to draw a schematic plot such as
shown in Figure 1f of the paper.

(e) What is the value of the decay constant λ for the gradient shown in Figure 2? To esti-
mate this magnitude, you can just fit “by eye” by plotting your solution for different values
of Bcd0 and λ. Now, compare the measured λ value with that you can predict by plugging
in realistic values of D, τ into your solution. To make this possible, read the papers by
Abu-Arish et al. and Drocco et al., provided on the course website.
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3. The French flag model

One of the most important and interesting ideas to come out of the idea of positional infor-
mation contained in morphogen gradients was the so-called French flag model which we will
explore here. This model posits that the Bicoid concentration dictates the position of the
cephalic furrow. As seen in Figure 4, the idea of the model is that boundaries in the embryo
are determined by threshold values of the morphogen. The model predicts that, if the gene
dosage of the morphogen gets changed, as seen in the mutant profile, the boundary will still
occur at the same value of the morphogen. That hypothesis is enough to determine the shift
in boundary position with gene dosage.
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Figure 4: Concept of the French flag model.

To test this model, we will analyze several experiments (Nusslein-Vohlhard and Driever and
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Liu et al.) where they measured cephalic furrow position as a function of different dosages
of the bicoid gene in embryos. An exponential gradient of Bicoid is described by

Bcd(x, λ, α,Bcd0) = Bcd0 α e
−x/λ, (8)

where x is the position along the embryo, Bcd0 is the Bicoid concentration at x = 0, λ is
the decay constant of the gradient and α is the Bicoid dosage, with α = 1 corresponding to
the wild-type.

(a) Work out a model that predicts the position of the cephalic furrow xnew as a function of
the gene dosage α, the morphogen gradient decay length λ and the position of the wild-type
cephalic furrow, xCF .

(b) Note that, given a measured xCF ≈ 32% of the embryo length, your model has no free
parameters. Compare the prediction from your model with the data for xnew vs. α obtained
by Nusslein-Vohlhard, and by Driever and Liu et al. (provided on the course website). Com-
ment on how well your prediction matches the data that is provided with the homework.
What could be going on?

4. Dynamics of A→ B reactions.

One of the most interesting topics in science is how we have learned to probe deep time.
Surprisingly, DNA sequence has permitted us to explore deep time in the biological setting.
Of course, biology and the dynamics of the Earth are not independent phenomena and the
point of the rest of this problem is to better understand the details of how scientists figure
out how old the Earth is as well as how old various fossil-bearing strata are. To that end,
we will first consider a simple model of the radioactive decay process for potassium-argon
dating methods, recognizing that there are many other dating methods that complement the
one considered here.

Potassium-Argon dating

Potassium-argon dating is based upon the decay of 40K into 40Ar. To a first approximation,
this method can be thought of as a simple stopwatch in which at t = 0 (i.e. when the rocks
crystallize), the amount of 40Ar is zero, since it is presumed that all of the inert argon has
escaped. We can write an equation for the number of potassium nuclei at time t+ ∆t as

NK(t+ ∆t) = NK(t)− (λ∆t)NK(t). (9)

Stated simply, this means that in every small time increment ∆t, every nucleus has a prob-
ability λ∆t of decaying, where λ is the decay rate of 40K into 40Ar. We also employ the
important constraint that the number of total nuclei in the system must remain constant,
so that

NK(0) = NK(t) +NAr(t), (10)
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where NK(0) is the number of 40K nuclei present when the rock is formed, NK(t) is the
number of 40K nuclei present in the rock at time t, and NAr(t) is likewise the number of 40Ar
nuclei present in the rock at time t. In this part of the problem you will use equations 9 and
10 to construct differential equations to find the relationship between NK(t), NAr(t), and t.

(a) Using equations 9 and 10 as a guide, write differential equations for NK(t) and NAr(t).
How do these two expressions relate to one another?

(b) Next, we note that the solution for a linear differential equation of the form dx
dt

= kx is
given by x(t) = x(0)ekt. Use this result to solve for NK(t).

(c) Use the constraint encapsulated by equation 10 to write an equation for the lifetime of
the rock, t, in terms of the ratio NAr

NK
.

Age of the Galapagos Islands

The potassium-argon dating method described above has been used in several contexts cen-
tral to some of the most important evolutionary questions in biology. As we go from West to
East in the Galapagos Archipelago, the ages of the islands increase, with Santa Cruz older
than Isabella, for example. But how are these numbers known and what evidence substan-
tiates these claims when naturalist guides make them? In a beautiful article from Science
Magazine in 1976 (Science, New Series, Vol. 192, No. 4238 (Apr. 30, 1976), pp. 465-467),
Kimberly Bailey tells us of her efforts to determine the ages of the islands of Santa Cruz,
San Cristobal and Espanola. We will now use her data to find out the K-Ar ages of several
of these islands ourselves.

(d) Read Bailey’s short paper and give a brief synopsis (1 paragraph) of her approach and
findings.

(e) Use the results from Sample H70-130 and JD1088 of Table 1 from Bailey’s paper to
determine ages for Santa Cruz Island and Santa Fe Island. To do this, you will need to
navigate a few subtleties. First, note that the amount of Argon is presented in moles, and
so you can use those numbers directly. To determine the number of moles of 40K, you will
need to use the weight percentage that is K2O and use that in combination with the mass of
the sample to figure out how much K is present. Note that not all of the potassium in the
sample will be the isotope 40K, so you will need to use the ratio of 40K to total potassium,
40K
Ktotal

≈ 1.2× 10−4. Additionally, use the decay constant λ ≈ 5.8× 10−11 yr−1.

Determining Lucy’s age

In 1974, a fossil of Australopithecus afarensis (shown in Figure 5) was discovered in Ethiopia.
This specimen, which was dubbed “Lucy,” marks an important step in understanding hu-
man evolution because at the time of its discovery, it was the earliest known species to show
evidence of bipedal locomotion. Because Lucy was found in an area that was rich in volcanic
rock, potassium-argon dating was an ideal method for determining Lucy’s age (Aronsen
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1977).

Unfortunately for us, real-world K-Ar dating data are generally not neatly presented in the
form of NAr and NK. Instead, geologists will measure a concentration of 40Ar in mol/g and
a weight percent of K2O. These data must be used to identify the number of 40Ar and 40K
nuclei in the sample. In this part of the problem, we will look at such measurements from
an actual paleontological specimen as reported in Aronsen (1977) in order to determine its
age.

Figure 5: The remains of Lucy, a specimen of Australopithecus afarensis.

(f) Using the table of 40Ar and K2O measurements below (Aronsen 1977), obtain an esti-
mate for Lucy’s age. Be sure to explain the steps you take to obtain your answer. Since
each sample is taken from the area in which Lucy was found, we expect each sample to give
you roughly the same answer; you will need to take the mean of the ages of each sample to
obtain an estimate for Lucy’s age.

Assume that each sample has a total mass of 1 g. Also, note that not all of the potassium in
the sample will be the isotope 40K, so you will need to use the ratio of 40K to total potassium,
40K
Ktotal

≈ 1.2× 10−4. Additionally, use the decay constant λ ≈ 5.8× 10−11 yr−1.

Retinal conformations
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Sample Number 40Ar × 10−12 mol/g wt.%K2O
1 2.91 0.657
2 3.18 0.755
3 3.08 0.680

Table 1: Outcome of measurements of potassium and argon for dating the rocks in the
vicinity of Lucy.
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Figure 6: Different views of the isomerization process. (A) Schematic of an isomerization
process where species A is decaying into species B. In this case, we use the two forms of
retinal to characterize the process. (B) Schematic of the change in the populations of the
two species over time.

Reactions of the form
A→ B. (11)

are ubiquitous in the natural world. Thus far, we examined these equations in the context of
radioactive decay, a phenomena central to biology because it provides a way of understand-
ing biological evolution. Part of the intention of this problem is to illustrate the broad reach
of these reactions in problems ranging from the dating of incredibly important fossils such
as the famed Lucy to the molecules of vision.

(g) Apply the results from your analysis of radioactive dating to now write an equation for
the decay of 13-cis-retinal to all-trans-retinal, as is illustrated in Figure 6. The half-life of
this reaction is τ = 2 s. Make sure you write down a formal relationship between the rate
constants to use in your rate equation and the half-life of the reaction.
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