
MCB137L/237L: Physical Biology of the Cell
Spring 2022

Homework 6: Biological Dynamics
(Due 3/10/22 at 11:00am)

Hernan G. Garcia

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty cold and aus-
tere, like that of sculpture, without appeal to any part of our weaker nature, without the
gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection
such as only the greatest art can show. The true spirit of delight, the exaltation, the sense
of being more than Man, which is the touchstone of the highest excellence, is to be found in
mathematics as surely as in poetry.” - Bertrand Russel in Study of Mathematics

1. Solving Ligand-Receptor Multiple Ways

In class we solved for the dynamics of mRNA production and degradation using the dy-
namics protocol. In this problem, we are going to use that analysis as a jumping off point
for thinking about one of the most ubiquitous problems in biology: ligand-receptor binding.
This ligand-receptor binding problem is a paradigm for a broad swath of biological processes
ranging from neuroscience, to physiology, to gene regulation.

(a) Imagine a situation in which we have a receptor fixed at some point in space as shown in
the top right panel of Figure 1. Write a rate equation for the concentration of ligand-receptor
pairs in terms of the concentration of ligands and receptors. Now, assume steady state and,
given that equation, derive an expression for the dissociation constant

Kd =
[L][R]

[LR]
(1)

in terms of the on and off rates. Make sure you explain the dimensions of your on and off
rates and hence, the dimensions of Kd.

(b) A second route to considering ligand-receptor interactions is to think of binding proba-
bilistically with the probability that the receptor is occupied given by

pbound =
[LR]

[R] + [LR]
. (2)
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Figure 1: Three treatments of ligand-receptor binding.

Given the definition of the dissociation constant introduced in the previous part of the prob-
lem, find a simple expression for pbound([L]) that is only a function of the concentration of
ligand. (NOTE: for now, we are ignoring the subtlety that the amount of total ligand and
free ligand are not actually the same, though in the case considered here with a single recep-
tor we have somewhat finessed that point.) Make a plot of pbound([L]) as a function of [L]
and comment on where Kd belongs on the axes. Later on in the course, we will solve this
problem in yet another way, by using statistical mechanics.

2. Protein-mRNA Ratio

In this problem we go beyond the calculation on mRNA production we did in class, and
think about how transcription and translation shape the protein-to-mRNA ratio inside cells.

(a) In class, we described the temporal evolution of the number of mRNA molecules using
the equation

m(t+∆t) = m(t) + rm∆t− γmm(t)∆t. (3)

Here, m(t) is the number of mRNA at time t, rm is the rate of mRNA production, and γm is
the mRNA decay rate. Write the corresponding equation for the number of protein molecules
given a rate of protein production per mRNA of rp and a protein decay rate γp. Make sure to
incorporate the fact that the number of mRNA molecules present will determine how many
proteins are produced in a time interval ∆t.
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(b) Calculate the ratio of protein to mRNA in steady state, pSS/mSS and show that it is
given by rp/γp. Find typical values for the various model parameters in E. coli and estimate
the ratio of proteins to mRNA molecules. How do your numbers compare to those measured
in Figure 3C of Taniguchi et al., which is provided on the course website?

We can also obtain this protein-mRNA ratio in the context of fruit flies.

(c) Using flies with different dosages of Bicoid-GFP, Petkova et al. measured the relation
between the number of bicoid mRNA molecules deposited by the mother, and the resulting
number of Bicoid proteins. Read their paper (available on the course website) and write a
short paragraph about how their Figure 3 is generated.

(d) Assuming that Bicoid-GFP is in steady state, use what you learned about rp and γp for
the Bicoid protein in order to calculate its protein-mRNA ratio rp/γp. To get values for the
protein degradation rate γp, you might want to refer back to the Drocco et al. paper you
read for Homework 5.

3. Breaking the 2nd Law and Rectifying Thermal Noise

In a great Physics Today article (provided on the course website), Chris Jarzynski and col-
leagues state that “A liter of ordinary air weighs less than half a US penny, but it contains
enough thermal energy to toss a 7-kg bowling ball more than 3 m off the ground. A gad-
get able to harvest that abundant energy by converting the erratic movement of colliding
molecules into directed motion could be very useful indeed.”

Check his assertion about the weight of the air in the room and the energy within it. Re-
member the meaning of kBT as the energy scale of the particles in our system.

4. What Living Organisms Must Fight

In class we talked about how systems will tend towards the state of maximum entropy. In
this problem, you are going to flesh out the details of the calculations leading to the graphs
we showed in class and will provide your own graphs.

(a) Equilibrium with respect to mass transport. Consider a system partitioned equally into
two parts, each of which contains Ω lattice sites. We want to write the total entropy as
Stot(L) = SL(L)+SR(Ltot−L). Show that these contributions to the entropy can be written
as

SL(L) = kB log
ΩL

L!
(4)

for the left side and

SR(Ltot − L) = kB log
ΩLtot−L

(Ltot − L)!
(5)

for the right side. Using the Stirling approximation, derive the expression

Stot(L) = −kBLtot

[
L

Ltot

log
L

Ltot

+

(
1− L

Ltot

)
log

(
1− L

Ltot

)
+

(
log

Ltot

Ω
− 1

)]
(6)
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for the total entropy. Plot the entropy of the left part, the right part and the total entropy
as a function of the number of ligands in the left side of the container which can run from
L = 0 to L = Ltot. To make this plot, you will need to assume a certain number of lattice
sites. Imagine a container with Ω = 109 lattice sites. If each such lattice site has a volume
of 1 nm3, then the total volume of each side is 1 µm3.

(b) We next consider the case in which the partition between the two sides is mobile. In this
case, we are interested in how the entropy on the left side and the right side play against
each other, conspiring to give a total entropy of the form

Stot(x) = SL(x) + SR(x), (7)

where x is the label used to characterize the position of the interface. As usual, the entropy
is given by the Boltzmann formula which in this case takes the form

SL(x) = kB log WL(x) (8)

and
SR(x) = kB log WR(x). (9)

To make progress, we now need to reckon the number of states as a function of the position
x of the partition. When the partition is at the midpoint, each of the subcompartments has
a volume V . The volume swept out by the motion of the partition by a distance x is xA,
where A is the cross-sectional area of that partition. As a result, show that the number of
lattice sites added or subtracted due to the motion of the partition is xA/v where v is the
volume corresponding to a single lattice site, leading to the results

WL(x) =
(V+xA

v
)LL

LL!
, (10)

and

WR(x) =
(V−xA

v
)LR

LR!
. (11)

Use these results to show that

Stot(x) = kBLL log
V + xA

v
− kB log LL! + kBLR log

V − xA

v
− kB log LR!, (12)

and make a plot of the resulting entropy of the two sides and the total entropy as a function
of the position of the partition x.
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