
MCB137L/237L: Physical Biology of the Cell
Spring 2024

Homework 13 — Extra Credit
(Due 5/7/24 at 2:00pm)

Hernan G. Garcia

This homework draws from biological phenomena and physical models we explored through-
out the semester. Note that this homework is for extra credit and that it is completely
optional. As we are already going to drop your two lowest-scoring homework, if you com-
plete this homework, we will use it to replace your third lowest-scoring homework. However,
we will only do so if it actually improves your grade.

1 A minimal genetic switch

In class, we introduced how genetic switches can be constructed using two repressors that
repress each other’s gene expression. Here, we consider a simpler regulatory architecture
that can also result in a genetic switch. Specifically, we will model the self-activation of an
activator molecule. For this problem, you might find it useful, to review the phase portrait
concept we described in class for the case of mRNA production and degradation, as well as
the phase diagram of the logistic equation you had to draw earlier on in the semester.

Figure 1(A) presents a regulatory architecture, where an activator activates its own produc-
tion. Figure 1(B) shows the states and weights for our model. In this problem, we will ignore
mRNA and associate the rate indicated in the figure with the rate of protein production.
Here, a promoter has two activator binding sites in its vicinity. In the absence of activators,
or in the presence of only one activator, the rate of protein production is r0. When both
activators are bound, the rate is r. The activators bind with a dissociation constant Kd and
interact with a cooperativity factor ω = e−βεint , where εint is the interaction energy between
activators. A is the concentration of activator.

(a) Write down an equation describing the temporal evolution of the number of activators.
Consider the rate of production stemming from the model shown in Figure 1, as well as a
rate of protein degradation γ. Hint: Remember that the overall rate of production 〈r〉 of a
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system is given by

〈r〉 =
∑
i

piri, (1)

where pi is the probability of the system being in state i, and ri is the rate of production
when the system is in that state.

(b) Plot the phase diagram for this equation in order to find how many equilibria the system
can support. Namely, plot the rates of production and degradation as a function of the acti-
vator concentration. Use Kd = 5 nM, γ = 0.1/min, r0 = 0.01 nM/min, and r = 0.5 nM/min.
Make plots for ω = 1 and ω = 10.

(c) Draw vectors indicating the direction of the concentration change under your plots as
we did in class for the mRNA production and degradation case, and as you explored in the
homework in the context of the logistic equation. How many equilibrium points do you find?
Indicate whether these points correspond to stable or unstable equilibria. You can review
the concept of phase portraits by reading “Computational Exploration: Growth Curves and
the Logistic Equation” on page 103 of PBoC2, paying special attention to vectors drawn on
the lower part of Figure 3.10.

(d) Solve the equation you derived in (a) for different initial conditions, and plot all of
them on the same graph. Choose initial conditions that help illustrate how the system can
converge to different levels of activator in steady state.

2 Uncovering phase separation in P-granule formation

In the paper by Brangwynne et al. (provided on the course website), the authors consider
two mechanisms for the accumulation of P granules in the posterior end of the C. elegans
embryo. First, they posit that P granules could migrate from the anterior end to the poste-
rior end of the embryo. Second, they propose that anterior P granules could be preferentially
disassembled or degraded.

(a) Read their paper and write a one-paragraph summary of it. Make sure to explain the
various hypotheses they considered and how they tested them.

(b) In their Figure 4, they propose that, upon dissolution in the anterior end, the proteins
that make up the P granules diffuse toward the posterior end to take part in granule for-
mation at that location. Assume that these proteins have a reasonable diffusion constant,
and estimate the time it takes for these molecules to diffuse throughout the embryo. How
do these time scales compare to the overall rates of P granule formation?
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Figure 1: A simple autoactivation switch model. (A) Cartoon of the autoactivation switch.
(B) States, weights and rates for the autoactivating genetic switch model.

3 Random walks and biological polymers

Physicists know how to solve just a handful of problems. Fortunately, many dissimilar phe-
nomena in physics and biology alike can be mapped onto such problems for which we know
a solution. Here, we explore the mathematical connection between diffusion and the spatial
arrangement of polymers such as DNA, actin, and microtubules.

(a) Read the introduction to Section 8.2 of PBoC (“Random Walk Models of Macromolecules
View Them as Rigid Segments Connected by Hinges”) to learn more about how polymers
can be thought of as chains of connected rigid segments. Pay close attention to Figures 8.1
and 8.2. Here, the Kuhn length a is defined as the length of the segments. Look up the
Kuhn length for DNA, actin, and microtubules in order to get a feeling for these polymers.
Note that you might find reference to the persistence length ξp = a/2 instead of the Kuhn
length.

(b) Now, think of a polymer chain of N segments in 1D. As shown in Figure 8.3 of PBoC
each segment can either be pointing to the right of to the left. Given nR and nL segments
pointing to the right and left, respectively, the position of the end of the chain is given by
L = (nR − nL) a. Map this problem onto the diffusion problem we solved in class where we
calculated the 〈x〉 and 〈x2〉 of a random walker that start at the origin shown in Figure 2.
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To make this possible, note that each segment can be randomly pointing to the left or right.
In particular, calculate 〈nR− nL〉 and 〈(nR− nL)2〉 and show that the size of the polymer is
given by

size ≈
√
〈L2〉 = a

√
N (2)

by repeating graphical the derivation we did in class.

(c) Think of the size of the polymer you derived in (b) as the linear dimension of the blob
the polymer will make on a surface such as shown in the figures below. Use the derived
formula to estimate the genome length (in µm and bp) of the bacteriophage T2 shown in
Figure 1.16 of PBoC and of the E. coli in Figure 8.5 of PBoC. How well did your estimate do?

All relevant figures from PBoC can also be found in Figures 3 and 4 below.

4 Saturation of mutant libraries

One of the most important aspect of genetic screens (and life in general) is to recognize
when you’ve reached the point of diminishing returns. To explore this in the context of
the genetic screen by Wieschaus and Nüsslein-Volhard, do problem problem 4.5 form PBoC
shown in Figure 5. Note that Problem 4.4 mentioned to in the statement refers to Problem 3
of Homework 10. Figure 4.21 from PBoC is shown in Figure 6 while Figure 4.27 is shown in
Figure 7.

5 The French flag model

One of the most important and interesting ideas to come out of the idea of positional infor-
mation contained in morphogen gradients was the so-called French flag model which we will
explore here. This model posits that the Bicoid concentration dictates the position of the
cephalic furrow. As seen in Figure 8, the idea of the model is that boundaries in the embryo
are determined by threshold values of the morphogen. The model predicts that, if the gene
dosage of the morphogen gets changed, as seen in the mutant profile, the boundary will still
occur at the same value of the morphogen. That hypothesis is enough to determine the shift
in boundary position with gene dosage.
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Figure 2: Coin flips and diffusion. (A) Stochastic “simulation” of a coin flipping process
with the random walker stepping to the right when a heads is flipped and stepping to the
left when a tails is flipped. (B) Scheme for calculating the probability of each and every
possible outcome after a total of N steps.
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Figure 3: Figures 8.1, 8.2, 8.5 and 1.16 from PBoC.
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Figure 4: Figure 8.3 from PBoC.
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Figure 5: Problem 4.5 from PBoC2.
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Figure 6: Figure 4.21 from PBoC2.
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Figure 7: Figure 4.27 from PBoC2.
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Figure 8: Concept of the French flag model.

To test this model, we will analyze several experiments (Nusslein-Vohlhard and Driever. and
Liu et al.) where they measured cephalic furrow position as a function of different dosages
of the bicoid gene in embryos. An exponential gradient of Bicoid is described by

Bcd(x, λ, α,Bcd0) = Bcd0 α e
−x/λ, (3)

where x is the position along the embryo, Bcd0 is the Bicoid concentration at x = 0, λ is
the decay constant of the gradient and α is the Bicoid dosage, with α = 1 corresponding to
the wild-type.

(a) Work out a model that predicts the position of the cephalic furrow xnew as a function of
the gene dosage α, the morphogen gradient decay length λ and the position of the wild-type
cephalic furrow, xCF .
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(b) Note that, given a measured xCF ≈ 32% of the embryo length, your model has no free
parameters. Compare the prediction from your model with the data for xnew vs. α obtained
by Nusslein-Vohlhard, and by Driever and Liu et al. (provided on the course website). Com-
ment on how well your prediction matches the data that is provided with the homework.
What could be going on?
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