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1 Bacteria Taking Over the Earth

Assume that a single E. coli cell has all the nutrients it could possibly desire and that it
(and all of its descendants) can grow without limit.

(a) How many bacterial cells would it take to make a giant colony that has the same mass
as a human?

(b) How long would it take for a single cell to grow into a giant human-sized bacterial colony?

(c) How many bacteria cells would it take to make a giant colony that as the same mass as
the Earth?

(d) How long would it take for a single cell to grow into a giant Earth-sized bacterial colony?

(e) How does the number you calculated in part (c) compare to the actual number of bac-
teria on Earth?

(f) In reality, the number of bacteria on Earth stays fairly constant from day to day and
from year to year, rather than increasing exponentially. Briefly explain why this is the case.

2 Growth Curves and the Logistic Equation

Much of our understanding of the natural world is couched in the language of the subject
now known as “dynamical systems.” In a nutshell, the idea is to write down equations that
tell us how some variable(s) of interest change in time. Often, this ends up being written in
the form of coupled differential equations. Perhaps the most important and simplest of such
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dynamical systems is the law of exponential growth (or decay), relevant to thinking about
the early stages of growth of a culture of cells, for example. In this problem, you are going
to revisit the discussion I give there by solving for the dynamics of a population of bacterial
cells both analytically and numerically.

In class, we discussed the exponential growth equation. This equation has been the basis
for the study of microbiology for years (read, for example, F. Neidhardt, Bacterial Growth:
Constant Obsession with dN/dt, J of Bacteriology 181:7405 (1999) provided on the course
website). If the number of cells is given by N and the growth rate is r, then this equation
takes the form

dN

dt
= rN. (1)

We solved this equation in a variety of ways, both numerically and analytically, and found
a solution given by

N(t) = N0e
rt, (2)

where N0 is the number of cells at t = 0.

(a) Of course, the solution shown above cannot be correct forever. For fast-growing E. coli
estimate how long it would take for a single cell to produce enough progeny to cover the
whole surface of the Earth.

A more realistic scenario is to account for the fact that, sooner or later, bacteria will run
out of resources and halt their growth. For example, a liquid bacterial culture will saturate
at a density of about 109 cells/ml. To account for these limited resources, we introduce a
growth rate that depends on the number of cells, rnew

rnew = r
(

1− N

K

)
, (3)

where K represents the maximum population size. Note that when N is very small compared
to K, rnew = r and growth is exponential. However, as N approaches K the growth rate
will decrease. Thus, we get the so-called logistic equation

dN

dt
= rnewN = rN

(
1− N

K

)
. (4)

(b) What is the number of cells at which there is no growth and the population reaches
steady state? Justify how you impose steady state on the logistic equation in order to figure
out this number.

In class, we wrote pseudocode and then Python code to solve Equation 1 numerically using
the so-called Euler method.

(c) Based on your pseudocode for exponential growth, write pseudocode to now solve the
logistic equation. Make sure to comment your code appropriately at every step!

2



(d) Write Python code (by yourself or with the help of ChatGPT) for your pseudocode. For
reasonable choices of r and K, plot number of cells as a function of time for both exponential
and logistic growth. Note that we don’t want your raw code, just the plots generated by this
code.

(e) Feel free to look at section “Computational Exploration: Growth Curves and the Logistic
Equation” on page 103 of PBoC2.

3 The Adder Model of Cell Division

In class, we explore the Timer model of cell division exhaustively and showed that this model
would lead to huge fluctuations in cell size, even in the presence of small errors in the divi-
sion time. In this problem, we explore the alternative Adder model. In this model cellular
division is triggered once a volume ∆m has been added to a cell. We start by assuming that
the cell makes no mistakes in determining ∆m for each division.

(a) Write pseudocode to simulate the mass at birth of cells as a function of generation time
under the Adder mechanism.

(b) Based on your pseudocode write Python code to carry out this simulation and plot cell
mass at birth vs. generation time.

Now, we will assume a small error in ∆m and look at the resulting fluctuations in mass at
birth.

(c) Add 10% noise to ∆m at every division. Write the appropriate pseudocode for this
stochastic simulation and plot cell mass at birth vs. generation time once again.

In class, we showed analytically why small fluctuations in each division under the Time model
get amplified over time. Here, we explore how fluctuations add up in the Adder model. To
get started, we write the mass at birth at generation n in terms of the mass at birth in
generation n− 1 as

mn =
1

2
(mn−1 + ∆m+ ηn−1) , (5)

where ηn−1 is the error the cell makes in determining the mass ∆m in the (n− 1)th division.

(d) Show that Equation 5 leads to the recursive relation relating the mass at generation n
to the mass at generation 0 given by

mn =
(

1

2

)n

m0 + ∆m

[(
1

2

)
+
(

1

2

)2

+ · · ·
(

1

2

)n
]

+

[(
1

2

)
ηn−1 +

(
1

2

)2

ηn−2 + · · ·
(

1

2

)n

η0

]
.

(6)
For this and any other derivation, make sure to explain every step in your calculations.
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This expression can be simplified by noticing that the term multiplied by ∆m is a geometric
series given by

Sn =
n∑

i=0

xi =
xn+1 − 1

x− 1
, (7)

where in our case x = 1/2.

(e) Show that by invoking the solution to the geometric series and taking the limit n � 1,
we get

mn =
(

1

2

)n

m0 + ∆m+

[(
1

2

)
ηn−1 +

(
1

2

)2

ηn−2 + · · ·
(

1

2

)n

η0

]
. (8)

Make sure to pay careful attention to the fact that geometric series starts from i = 0.

(f) Show that, because 〈ηi〉 = 0, the average mass at birth in the large n limit is given by
〈mn〉 = ∆m.

Finally, let’s examine the fluctuations in cell mass under the Adder model of division. As
we did in class, we want to compute the variance in mass at generation n (which is just the
square of the standard deviation) given by

variance = (standard deviation)2 = 〈m2
n〉 − 〈mn〉2. (9)

(g) Calculate the variance in cell mass assuming that 〈η2〉 = σ2. To make this possible, also
assume that the error is uncorrelated from generation to generation as we did in class. Show
that, if n� 1, we get an expression of the form

〈m2
n〉 − 〈mn〉2 =

1

4

[
σ2 +

(
1

4

)
σ2 + · · ·+

(
1

4

)n−1

σ2

]
, (10)

and use the solution to the geometric series to show that

〈m2
n〉 − 〈mn〉2 =

1

3
σ2. (11)

What does this result tell us about the nature of fluctuations in cell mass in the Adder model
compared to the Timer model?

As discussed in class, an important approach to make sure that our simulations are actu-
ally reflecting the physical phenomenon we care about is to calculate quantities that can
be contrasted against an analytical solution. Equation 11 gives us an opportunity to do
exactly that by comparing the variance we calculated analytically to that resulting from the
stochastic simulation.

(h) Calculate the variance in the birth mass of the cell predicted by your simulation. To
put it other words, calculate the variance of the vector M containing the mass at birth for
each generation.
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(i) Calculate the variance in the birth mass of the cell predicted by Equation 11. To make
this possible, you need to compute the variance σ2 for your η noise term. To do this, write
code to create a vector H with 1,000 elements given by

H = (η0, η1, η2, . . . , η999) (12)

and calculate its variance in Python using

σ2 = variance(H) = 〈H2〉. (13)

Use the obtained σ2 to calculate the predicted variance in mass at birth from Equation 11.
How does it compare to the variance you obtained from the simulation in (h)?

(j, EXTRA CREDIT) Solve the geometric series and prove Equation 7.
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