
MCB137L/237L: Physical Biology of the Cell
Spring 2024
Homework 5

(Due 2/27/24 at 2:00pm)

Hernan G. Garcia

1 Dynamics of A→ B reactions.

One of the most interesting topics in science is how we have learned to probe deep time.
Surprisingly, DNA sequence has permitted us to explore deep time in the biological setting.
Of course, biology and the dynamics of the Earth are not independent phenomena and the
point of the rest of this problem is to better understand the details of how scientists figure
out how old the Earth is as well as how old various fossil-bearing strata are. To that end,
we will first consider a simple model of the radioactive decay process for potassium-argon
dating methods, recognizing that there are many other dating methods that complement the
one considered here.

Potassium-Argon dating

Potassium-argon dating is based upon the decay of 40K into 40Ar. To a first approximation,
this method can be thought of as a simple stopwatch in which at t = 0 (i.e. when the rocks
crystallize), the amount of 40Ar is zero, since it is presumed that all of the inert argon has
escaped. We can write an equation for the number of potassium nuclei at time t+ ∆t as

NK(t+ ∆t) = NK(t)− (λ∆t)NK(t). (1)

Stated simply, this means that in every small time increment ∆t, every nucleus has a prob-
ability λ∆t of decaying, where λ is the decay rate of 40K into 40Ar. We also employ the
important constraint that the number of total nuclei in the system must remain constant,
so that

NK(0) = NK(t) +NAr(t), (2)

where NK(0) is the number of 40K nuclei present when the rock is formed, NK(t) is the
number of 40K nuclei present in the rock at time t, and NAr(t) is likewise the number of 40Ar
nuclei present in the rock at time t. In this part of the problem you will use equations 1
and 2 to construct differential equations to find the relationship between NK(t), NAr(t), and t.
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(a) Using equations 1 and 2 as a guide, write differential equations for NK(t) and NAr(t).
How do these two expressions relate to one another?

(b) Next, we note that the solution for a linear differential equation of the form dx
dt

= kx is
given by x(t) = x(0)ekt. Use this result to solve for NK(t).

(c) Use the constraint encapsulated by equation 2 to write an equation for the lifetime of
the rock, t, in terms of the ratio NAr

NK
.

Age of the Galapagos Islands

The potassium-argon dating method described above has been used in several contexts cen-
tral to some of the most important evolutionary questions in biology. As we go from West to
East in the Galapagos Archipelago, the ages of the islands increase, with Santa Cruz older
than Isabella, for example. But how are these numbers known and what evidence substan-
tiates these claims when naturalist guides make them? In a beautiful article from Science
Magazine in 1976 (Science, New Series, Vol. 192, No. 4238 (Apr. 30, 1976), pp. 465-467),
Kimberly Bailey tells us of her efforts to determine the ages of the islands of Santa Cruz,
San Cristobal and Espanola. We will now use her data to find out the K-Ar ages of several
of these islands ourselves.

(d) Read Bailey’s short paper and give a brief synopsis (1 paragraph) of her approach and
findings.

(e) Use the results from Sample H70-130 and JD1088 of Table 1 from Bailey’s paper to
determine ages for Santa Cruz Island and Santa Fe Island. To do this, you will need to
navigate a few subtleties. First, note that the amount of Argon is presented in moles, and
so you can use those numbers directly. To determine the number of moles of 40K, you will
need to use the weight percentage that is K2O and use that in combination with the mass of
the sample to figure out how much K is present. Note that not all of the potassium in the
sample will be the isotope 40K, so you will need to use the ratio of 40K to total potassium,
40K
Ktotal

≈ 1.2× 10−4. Additionally, use the decay constant λ ≈ 5.8× 10−11 yr−1.

Determining Lucy’s age

In 1974, a fossil of Australopithecus afarensis (shown in Figure 1) was discovered in Ethiopia.
This specimen, which was dubbed “Lucy,” marks an important step in understanding hu-
man evolution because at the time of its discovery, it was the earliest known species to show
evidence of bipedal locomotion. Because Lucy was found in an area that was rich in volcanic
rock, potassium-argon dating was an ideal method for determining Lucy’s age (Aronsen
1977).

Unfortunately for us, real-world K-Ar dating data are generally not neatly presented in the
form of NAr and NK. Instead, geologists will measure a concentration of 40Ar in mol/g and
a weight percent of K2O. These data must be used to identify the number of 40Ar and 40K
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nuclei in the sample. In this part of the problem, we will look at such measurements from
an actual paleontological specimen as reported in Aronsen (1977) in order to determine its
age.

Figure 1: The remains of Lucy, a specimen of Australopithecus afarensis.

(f) Using the table of 40Ar and K2O measurements below (Aronsen 1977), obtain an esti-
mate for Lucy’s age. Be sure to explain the steps you take to obtain your answer. Since
each sample is taken from the area in which Lucy was found, we expect each sample to give
you roughly the same answer; you will need to take the mean of the ages of each sample to
obtain an estimate for Lucy’s age.

Assume that each sample has a total mass of 1 g. Also, note that not all of the potassium in
the sample will be the isotope 40K, so you will need to use the ratio of 40K to total potassium,
40K
Ktotal

≈ 1.2× 10−4. Additionally, use the decay constant λ ≈ 5.8× 10−11 yr−1.

Sample Number 40Ar × 10−12 mol/g wt.%K2O
1 2.91 0.657
2 3.18 0.755
3 3.08 0.680

Table 1: Outcome of measurements of potassium and argon for dating the rocks in the
vicinity of Lucy.
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2 Synthesizing a Transcriptome: Big Data in Tran-

scription

In class, we briefly discussed the myriad of different ways to measure gene expression. Writ
large, we can either find ways to count the mRNA transcripts or the protein products that
result from these transcripts. For example, when properly calibrated, the green fluorescent
protein (GFP) in conjunction with fluorescence microscopy is a favorite approach for mea-
suring protein copy numbers. Recently, a different way to engage in the dialogue between
theory and experiment has been afforded by the advent of technologies that make it possible
to take a census of the full complement of transcripts inside individual cells.

One of the key applications of single-cell mRNA sequencing has been its use to identify “tran-
scriptional fingerprints” that define discrete cell types within a population containing cells
that have committed to multiple possible fates. One of the best examples of this application
of single-cell transcriptome-wide sequencing comes from projects such as the Tabula muris.
This project measured RNA counts for tens of thousands of genes within tens of thousands
of individual cells in the mouse, derived from tens of distinct organs and tissues. Each single
cell transcriptome is a giant ≈ 10,000 dimensional vector with the ith entry corresponding
to the mRNA count of the ith gene.

One widespread approach to visualizing the results from these types of experiments is shown
in Figure 2. In the figure, each point corresponds to an individual cell whose transcriptome
was sequenced. Here, the extremely high dimensional data resulting from single-cell RNA
sequencing (i.e., the number of mRNA molecules corresponding to each of ≈ 10,000 genes in
each cell) was projected onto two dimensions using methods we will later explore. Further,
once this projection is performed, cells are grouped in clusters. The idea is that cells within
a cluster share much of their gene expression profile and are therefore identified as unique
cell types corresponding to different tissues within the mouse. In this problem, we will at-
tempt to build some intuition for how this identification of unique cell types is achieved by
working with a synthetic transcriptome that we build ourselves using our understanding of
the constitutive promoter. Obviously this is a caricature of the real situation where most
genes are not constitutively expressed.

(a) Let’s start by creating a mental picture of the high dimensionality of single-cell sequenc-
ing data by picturing how this data is stored. Specifically, think of a matrix G where you
store the RNA counts for 10,000 genes measured in 1,000 cells where each row of the matrix
corresponds to a given cell. How many rows and columns would this matrix have? Draw this
matrix schematically, clearly indicating what each dimension of the matrix represents. Fur-
ther, identify the gene expression vector that corresponds to the number of mRNA molecules
detected for all species in cell number 1.

(b) To begin to get a feeling for this kind of data, we imagine an experiment on cells contain-
ing only two genes. These cells can adopt three different fates based on the expression state
of these genes (i.e., low/low, low/high and high/high). Further, let’s assume that these two
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Figure 2: Graphical representation of the Tabula muris single-cell sequencing data. In-
dividual cells of different organs in the mouse were subjected to single-cell transcriptome
sequencing. Each dot represents a single cell, with its high-dimensional gene expression
vector reduced to a two t-SNE lower dimensional representation. Clustering and manual an-
notation reveal different tissues and cell types. Adapted from The Tabula Muris Consortium
et al., Nature 562:367-372, 2018.
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genes are constitutively expressed, and that low and high gene expression levels correspond
to an average of 10 and 35 mRNA molecules per cell, respectively. To remind ourselves of
what the null hypothesis for constitutive promoters looks like, write the chemical master
equation for a constitutive promoter and show that solving this equation in steady state
results in a Poisson distribution. In the case of the low and high expression levels, give the
formula for the specific Poisson distribution for those two cases.

(c) Plot histograms of the number of mRNA molecules of gene 1 and gene 2 for each cell
type, assuming 1,000 cells of each type. This means that you will invoke the Poisson distri-
bution you derived in the previous part of the problem and use it to describe the distribution
of mRNA counts for the different cell types.

(d) Generate a synthetic transcriptome matrix G with 1,000 cells of each type (for a total
of 3,000 cells in your dataset) by sampling from the Poisson distributions that you derived
above. Make a plot of this low-dimensional synthetic transcriptome data set consisting of
number of mRNA molecules of gene 2 vs. number of mRNA molecules of gene 1, where each
dot within the plot corresponds to an individual cell.

Now, we will imagine that we are given this transcriptome data without any more informa-
tion than the fact that there should be three cell types within it. Note that in reality we will
rarely have information about number of cell types within a sample a priori. However, this
is a good first step toward building intuition about the challenges of analyzing single-cell
sequencing data.

In order to find cell types in our synthetic transcriptome, we will resort to so-called k-means
clustering. The steps of this algorithm are illustrated in figure 3 and can be enumerated as
follows:

1. The transcriptome data is plotted. In this case, because we only have two genes, this
corresponds to a two dimensional plot of the number of mRNA molecules of gene 2 as
a function of the number of mRNA molecules of gene 1 for each single cell. A set of
N random points within this data set are then selected, with N being the number of
clusters we are trying to identify. These N points will be called the centroids.

2. The distance of every data point to the centroids is calculated. Each data point is
assigned to its closest centroid. This is our first approximation to the assignment of
cells to our three clusters.

3. Based on the categorization of data points, new centroids are calculated. For each clus-
ter, calculate their corresponding centroids by taking the average values of expression
for the two genes.

4. Data points are reassigned to their closest centroid. This means that we now need
to take every data point and compute the distance to all three updated centroids and
then to assign them to the centroid they are closest to.

5. Steps (3) and (4) are repeated until convergence is achieved.
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Figure 3: The k-means clustering algorithm. (i) A set of N points are chosen randomly from
the dataset to become the centroids of the N clusters to identify. (ii) Each data point is
assigned to its closest centroid. (iii) New centroids are calculated for each new cluster. (iv)
Data points are reassigned to their new centroids. By iteratively repeating steps (iii) and
(iv) convergence can be ultimately reached.
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(e) Write a k-means algorithm to find 3 clusters in your synthetic transcriptome data set. In
doing so, generate intermediate plots for the iterations of the algorithm such as those shown
in Figure 3.

(f) One of the biggest drawbacks of k-means clustering is that we need to commit to a given
number of clusters in advance. Explore what happens if you tell your algorithm to look
for two and four clusters instead of three. Document some of the final answers from the
algorithm and comment on why it converged to that answer. Comment on how all of these
answers correspond to what you actually know about the system given that you generated
the transcriptomes!

Finally, it is important to note that all algorithms are limited in the sense that they require
commitments by specifying parameters. In k-means, we had to commit to a number of clus-
ters. However, there are other approaches to finding clusters that do not require specifying
cluster number a priori such as DBSCAN.

(g) Read about DBSCAN and explain how it works by drawing a graphical example (this
can be in cartoon form). For this algorithm, what are the parameters we need to commit
to?

3 Taylor series

In class, we solved the master equation for mRNA production and concluded that the mRNA
production in steady state can be described by a Poisson distribution. To make this possible,
we had to invoke the result that

+∞∑
m=0

1

m!
xm = ex = 1 + x+

1

2
x2 +

1

6
x3 + . . . (3)

In this problem, we introduce the Taylor expansion to prove that the equation above is cor-
rect. This expansion is perhaps one of the most important tools used in the mathematical
analysis of physical models.

(a) Read the section “The Math Behind the Models: The Beauty of the Taylor Expansion”
on page 215 of PBoC2 shown below in Figure 4.

(b) The idea behind Equation 3 is that, as we sum more of the terms in the equation, our
summation will converge to the function ex. Here, we check this assertion using your favorite
programming language. Make a plot like that shown in Figure 5.22 of PBoC (shown below
in Figure 5), but for the function ex. Specifically, plot the function ex as well as the sum in
the equation up until different powers. This means that you will plot ex, together with 1,
1 + x, 1 + x+ 1

2
x2, etc. Go until the fourth order for a total of five lines on your plot.
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The Math Behind the Models: The Beauty of the Taylor
Expansion A very important tool invoked in the mathemat-
ical analysis of physical models is the use of the so-called
Taylor expansion. Series expansions of this kind will be one
of our primary mathematical tools in the remainder of this
book. The idea is very simple and amounts to replacing a func-
tion f (x) in some neighborhood with a simple polynomial. As
will be seen repeatedly throughout this book, the virtue of
these approximations is that they allow us often to replace
intractable nonlinear expressions with simple algebraic surro-
gates that we can handle analytically and that give an intuitive
sense of the mathematics.

The idea of the Taylor expansion is embodied in the simple
formula

f (x) = a0 + a1x + a2x2 + ···. (5.18)

Most of the time, we will only keep terms up to second order,
and as a result the Taylor series algorithm reduces to the ques-
tion: what three coefficients a0,a1, and a2 should we use to
best approximate the function f (x)?

For concreteness, let us consider the case in which we are
interested in the behavior of the function f (x) near x = 0. If we
set x = 0 on both sides of Equation 5.18, we see that a0 = f (0).
But we already know the function f (x), so all we have to do is
find its value at x = 0 to obtain the first coefficient. Next, let us
take the derivative of both sides of Equation 5.18 with respect
to x. We are left with the equation

f (x) = a1 + 2a2x + ···. (5.19)

Once again, if we set x = 0, we are left with a1 = f (0). We
can continue to play the same game, this time evaluating the
second derivative, with the result

f (x) = 2a2 + ···, (5.20)

which leads to a2 = 1
2 f (0). This same basic analysis can be car-

ried on indefinitely if one is interested in higher-order terms.
Most of the time we will be content with the expression

f (x) ≈ f (0) + f (0)x + 1
2 f (0)x2. (5.21)

The symbol ≈ refers to the fact that in the neighborhood of
the point x, the left- and right-hand sides of this equation are
approximately equal. The conclusion of this little analysis is
that if we want to find a simple quadratic surrogate for our
function ofinterest, all we need to know is the value of the
function and its first two derivatives at the point around which
we are expanding. An example of this kind of analysis for the
case of cos x is shown in Figure 5.22. In particular, using the
rules given above, the Taylor series for this function is given by

cos x ≈ 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
−

x10

10!
+ ···. (5.22)

Figure 5.22 compares the function cos x with various approx-
imations based upon the Taylor series. We see that as more
terms are included, the approximation is good for a wider
range of values of x. Of course, there are mathematical sub-
tleties that arise when considering a generic function, such as
the question of convergence of the Taylor series. For example
the function 1 /(1 − x) has the Taylor series, 1 + x + x2 + x3 + ···,
which is finite only for values of x such that −1 < x < 1.

Figure 4: Math Behind the Models: The Beauty of the Taylor Expansion. From PBoC2,
page 215.

9



Figure 5.22: Comparison of the
function cos x and its Taylor
expansion. The curves are labeled by
the order of the highest term kept in
the Taylor series. For example, n = 2
means that the series goes to
quadratic order, etc. The cosine
function we are approximating is
shown in bold for comparison with
the approximate expressions.
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Figure 5: Figure 5.22 from PBoC2.
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