
MCB137L/237L: Physical Biology of the Cell
Spring 2024
Homework 6

(Due 3/5/24 at 2:00pm)

Hernan G. Garcia

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty cold and aus-
tere, like that of sculpture, without appeal to any part of our weaker nature, without the
gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection
such as only the greatest art can show. The true spirit of delight, the exaltation, the sense
of being more than Man, which is the touchstone of the highest excellence, is to be found in
mathematics as surely as in poetry.” - Bertrand Russel in Study of Mathematics

1 Ion channel currents

Figure 1A shows a single-channel recording of the current passing through a voltage-gated
sodium channel. The data reveal that the channel transitions between open and closed
states as shown in Figure 1B. When in the open state, Na+ ions can flow from one side of
the membrane to the other, resulting in a current across the membrane.

Given that ions have a typical diffusion constant of 1000 µm2/s, given the difference between
the sodium intracellular and extracellular concentrations shown in Figure 1C, and using a
rough guess for the radius of an ion channel, estimate the current that flows through the ion
channel when in the open state.

Recall that the charge of one monovalent ion is 1.6×10−19 C (Coulomb), and that 1 A = 1 C/s
(Ampere = Coulomb/second). Compare your estimate to the current measured in Figure 1A.

2 Creating morphogen gradients

One of the most important ideas for how positional information arises in multicellular or-
ganisms is the idea of a morphogen gradient (another serious contender is a Turing pattern).
In this problem we will use a steady-state solution to the reaction-diffusion equation for
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Figure 1: Electrical current flowing through an ion channel. (A) Current flowing through a
single voltage-gated sodium channel. (B) The channel recording reveals transitions through
an open and a closed state. (C) The concentration gradient of Na+ ions across the membrane
can be used to estimate the current when the channel is open. (A, adapted from B. U. Keller
et al., J. Gen. Physiol. 88:1, 1986; B, adapted from B. Hille, Ion Channels of Excitable
Membranes. Sinauer Associates, 2001)

Bicoid to understand how the exponential profile shown in Figure 2 is set up. Stated simply,
the development of the Bicoid gradient can be thought of as resulting from a competition
between the diffusion of Bicoid protein that is synthesized at the anterior end of the embryo
(the mother deposits localized bcd mRNA there as shown in Figure 3) and the degradation
of this protein while it is diffusing around.

(a) Give a brief description (a paragraph or less) of the Bicoid gradient in Drosophila and
how it is relevant to fly development.

2



0 0.5 1
0

200

120

100

80

60

40

20

0

400

600

800

1000

x/L

nu
cl

ea
r 

fl
uo

re
sc

en
ce

 (
au

)
approxim

ate Bicoid
concentration (nM

)
100 µm

Figure 2: The Bicoid morphogen. The Bicoid activator is distributed in an exponential
gradient. (Adapted from F. Liu et al., Proc Natl Acad Sci USA 110:6724 2013.)

(b) Make a derivation of the reaction-diffusion equation and use it to justify the form

∂Bcd(x, t)

∂t
= D

∂2Bcd(x, t)

∂x2
− Bcd(x, t)

τ
. (1)

Make sure you explain carefully where all of these terms come from. To do so, you can build
on the derivation of the diffusion equation we did in class based on particules jumping be-
tween adjacent boxes. Specifically, begin with the usual way by considering a one-dimensional
concentration profile and by finding the rate of change of the number of Bicoid molecules in
the box at position x by considering the flux into (kN(x − a, t) + kN(x + a, t)) and out of
(2kN(x, t)) the box, with a being the size of the box and k the rate of jumping of a particle,
using arguments like those made in class. However, you need to generalize that treatment
by accounting for the fact that a Bicoid molecule has the probability r∆t of degrading in
time interval ∆t, where r ≈ 1/τ with τ being the degradation time.

(c) Now, show that Bcd(x, t) = Bcd0e
−x/λ, with λ being a decay length and Bcd0 being the

Bicoid concentration at x = 0, is a solution of the reaction-diffusion equation 1 in steady-
state. How is λ determined by the model parameters D and τ?

(c, EXTRA CREDIT) Solve this equation in steady-state by finding the general solution
subject to the boundary condition that J(0, t) = j0 and J(L, t) = 0. Remember that you
can use Fick’s law to relate the flux to a change in Bicoid concentration over time. Make
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Figure 3: bicoid mRNA distribution. Using single molecule mRNA FISH, the localization
of individual bicoid mRNA molecules at the anterior end of the embryo can be revealed.
(Adapted from Petkova et al. (2014), Current Biology 24:1283.)

sure you explain what these boundary conditions mean relative to the biology of the prob-
lem. Suggest approximations that can be made to simplify the result, specifically, can you
exploit the fact that the embryo is much larger than the decay length to simplify the solution?

(d) What is the value of the decay constant λ for the gradient shown in Figure 2? To esti-
mate this magnitude, you can just fit “by eye” by plotting your solution for different values
of Bcd0 and λ. Now, compare the measured λ value with that you can predict by plugging
in realistic values of D, τ into your solution. To make this possible, read the papers by
Abu-Arish et al. and Drocco et al., provided on the course website. Remember that you
already delved into the experiment by Drocco et al. in the context of Homework 4.

3 Diffusion on a microtubule

Read the great paper by Helenius et al. (provided on the course website) dissecting the
mechanism of microtubule depolymerization by the kinesin MCAK. Here, they show how
the MCAK molecular motor diffuses along the microtubule towards both ends, triggering
the depolymerization of a few tubulin dimers before falling off the microtubule.

(a) In their Figure 2b, they show the mean squared displacement of MCAK 〈x2〉 as a function
of time t. Remember that, using dimensional analysis, we concluded that 〈x2〉 = Dt, where
D is the diffusion constant (there’s a difference of a factor of two between our expression
and the one used by Helenius et al., but we can ignore that for now). Fit the data in the
figure (provided on the course website) “by eye” in order to determine the value of D. To
make this possible, plot the expected relation between 〈x2〉 and t for different values of D
and decide which value of D better recapitulates the data.

(a, EXTRA CREDIT) Write a chi2 minimization program to determine the diffusion con-
stant. Make sure to plot the chi2 as a function of D.

(b) In their Figure 3, they argue that a diffusive mechanism can be faster than one of directed
motion on short length scales. Explain how this assertion is supported by the plot shown in
their Figure 3b, and reproduce the plot in Python.
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