
MCB137L/237L: Physical Biology of the Cell
Spring 2024
Homework 7

(Due 3/12/24 at 2:00pm)

Hernan G. Garcia

“The quantum physicist Richard Feynman once gave a lecture on color vision in Caltech’s
Beckman Auditorium. He explained the molecular events that take place in the human eye
and brain to show us red, yellow, green, indigo, and blue. This chain of reactions was one of
the early discoveries of molecular biology, and fascinated Feynman. ‘Yeah,’ someone in the
audience said, ‘but what is really happening in the mind when you see the color red?’ And
Feynman replied, ‘We scientists have a way of dealing with such problems. We ignore them,
temporarily.’ ” - Jonathan Weiner in Time, Love, Memory.

1 Diffusion times

Make a log-log plot of the diffusion time (in seconds) as a function of length (in µm) using
Python. Plot multiple lines considering the diffusion constants for ions and for a typical
protein inside a cell. Finally, mark a few relevant biological sizes along the x-axis such as
the size of an axon, a synaptic cleft, an E. coli cell, and a eukaryotic nucleus.

2 Bacterial foraging

Bacteria use swimming to seek out food. Imagine that the bacterium is in a region of low
food concentration. For the bacterium to profit from swimming to a region with more food,
it has to reach there before diffusion of food molecules makes the concentrations in the two
regions the same. Here we find the smallest distance that a bacterium needs to swim so it
can outrun diffusion.

(a) Make a plot in which you sketch the distance traveled by a bacterium swimming at a
constant velocity v as a function of time t, and the distance over which a food molecule will
diffuse in that same time. Indicate on the plot the smallest time and the smallest distance
that the bacterium needs to swim to outrun diffusion. You don’t need to use Python here,
just make the plot by hand and show the two curves schematically.
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(b) Calculate these minimum times and distances for an E. coli swimming at a speed of
30µm/s. The diffusion constant of a typical food molecule is roughly 500µm2/s.

(c) Estimate the number of ATP molecules the bacterium must consume (hydrolyze) per
second in order to travel at this speed, assuming that all of the energy usage goes into
overcoming fluid drag. The drag force felt by the bacterium is given by

F = 6πηRv, (1)

where R is the typical size of an E. coli, η is the viscosity (we can assume it’s swimming in
water) and v is the speed of the bacterium. The power necessary to move the bacterium at
a speed v against this viscous drag is

P = Fv. (2)

The amount of energy released from one ATP molecule is approximately 20 kBT . Note that
the bacterial flagellar motor is actually powered by a proton gradient and this estimate
focuses on the ATP equivalents associated with overcoming fluid drag.

3 The biological consequences of diffusion limited rates

In class, we introduced the diffusive speed limit as a fundamental constraint of biological
reactions such as enzyme action. Here, we further explore the biological consequences of this
speed limit. Specifically, we estimate the maximum rate of translation.

Learn about the complex of aminoacid-tRNA, EF-Tu, and GTP that binds to an active
ribosome. For example, you can look at the section “Large Protein Movements Can Be
Generated From Small Ones” on page 179 of Alberts et al. (5th edition), and their Figure 3-
74, and section “Elongation Factors Drive Translation Forward and Improve its Accuracy”
on page 377. Alternatively, you can look at Wikipedia or at a textbook of your choosing.

Let’s work out the diffusion-limited rate with which the complex made out of aminoacid-
tRNA, EF-Tu, and GTP arrive to an active ribosome. To make this possible, you will have to
estimate the diffusion constant and size of this complex. You can use what you learned about
these molecules from the sources suggested above or refer to BioNumbers. Compare your
rate to the known translation rate. Of course, you will have to make some assumptions about
co, the overall concentration of tRNA molecules in the cell. Find some typical concentrations
by looking at Dong et al. (1996), which is provided on the course website. If you want to
learn more about the consequences of this speed limit on bacterial growth, see the Klumpp
et al. paper also provided on the website.

4 Analytical solution to the diffusion equation

In class, we derived the diffusion equation in 1D given by

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
, (3)
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where c(x, t) is concentration of molecules, and D is the diffusion constant. Further, in class
we solved this equation numerically by integrating its chemical master equation for an initial
condition corresponding to having N0 molecules centered at x = 0.

(a) The analytical solution to the diffusion equation under the inital conditions described
above is given by

c(x, t) =
N0√
4πDt

e−
x2

4Dt . (4)

Show that this is indeed a solution of the diffusion equation. To make this possible, plug in
the proposed c(x, t) above into the diffusion equation, do the derivatives on each side and

show that, indeed, ∂c(x,t)
∂t

is equal to D ∂2c(x,t)
∂x2

.

Remember what you learned in calculus about the product of derivatives and the chain
rule! Given a function f(x, y), you can think of the partial derivative ∂

∂x
as a measure of

the derivative as we walk along the x-direction as shown in Figure 1. Operationally, taking
a partial derivative is like taking a regular derivative: you just treat all other variables as
constants. For example, let’s define a function of x and y

f(x, y) = ax2y3. (5)

Now, we take the partial derivative with respect to x

∂f

∂x
= ay3

∂

∂x

(
x2
)
. (6)

Note that we just thought of ay3 as constants and took them out of the derivative. As a
result, we get

∂f

∂x
= ay32x. (7)

Similarly,
∂f

∂y
= ax23y2. (8)

For more information on the partial derivative, please refer to “The Math Behind the Models:
the Partial Derivative” on page 212 of PBoC.

(b) Now, let’s plot this analytical solution. Specifically, plot the concentration profile (i.e.,
concentration vs. position) for 0.01 ms, 0.1 ms, 1 ms, 5 ms and 10 ms in a single figure. Note
that we are not asking you to plot the t = 0 time point because Python won’t necessarily
know how to deal with the fact that, while the term N0√

4πDt
approaches infinity as t→ 0, the

term e−
x2

4Dt approaches 0 for the same limit. Use a typical diffusion constant for a protein in
the cell of D = 10 µm2/s. You’ll have to make reasonable choices for the model parameter
N0. Think hard about the range of x-values over which to plot this distribution and the
spacing of x-values in this range. You might note that your concentration peaks beyond
N0! This is because you’re plotting c(x, t), the concentration in an infinitesimal box of size
dx. This means that the integral

∫ +∞
−∞ c(x, t)dx = N0, indicating that the total amount of

molecules is N0. We will discuss this subtlety in class.
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Figure 1: Illustration of the concept of a partial derivative. (A) The plot shows the function
f(u1, u2) which depends upon the variables u1 and u2. If u2 is held fixed, the surface is
reduced to a curve and the partial derivative is nothing more than the ordinary derivative
familiar from calculus, but on this particular curve. (B) Planar cuts through the function
f(u1, u2).

(c) Finally, we will check that our simulation makes sense by estimating the diffusion constant
from the plots you’ve made. How long does it take for the distribution to spread to about
0.5 µm? Is this consistent with the diffusion constant you used for your simulation? Note
that we’re not after an exact result for D, but instead are performing a sanity check to see
whether our results make sense.
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