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Cells receive a wide variety of cellular and environmental signals,
which are often processed combinatorially to generate specific ge-
netic responses. Here we explore theoretically the potentials and
limitations of combinatorial signal integration at the level of cis-
regulatory transcription control. Our analysis suggests that many
complex transcription-control functions of the type encountered in
higher eukaryotes are already implementable within the much sim-
pler bacterial transcription system. Using a quantitative model of
bacterial transcription and invoking only specific protein–DNA inter-
action and weak glue-like interaction between regulatory proteins,
we show explicit schemes to implement regulatory logic functions of
increasing complexity by appropriately selecting the strengths and
arranging the relative positions of the relevant protein-binding DNA
sequences in the cis-regulatory region. The architectures that emerge
are naturally modular and evolvable. Our results suggest that the
transcription regulatory apparatus is a ‘‘programmable’’ computing
machine, belonging formally to the class of Boltzmann machines.
Crucial to our results is the ability to regulate gene expression at a
distance. In bacteria, this can be achieved for isolated genes via DNA
looping controlled by the dimerization of DNA-bound proteins. How-
ever, if adopted extensively in the genome, long-distance interaction
can cause unintentional intergenic cross talk, a detrimental side effect
difficult to overcome by the known bacterial transcription-regulation
systems. This may be a key factor limiting the genome-wide adoption
of complex transcription control in bacteria. Implications of our
findings for combinatorial transcription control in eukaryotes are
discussed.

B iological organisms ranging from bacteria to humans possess an
enormous repertoire of genetic responses to ever-changing

combinations of cellular and environmental signals. To a large
extent, this repertoire is encoded in complex networks of genes
closely regulating the activities of each other. Characterizing and
decoding the connectivity of gene regulatory networks has been an
outstanding challenge of post-genome molecular biology (1–4).
However, unlike integrated circuits, which process information
through synchronized cascades of many simple and fast nodes and
for which connectivity is the primary source of network complexity,
a gene-regulatory network typically consists of only a few tens to
hundreds of genes, the expression of which is slow and asynchro-
nous (5). Yet these ‘‘nodes’’ are very sophisticated in their capacity
to integrate signals: In eukaryotes, each node can be regulated
combinatorially, often by four to five other nodes (1, 6), and the
regulatory control function can be extremely complex (7). Here we
focus primarily on one node of a gene-regulatory network and
investigate quantitatively the power and limitations of combinato-
rial gene regulation in the context of bacterial transcription. We find
that the bacterial transcription system is already capable of imple-
menting many of the complex regulatory functions known for
eukaryotes. At the end, we discuss factors limiting the genome-wide
adoption of complex regulation for bacteria, and explore how they
may be overcome by the eukaryotic transcription system.

Quantification of Combinatorial Transcription Control
The activity of a gene is regulated by other genes through the
concentrations of their gene products, the transcription factors
(TFs). This is accomplished mechanically by the interaction of the
TFs with their respective DNA targets, with each other, and with
the RNA polymerase (RNAP) complex in the regulatory region of

the regulated gene. Regulation can be quantified by the ‘‘response
characteristics,’’ i.e., the level of gene expression as a function of the
concentrations of (activated) TFs.† Although we consider protein
concentrations as continuous variables, essential features of the
response characteristics can often be represented more compactly
by a binary ‘‘logic function,’’ which specifies whether a gene is ‘‘ON’’
(expressed) or ‘‘OFF’’ (silent, or expressed at basal level) at
different extremes of cellular TF concentrations, e.g., a ‘‘low’’ value
of a few molecules per bacterium (�1 nM) or a ‘‘high’’ value of
�1,000 molecules per bacterium (�1 �M). In Fig. 1a we show the
logic-function representations of six different genetic responses
(g1–g6) to two TFs, A and B. Some of these responses are
commonly encountered in bacterial transcription control, e.g., the
response of g1 represents approximately the regulation of the well
known lac operon by LacR (A) and CRP (B) in Escherichia coli (8).
Here, the repressive effect of A is achieved by competitive binding
of A and RNAP to the same region of DNA, and the activating
effect of B results from the cooperative interaction between B and
RNAP when they are both bound to their sites (see Fig. 1b).

Can similar schemes involving merely the arrangement of TF-
binding sites in the cis-regulatory region be used to implement the
other functions listed in Fig. 1a as well as more complex ones
involving regulation by three or more TFs? Ptashne and Gann (9,
10) postulated that a wide range of regulatory functions might
indeed be realizable, simply through the ‘‘regulated recruitment’’ of
TFs and the RNAP, without invoking complex (e.g., allosteric)
protein–protein interactions. To test this postulate, we formulated
a quantitative model of regulated recruitment based on the well
characterized bacterial transcription system. Specifically, we endow
proteins with only weak ‘‘glue-like’’ contact interaction and explore
the possibility of implementing control functions of increasing
complexity via the appropriate arrangement of their DNA-binding
targets. The model is briefly outlined below, with details provided
in Supporting Text, which is published as supporting information on
the PNAS web site, www.pnas.org (see also ref. 11).

Model. We adopt and generalize the approach of Shea and Ackers
(12), describing transcription regulation in bacteria by a thermo-
dynamic treatment. The degree of gene transcription is quantified
by the equilibrium binding probability P of the RNAP to its DNA
target, the promoter, given the cellular concentrations of all of the
TFs. Crucial to our model are two ingredients that we regard as the
quantitative formulation of regulated recruitment (9, 10).

1. The binding strength of a TF-binding site on the DNA (an
operator) is assumed to be continuously tunable through choice
of the binding sequence. In our model, we quantify the binding
strength of a site i by an effective dissociation constant Ki,
defined as the TF concentration for half-maximal binding of the
site in the presence of the genomic background (see Supporting
Text for details). As shown by experimental studies on exemplary
TFs (13) and expected on theoretical grounds for a large class
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of bacterial TFs (14), Ki can typically be tuned across and beyond
the relevant range of cellular protein concentrations (e.g., Ki �
1–10,000 nM) individually for each site i.

2. A weak glue-like interaction between two proteins (TFs and�or
RNAP) is assumed possible if the relative placements of the
DNA-binding sites allow for direct contact of appropriate re-
gions of the proteins. On the molecular level, weak glue-like
interactions can occur, for instance, via contact of hydrophobic
patches (15). For a number of well studied proteins (see refs. 10,
12, and 16 and references therein), such interactions fall within
the range of �1–4 kcal�mol. Here we assume for simplicity the
same interaction energy for all protein pairs and choose a
conservative value of Eint � �2 kcal�mol. A repulsive interac-
tion (Eint � ��) between two proteins results if their respective
binding sites overlap. No effective interaction (Eint � 0) is
obtained when the binding sites for the two proteins are on
opposite sides of the DNA or at an appropriate distance such
that they will not bind to their sites and contact each other
simultaneously. Quantifying the interaction between two pro-
teins bound to two sites i and j by a cooperativity factor �i,j �
e�Eint/RT, where RT � 0.6 kcal�mol, we see that interaction
between each pair of sites can be selected from the values �i,j �
{0, 1, �20} just by arranging the positions of the binding sites in
the regulatory region.

Given the binding strengths Ki and the cooperativity factors �i,j
for all the DNA sites, the binding probability P of the RNAP to the
promoter can be computed straightforwardly (see refs. 11 and 12
and Supporting Text). The task of implementing various regulatory
functions is then reduced to arranging the binding sites in the
cis-regulatory region such that the interaction parameters Ki and �i,j
produce the desired P for the various TF concentrations.

Cis-Regulatory Implementations. To illustrate how different regula-
tory functions can be implemented by using the model described
above, let us consider the response of g2 in Fig. 2a, which corre-
sponds to the logic function AND, and the implementation of which
is referred to as the AND gate. It can be obtained by choosing weak
binding sites for both A and B and placing them adjacent to each
other (see Fig. 2a) such that each TF alone cannot bind to its site,
but when both are present binding occurs with the help of the
additional cooperative interaction. This is quantitatively verified by
the full response characteristics P([A],[B]) plotted across the range
of physiological TF concentrations (�1–1,000 nM). Similarly, one
can implement the responses for the genes g3 and g4 corresponding
to the OR and NAND gates (see Fig. 2 b and c). The maximal fold
change obtained is �10 for all three logic gates. (With stronger
interaction energy Eint or by using multiple binding sites, larger fold
changes can be readily obtained for these and more complex logic
gates; here we are concerned primarily with obtaining the qualita-

tive behaviors rather than their optimization.) Examples of these
control functions can be found in natural and artificially constructed
regulatory systems in bacteria (17–19), and the basic molecular
mechanisms of their operations are similar to those described
above.

The responses for g5 and g6 exemplify an increased level of
complexity: The effect of a TF is not always activating or repressing
(as is the case for g1–g4) but depends on the state of the other TF.
For example, protein B activates g5 in the absence of protein A but
represses g5 in the presence of A, making the gene ON if either one
but not both of the TFs are activated; this control is known
commonly as the ‘‘exclusive-or’’ (XOR) gate. Analogous to elec-
tronic circuit design, g5 could be achieved via a ‘‘gene cascade,’’ e.g.,
by applying the gene products of g3 and g4 on g2 (see Fig. 3a). More
simply, the regulatory regions of g3 and g4 could be combined into
a single region as shown in Fig. 3b, which achieves the desired
characteristics without any intermediate genes, thereby avoiding
many potential problems associated with their expressions (e.g.,
time delay and stochasticity). The cis-regulatory implementation of
the XOR gate is not unique, e.g., an alternative design uses two
promoters positioned sequentially in the regulatory region, with
one promoter functional only when B is activated and A is not (as
in Fig. 1b) and vice versa for the other (see Fig. 3c).

The above example illustrates a fundamental difference in the
style of computation between a gene-regulatory network and an
electronic circuit: An electronic circuit features a ‘‘deep’’ architec-
ture with many layers of cascades to take advantage of the vast
number of simple but fast nodes. Despite what has been suggested
previously (20), we believe a gene-regulatory network cannot afford
many stages of cascades because of the slowness and limited
number of nodes but can adopt a ‘‘broad’’ architecture integrating
complex computations such as the XOR gate into a single node to
overcome the slowness. The speed constraint is especially signifi-

Fig. 1. (a) Some possible gene responses (ON or OFF) according to the specific
activation patterns of two TFs, A and B, as denoted by their cellular concen-
trations (high or low). The logical equivalents of these gene responses are
listed above each column. (b) The cis-regulatory implementation for the
response of gene g1, as adapted from the E. coli lac operon. To achieve
the desired effects, the operator sites need to be strong (filled boxes)
and the promoter needs to be weak (open box). In this and subsequent
cis-regulatory constructs, we use the offset, overlapping boxes to indicate
mutual repression and the dashed lines to indicate cooperative interaction.
The logic function that this system implements is indicated above the con-
struct, with the overline denoting the ‘‘inverse’’ of A, or NOT A.

Fig. 2. Cis-regulatory constructs and response characteristics of the AND (a),
OR (b), and NAND (c) gates. Filled, hatched, and open boxes denote strong,
moderate, and weak binding sites, respectively. Dashed lines indicate coop-
erative interaction with �i,j � 20, and overlapping boxes indicate repulsive
interaction with �i,j � 0. Plotted to the right of each construct is the fold
change in RNAP-binding probability, �P � P([A], [B])�Pmin for typical cellular
TF concentrations [A] and [B] (in nM). See Supporting Text for the actual forms
of P([A], [B]) and the strengths of the binding sites. Qualitative features of
these plots are insensitive to the precise values of the parameters used.
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cant in bacteria, where the time scale for gene expression is a
significant portion of the generation time. Indeed, the preference
for a broad but shallow network architecture has been observed
recently in a large-scale analysis of the E. coli gene-regulatory
circuits (4). Of course, a limited number of gene cascades can be
used if speed is not a limiting factor (e.g., in eukaryotes) and may
be especially useful in situations such as cell-cycle control (21) and
early development (22), where natural temporal orders exist.

Limitations. There are limitations to the control functions one can
implement by using only the two ingredients of regulated recruit-
ment formulated thus far. This is illustrated with gene g6, the
‘‘equivalence’’ or EQ gate. A strong promoter is required here to
turn the gene ON when neither of the TFs are activated, whereas
repression is needed under multiple conditions (i.e., when A is
activated and B is not, and vice versa). It is difficult to implement
both repressive conditions by the direct physical exclusion of RNAP
given the small size of the promoter region (see Fig. 4a). The
situation is improved somewhat in an alternative approach involv-
ing two promoters, although multiple repressions are still needed
(see Fig. 4b). This turns out to be a general problem for the
implementation of more complex regulatory functions, which will
generically require multiple repression conditions. An effective
strategy to overcome promoter overcrowding is repression from a
distance. One way to accomplish distal repression is through DNA
looping mediated by protein dimerization; see, e.g., the ho-
modimerization of AraC in E. coli (23).

A simple strategy to implement repression under multiple con-
ditions is to use heterodimers, with two subunits each recognizing
a distinct DNA site while associating strongly to each other (quan-
tified by a cooperativity factor �i,j � 100) as shown in Fig. 5a. In
recent experiments, long-range regulation through heterodimers
has been demonstrated in vivo by using either two regulatory

proteins, each fused with a recognition domain according to the
‘‘two-hybrid’’ approach (24), or a single regulatory protein with two
distinct binding domains (25). For our purposes, distal repression
can be implemented by overlapping one of the binding sites, say the
target of the S subunit, with the promoter. To control the repressive
effect solely by the proteins A and B, one can set up a steady
background concentration of the heterodimers and make the
binding strength of the distal site weak such that the heterodimers
only bind to their respective DNA targets when recruited by the
appropriate TFs placed adjacent to the distal site. Binding sites for
A and B can also be placed overlapping with the distal site to turn
off distal repression under desired conditions. A cis-regulatory
construct and the corresponding response characteristics of the EQ
gate, using the distal repression scheme, is shown in Fig. 5b with
multiple binding sites for the R subunit used to enforce multiple
repression conditions (see Supporting Text for details). Alterna-
tively, the EQ gate could be implemented by using a distal activation
scheme as shown in Fig. 5c, with the target of the S subunit located
in close vicinity of the promoter so as to recruit the RNAP.

Complex Transcription Logics
The schemes discussed above with distal activation and repression
can be readily extended to describe combinatorial control by
multiple TF species. As long as the glue-like contact interaction
exists between the TFs and RNAP, one species of TF can be
substituted for another by changing the TF-specific DNA-binding
sequences in Figs. 1–5. (See below for a discussion on possible
adverse effects of promiscuous glue-like interactions.) More com-
plex regulatory functions involving three or more inputs can be
implemented by generalizing the constructs of Fig. 5 b and c. Fig.
6a illustrates the general architecture of the regulatory region
obtained by using the distal activation scheme. Note that the
emerging structure is naturally modular, in the sense that the
sequence segment coding for a given logical expression (indicated
by brackets) can be moved to different positions in the regulatory
region without affecting the regulatory function (6, 22). Because
each module recruits RNAP on its own, the regulatory logic
function implemented is of the form

L � C1 OR C2 OR . . . OR CM, [1]

where L indicates the occupation state of the promoter, and Cm is
the occupation state of the binding site Rm in the mth module.

Within each module, the recruitment of the R subunit to its
target must be accomplished molecularly through contact with TFs

Fig. 3. Various strategies of implementing the XOR function. (a) A gene
cascade, where the intermediate gene products G3 and G4 themselves are TFs
that can interact cooperatively. Alternative cis-regulatory constructs using a
single promoter (b) or two promoters (c) are shown. Notations are the same
as those used for Fig. 2, whereas the squiggles in c indicate that the two
promoters can be at variable distances from one another.

Fig. 4. Cis-regulatory constructs for possible implementations of the EQ gate
using a single promoter (a) or two promoters (b). Notations are the same as
those used for Figs. 2 and 3. Both constructs illustrate the problem of promoter
overcrowding, a situation that occurs when multiple repressive conditions are
needed.
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bound to nearby sites. This implements the logical AND function,
leading to the following expression for each “clause” Cm:

Cm � bm,1 AND bm,2 AND . . . AND bm,n�m	. [2]

Here the index i � {1, . . . n(m)} labels the binding sites in the mth
module, and the binary ‘‘literals’’ bm,i express the effect (activating�
repressing) of a binding site on the occupation of Rm. For an
activating site, b � 1 (0) if the corresponding TF concentration is
high (low), whereas the opposite is true for a repressive site. If we
represent the state of the concentration (high�low) of the TF � by
a binary variable xa and its inverse by x�, then we have bm,i � {x�(m,i),
x��(m,i)} where �(m,i) denotes the identity of the TF (e.g., A, B, C,
etc.) targeted by site i in module m.

Eqs. 1 and 2 are a special form of expressing the logic function
L[xA, xB, xC, . . . ], which describes the dependence of the gene
activity L on the TF concentrations. Intuitively, it corresponds to
selectively ‘‘switching on’’ rows in a logic table (see Fig. 1a) that are
OFF by default and corresponds to the so-called disjunctive normal
form (DNF) familiar in computer science (26). It is well known that
any binary logic function can be expressed in DNF and reduced to
a minimal (i.e., the most compact) form. This observation suggests
a simple recipe to guide the construction of regulatory regions to
implement a wide variety of control functions: Reduce a desired
logic function to its minimal DNF and implement each clause using
the distal activation scheme as shown in Fig. 6a. There are certainly
limitations to this scheme: For instance, if a clause contains many
repressive conditions, overcrowding of binding sites within a mod-
ule will limit its implementation.

From the alternative implementations of the EQ gate in Fig. 5 b
and c, we see that it may be possible to reduce the number of
repressive conditions within clauses by adopting the distal repres-
sion scheme. This scheme is obtained by overlapping the binding
site S with the promoter such that each clause Cm can repress the
promoter on its own. Consequently, gene expression occurs only if

none of the repression clauses are satisfied. The class of logic
functions implementable under distal repression are of the form

L
 � C1 AND C2 AND . . . AND CM, [3]

where the Cm are the inverse of the clauses Cm given in Eq. 2. The
generic architecture for the cis-regulatory implementation of logic
functions, expressed according to Eqs. 3 and 2, is shown in Fig. 6b.
This belongs to the conjunctive normal form (CNF) of logic and
corresponds intuitively to selectively ‘‘striking out’’ rows in a logic
table that are ON by default. As with the DNF, all logic functions
can be reduced to a minimal CNF (26).

Taken together, we see that to implement a given logic function,
one can first obtain and compare the minimal CNF and DNF and
then choose the one with fewer repressive conditions within clauses.
By using two sets of DNA-bending heterodimers, one for distal
activation and the other for distal repression, the two schemes could
also be combined. Thus, the above theoretical considerations can
guide the design of cis-regulatory constructs for a wide variety of
complex control functions. However, there may be a practical limit
to this approach due to the slow kinetics of assembling very large
molecular complexes if there are too many clauses or too many
literals within a clause.

Molecular Computing Machine
The transcription machinery can be regarded as a molecular
computer, because it is capable of complex logic computations.
Specifically, the molecular components (TFs and RNAP) satisfying
the two ingredients of regulated recruitment, i.e., continuously
tunable protein–DNA-binding strengths and glue-like contact in-
teraction between proteins and further supplemented by distal
activation and�or repression mechanisms, constitute a flexible
toolkit, a kind of molecular Lego set, that can be assembled in
different combinations to perform the desired computations. This
machine is a general-purpose computer, because its function can be
‘‘programmed’’ at will through choices and placements of the
protein-binding DNA sequences in the regulatory region of any
gene. This should be contrasted with an alternative strategy of
transcription control based on dedicated, complex (e.g., allosteric)
protein–protein interactions: In the latter, complexity of the system
is derived from the complexity of proteins, whereas in the former,
complexity is derived combinatorially from the composition of the
regulatory sequences (the ‘‘software’’) alone without the need of

Fig. 5. (a) Illustration of distal regulation through ‘‘DNA looping,’’ mediated
by a heterodimer formed between two subunits, R and S, each recognizing a
distinct DNA-binding site. (b) The schematic construct and response charac-
teristics of a regulatory region implementing the EQ gate (g6 of Fig. 1a): The
operators labeled R1, R2, and S are the targets of the subunits R and S as shown
in a. The solid lines indicate the relatively strong attraction between the
subunits of the heterodimer. (c) An alternative implementation of the EQ gate
using the distal activation mechanism.

Fig. 6. (a) Modular construct of a regulatory function involving three
controlling TFs using the distal activation scheme. The operators labeled R1,
R2, R3, and S are the targets of the recruited subunits R and the activating
subunit S. Each module is bracketed with the corresponding logical syntax
written above, and the squiggles indicate that these modules can be at
variable distances from one another. (b) The same regulatory function using
the distal repression scheme.
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tinkering with the proteins (the ‘‘hardware’’). A notable advantage
of encoding combinatorial control in the regulatory region, as
opposed to in the regulatory proteins, is evolvability (10): Unlike
the regulatory proteins, each cis-regulatory region controls the
expression of a given gene and hence can be programmed with
minimal pleiotropic effects.

Another way to appreciate the computational power of the
transcription machinery is through analogy to a ‘‘neural network’’:
As illustrated in Fig. 7, binding sites in a regulatory region can be
viewed as ‘‘neurons’’ in a network, with the promoter being the
output neuron and the activated TF concentrations being the inputs
to the network. The occupancy of a binding site corresponds to the
state of a neuron (firing or not), and the binding strength of a site
becomes the ‘‘firing threshold.’’ Molecular interactions between the
proteins play the role of ‘‘synapses,’’ which transduce signals
between the neurons. This neural network is distinguished by two
unique features: synaptic connections are symmetric (because
molecular interactions are symmetric), and some neurons in the
network are ‘‘hidden’’ (e.g., the binding sites of the heterodimers,
which are not linked to the controlling inputs). As shown in
Supporting Text, such networks are mathematically equivalent to the
class of ‘‘Boltzmann machines’’ (27), which are known to be
powerful computing machines. Thus, the transcription systems we
discuss are molecular realizations of the Boltzmann machine.

A neural network can be ‘‘trained’’ to perform complex tasks by
adjusting its synaptic strengths (27). Similarly, the regulatory system
we discuss can fine-tune or modify its control function by adjusting
molecular interactions through a combination of the programmable
protein–DNA and protein–protein interactions. The latter is ac-
complished in nature by the evolution of DNA sequences in the
cis-regulatory region. This architecture of the regulatory system
makes it very evolvable (10, 22), because it is straightforward to
modify individual DNA-binding sequences (through point substi-
tutions), adjust their positions within a regulatory region (via
insertions and deletions), and move�copy them from one regula-
tory region to another (via duplications and recombination).

Beyond Bacterial Transcription Control
Thus far we have exploited known characteristics of the bacterial
transcription system and shown its power for the combinatorial
regulation of a single gene. However, most known examples of
bacterial transcription control are much simpler than the capabil-
ities described. On the other hand eukaryotes, which rely heavily on
complex combinatorial control, use a rather different (and not well
characterized) transcription system. Are there crucial limitations in
the schemes of combinatorial control we described, which prevent
their adoption by bacteria on a genome-wide basis?

Promiscuity of Protein Interaction. A frequent criticism of the
regulated recruitment principle is the reliance on rather promis-
cuous, glue-like interactions between proteins. For example, if all
activated TFs in a bacterial cell (or the nucleus of a eukaryote) can
interact with each other after contact, then the many possible
unintended interactions may overwhelm the required functional
interactions, making it impossible for the system to perform any
regulatory functions. The frequently observed specificity of TF–TF
interactions in bacteria seems to support this criticism. However, a
simple estimate shows that unintended interactions are actually not
a major concern given the weakness of the glue-like interaction and
the limited total activated TF concentration (see Supporting Text).
For instance, with an interaction energy of Eint � �2 kcal�mol and
typical bacterial genome size of 5�106, the adverse effect of pro-
miscuous TF–TF interactions is negligible as long as the total
number of activated TF molecules in a cell is below �104. Thus, at
a typical TF concentrations of �100 molecules per cell, one species
of activated TF can interact weakly with �100 other activated
species before unintended interactions become an issue. (Applying
a similar estimate to eukaryotes, one finds that one species can
roughly interact with 1,000 other species before unintended
interactions become significant.)

Although the weak interactions may not be detrimental to the
system, there is no reason that they will be maintained over the
course of evolution if not needed functionally. Indeed, it has been
estimated that the loss of protein–protein interaction is a very rapid
evolutionary process (47). The isolated usage of complex combi-
natorial control in bacteria can thus be responsible for the apparent
specificity of TF–TF interactions in bacteria. But as long as weak
interactions between protein pairs may be acquired rapidly by
evolution (47) when functional demand arises, we may assume a
generic promiscuous interaction to study the capabilities of the
regulatory system.

Intergenic Cross Talk. A major limitation of the bacterial transcrip-
tion machinery becomes evident when we attempt to implement the
cis-regulatory constructs of Fig. 6 at a genome-wide scale. The
problem is that if every gene uses the same heterodimer pair, e.g.,
the subunits R and S, then they will induce ‘‘cross talk’’ between
regulatory regions of different genes. For instance, the recruitment
of the R subunit to a site Rm in one gene can cause the recruitment
of the S subunit to site S
 of a neighboring gene. This problem is
compounded by the fact that there are many more possibilities for
the heterodimers to participate in the unintended than the intended
distal interactions. Although intragenic interactions generally in-
volve DNA looping over shorter distances than intergenic interac-
tions, the logarithmic dependence of DNA-looping energy on
distance implies that intergenic distance must be substantially (e.g.,
10 times) greater than intragenic distance before distance can be
used as an effective means to prevent cross talk. An alternative way
to reduce cross talk is to introduce different heterodimer pairs for
different genes; however, this will require many extra genes to code
for the heterodimers. The compact bacterial genomes can support
neither vast intergenic separations nor a large number of gene-
specific heterodimers. Thus, intergenic cross-talk may be a key
obstacle for bacteria to adopt complex combinatorial control at a
genome-wide scale. However, this does not prevent the implemen-
tation of complex control on a few isolated genes spaced far apart
along the bacterial chromosome.‡

The cross-talk problem is not specific to the use of heterodimers
and DNA looping. Rather, it is an unavoidable consequence of the
genome-wide use of any distal interaction mechanism, because each
regulatory region must be told which gene to regulate. Eukaryotes
have developed a number of strategies to cope with the cross-talk
problem, e.g., intergenic distances often greatly exceed the size of

‡As an example, we note that the NtrC-activated genes (which can interact with the �54

promoters over long distances) are separated by �50,000 bp from each other in E. coli (28).

Fig. 7. The construct of Fig. 6b maps directly on a well studied model of
neural network known as the ‘‘Boltzmann machine’’ (see Supporting Text). In
this mapping, the binding sites are the neurons, the TF concentrations are the
inputs, and the promoter is the output neuron. Cooperative�repressive mo-
lecular interactions between the TFs play the role of synapses and are denoted
with arrows and bars, respectively. Note that the sites R1, R2, R3, and S are not
connected to any inputs and are examples of hidden units.
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genes in higher eukaryotes, making distance-based controls more
feasible, and insulating elements limit the actions of regulatory
regions to their designated genes (29).

Given the differences in the molecular mechanisms of gene
regulation in prokaryotes and eukaryotes (30), what aspect of our
study on combinatorial control could be applicable to eukaryotes?
We argue that the qualitative aspects of our study are applicable to
eukaryotes regardless of mechanisms, because our main results,
e.g., the correspondence of transcription machinery to the Boltz-
mann machine and the implementation of CNF�DNF, are predi-
cated only on the existence of the two key ingredients of regulated
recruitment (i.e., specific protein–DNA interaction and glue-like
interaction between nearby proteins) along with the possibility of
distal interactions regardless of molecular implementation. Indeed,
these ingredients may occur more prevalently in eukaryotes. For
example, different TFs within a given class can interact coopera-
tively when placed adjacently (31), e.g., via contact of hydrophobic
patches (15). Moreover, an indirect interaction between two unre-
lated TFs can also be realized through ‘‘collaborative competition’’
with nucleosomes (16, 32) without actual physical contact. In
addition, short-range repression (or ‘‘quenching’’) can be achieved
in eukaryotes without the need of overlapping binding sites (33),
and distal repression can be accomplished by the recruitment of
various chromatin-modification agents (30, 33, 34). Thus, at the
qualitative level, the very different eukaryotic transcription system
together with the regulated chromatin structure presents a superior
molecular platform to implement complex combinatorial control.

Discussion and Outlook
The current knowledge on eukaryotic gene transcription is not
sufficient to warrant the construction of quantitative models of
transcription regulation (3). Nevertheless, we believe our results are
useful in both a qualitative and quantitative way for dissecting the
combinatorial transcription control of specific systems. On a qual-
itative level, the simplest and most natural forms of architecture in
complex regulation involving multiple modules are the CNF and
DNF. The CNF-like architecture (Fig. 6b) requires repression to
dominate over activation; it can be accomplished in eukaryotes
through the recruitment of repressing complexes such as Tup1 in
yeast (34). The DNF-like architecture (Fig. 6a) requires activation
to dominate over repression and is more natural whenever genes are
repressed by default (e.g., through the local chromatin structure).
The phenotype exhibited by DNF is ‘‘enhancer autonomy,’’ which
is observed in Drosophila embryonic development. For example,

the expression of seven-stripe even-skipped is activated by five
separate enhancers (22, 35). On a quantitative level, our model as
described in Supporting Text provides a concrete framework to
relate knowledge of cis-regulatory elements to complex gene-
expression patterns regardless of molecular mechanisms. This is
possible because our model, as a realization of the Boltzmann
machine, is sufficiently general to describe a wide range of regu-
latory control functions. The DNA-binding strengths Ki and the
cooperativity factors �i,j then constitute meaningful fitting param-
eters to relate the verified or potential binding sites (the nodes in
the Boltzmann machine) to observed gene-expression data. This
approach should be particularly useful in cases where a given TF can
act both as an activator and a repressor and is hence potentially
more powerful than the class of quasilinear models (36, 37) used to
correlate gene expression and available regulatory information.

A complementary direction to pursue is the engineering of
complex transcription control in bacteria. Although problematic at
the genome-wide scale because of intergenic cross talk, the schemes
of combinatorial control illustrated in Fig. 6 could be implemented
in bacteria for isolated genes, e.g., on plasmids. Designer regulatory
sequences could be constructed with our modeling approach as a
guide, followed by fine-tuning of interaction parameters (the Ki and
�i,j values) through directed evolution (38, 39). Such constructs
might be used to control gene activities in vivo for various bioengi-
neering applications (40, 41). Although many control functions can
also be implemented synthetically by a network of genes regulating
each other, as demonstrated in several studies (42–45), we believe
that the combinatorial cis-regulatory approach is advantageous in
a number of ways: Because it does not involve the iterated expres-
sion of other genes, combinatorial regulation is fast and useful in
instances where timely genetic response is essential. Furthermore,
it is less affected by stochastic fluctuations associated with tran-
scription and translation (46) and unintended posttranscriptional,
posttranslational, or other cellular controls exerted by the host (45).
A few combinatorially regulated genes linked to each other in a
network with amplification and feedback, in principle, could per-
form very complex functions.
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Supporting Text 

Model of Transcription Regulation. We model transcription regulation in bacteria 
through the thermodynamics of pairwise protein–DNA and protein–protein interactions 
(1). These interactions can be quantified by several parameters that are tuneable by the 
selection and placement of various protein-binding DNA sequences. 

Protein–DNA interactions. The probability of transcription factor (TF)–DNA binding is 
of the Arrhenius form (2),  

   
1

i
i

i

q
p

q
=

+
,      [M1] 

 
where qi = [TFi]/Ki is the binding affinity of a site i, [TFi] is the cellular concentration of 
the activated TF targeted by this site, and Ki is the effective dissociation constant (relative 
to the genomic background) representing the concentration for half-maximal occupation 
of the site. It is known for a number of exemplary bacterial TFs (3) and expected on 
theoretical ground for a large class of bacterial TFs (4) that Ki can be readily tuned across 
a wide range of cellular concentrations from a low value of ≈1 molecule per cell (1 nM) 
to a high value of ≈10,000 molecules per cell (10 µM) simply by adjusting the number of 
bases that match the strongest binding sequence for the TF. Thus, Ki is a parameter that is 
individually tuneable for each binding site. We describe RNA polymerase (RNAP)–
promoter binding (in the absence of any TFs) by the same Arrhenius form of Eq. M1. 
Denoting the promoter as site “p,” we quantify the promoter affinity by qp, which is also 
tuneable. 

Protein–protein interaction. Interaction between a pair of proteins (TFs or RNAP) bound 
to two sites i and j is quantified by a cooperativity factor ωi,j, which is tuneable to a 
degree by the relative placement of these sites in the regulatory region. For example, the 
choice ωi,j = 0 can be implemented by the mutual exclusion between two proteins when 
their binding sites are made to overlap. Interaction can also be “turned off” (described by 
ωi,j = 1) by increasing the separation between two sites (but not placing them too far) so 
that physical contact cannot be made when both proteins are bound to their sites.  

Cooperative interaction with ωi,j  > 1 may be obtained if two proteins can contact each 
other while bound to their sites. Due to its structural complexity, RNAP can contact TFs 
over a range of TF-binding site positions extending, e.g., several tens of bases upstream 
of the promoter (5). This interaction is weak with typical binding free energy in the range 
of a few kilocalories per mole, corresponding to a cooperativity factor of ω = ≈10–100. 
Two TFs can interact cooperatively if they are bound to adjacent sites or if they can 
contact each other through DNA looping. In the former case, known binding free 
energies are again of the order ≈2 kcal/mol (1, 6) with ω ≈ 20. The interaction leading to 
DNA looping is necessarily much stronger. It can result from two distinct proteins that 
bind strongly to form a heterodimer (7) as indicated in Fig. 5a or from a single protein 
with two fused DNA-binding domains (8). Mathematically, we model this effect by a pair 



 

of TFs, each with its own DNA-binding interaction as described by Eq. M1, along with a 
special cooperative interaction with cooperativity factor Ω >> ω. Taken together, the 
protein–protein interaction described above can be summarized by  

   ωi,j ={0, 1, ω, Ω},     [M2] 

 
which is individually selectable for each pair of binding sites i,j.  For simplicity, we 
report here only results with ω = 20 and Ω = 100. We have checked that the 
implementation of the logic functions in Fig. 1a are independent of the value of ω in the 
range of ≈10–100, and Ω ≥  100. 

Gene transcription. In bacteria, the rate of gene transcription is controlled in many 
instances by the amount of time the RNAP spends bound to the promoter. Following 
Shea and Ackers (1), we quantify the degree of gene transcription by the equilibrium 
probability P of RNAP-promoter binding due to interaction with bound TFs. For a single 
promoter, this quantity can be expressed as 

    ON

OFF ON

Z
P

Z Z
=

+
,    [M3] 

 
where ONZ  and OFFZ  are the partition sum of the Boltzmann weights W over all states of 
TF binding for the promoter bound and not bound, respectively, by the RNAP. In the 
simplest case involving a single TF-binding site (say site “1”), we have 11OFFZ q= +  and 

1 ,1(1 )ON p pZ q qω= + . With multiple TF-binding sites (labeled as sites i = 1,…L), the 
Boltzmann weight for each configuration of site occupation is still a simple product of the 
qi and ωi,j values, under the assumption that the TF–TF interaction is glue- like (6, 9, 10). 
It is convenient to introduce a binary variable σi ∈{0,1} to denote the occupation of each 
site i. We have 
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as the weight for each configuration {σ1, …,σL}, with OFFZ  obtained as the sum 
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The expression for ONZ  can be generally written as 
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where Q[σ1, …, σL] is the Boltzmann weight due to the interaction of the RNAP with the 
bound TFs. This interaction is promoter-dependent and can be rather complicated for 
multiple TFs. For example, for the σ70-promoters of Escherichia coli, the RNAP–TF 
interaction can be “synergistic” (5, 11, 12), because two subunits of the RNAP 
holoenzyme can simultaneously contact two different TFs bound to upstream locations, 
whereas for the σ54-promoters, the interaction is “independent,” because activation of the 
RNAP involves binding with only one TF at a time (13). We have investigated both types 
of interactions and obtained similar conclusions. The response characteristics used in the 
text are produced by the (simpler but more restrictive) independent interaction model, 
given by the weight 

 ( ) ( )0, ,1
1

1 ,0 1 ,
L

L

p i i j p jj
i

Q q σ δ ω ω σ δ ω ω
=

=

  = − +   ∑∏ i .  [M7] 

 
Here, the first bracket insures that the promoter cannot be occupied (i.e., Q = 0) if any 
one of the repressor sites (those with ωp,i = 0) is occupied. The second bracket describes 
the additional weight gained by the interaction of the RNAP with all the bound TFs that it 
can interact cooperatively with (those with  ωp,j = ω) but only one at a time. 

For those cases where a single gene is controlled by two promoters, we quantify the 
degree of gene transcription by the equilibrium probability P that the RNAP binds to at 
least one of the promoters. Assuming that there is no interaction between the two 
promoters (i.e., the TFs do not simultaneously interact with both polymerases in the 
unlikely case that both promoters are occupied), we can write the binding probability as 
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where ( )i

ONZ  and ( )i
OFFZ  are the partition sum of the Boltzmann weights W over all states of 

TF binding when promoter pi is bound and not bound by the RNAP, respectively. 

Implementation of Logic Gates. Eqs. M3–M8 completely specify our model of 
transcription regulation. To use them to compute the response of a given gene, one needs 
to supply the cis-regulatory construct specifying all the pairwise protein interactions 

,i jω as well as the affinities iq  of all the DNA sites in the regulatory region. The protein 

interactions can be represented graphically as shown in Figs. 2, 3, and 5b, with ,i jω = 0 if 

two sites overlap, ,i jω = ω = 20 if two sites are linked by a dashed line, ,i jω = Ω = 100 if 

linked by a solid line, and ,i jω = 1 if otherwise. The analytical expression for each of the 



 

response characteristics [ ] [ ]( ),P A B  plotted in Figs. 2, 3, and 5b is then obtained by using 

Eq. M3 or M8, as appropriate, with the corresponding expressions for ONZ  and OFFZ , 
and the values of the binding affinities as given below: 

AND gate (Fig. 2a): 

1OFF A B A BZ q q q qω= + + +  

2(1 2 )ON p A B A BZ q q q q qω ω ω= + + +  

KA = KB = 3,500; pq = 1/35 

OR gate (Fig. 2b):  

1OFF A B A BZ q q q q= + + +  

(1 2 )ON p A B A BZ q q q q qω ω ω= + + +  

KA = KB = 100; pq = 1/20 

NAND gate (Fig. 2c): 

1OFF A B A BZ q q q qω= + + +  

ON pZ q=  

KA = KB =100; pq = 100 

XOR gate, single promoter (Fig 3b): 

2 2 2 2 1 1 1 1(1 ) (1 )OFF A B A B A B A BZ q q q q q q q qω= + + + ⋅ + + +   

1 1 1 1(1 2 )ON p A B A BZ q q q q qω ω ω= + + +  

KA1 = KB1  = 200; KA2 = KB2 = 900; pq = 1/10 

XOR gate, double promoter (Fig 3c): 

(1)
1 1(1 ) (1 )OFF A BZ q q= + ⋅ +  

(2)
2 2(1 ) (1 )OFF A BZ q q= + ⋅ +  

(1)
1 1(1 )ON p AZ q qω= +  



 

(2)
2 2(1 )ON p BZ q qω= +  

KA1 = KB2 = 500; KA2 = KB1 = 100; 1pq = 2pq = 1/20 

EQ gate, long-distance repression (Fig. 5b):  

( ) ( )1 1 2 2ON p R R R R
Z q Q Q Q Q+ − + −= + ⋅ +  

( ) ( ) ( )1 1 2 2 1 2 1 2 1 2 1 22OFF R R R R S R R R R R R R RZ Q Q Q Q q Q Q Q Q Q Q Q Q+ − + − − − + − − + + + = + ⋅ + + +Ω⋅ + + Ω   

2 2 2(1 ) (1 )R A BQ q q− = + ⋅ + ; 2 2 2(1 )R R BQ q qω+ = +  

1 1 1(1 ) (1 )R A BQ q q− = + ⋅ + ; )1( 111 ARR qqQ ω+=+  

KA1 = KB2  = 200; KA2 = KB1 = 50; 1Rq = 2Rq = 1/50; Sq = 10; pq = 40 

Note that the binding affinities q are directly selected for the promoters (site p) and the 
binding sites of the auxiliary TFs R and S, because the cellular concentrations of the 
RNAP and the auxiliary regulators are assumed to be only weakly variable. The 
remaining q values are defined through the variable controlling TF concentrations [A] and 
[B], i.e.,  
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where KA, KB, KA1, KB1, KA2, KB2 are the strengths of the various sites labeled in Figs. 2, 3, 
and 5b. For all the logic gates implemented above, we arbitrarily considered promoter 
occupancy of larger than 40% as sufficient for a gene to be “ON.”   

Mapping to Neural Networks. The model of transcription regulation described by Eqs. 
M3–M8 belongs to the class of “recurrent” neural networks (14). To highlight the 
connection, it is convenient to recast the partition function OFFZ  given in Eqs. M4 and 

M5 in terms of an “Ising Hamiltonian” H, such that { }
/ RT

OFFZ e
σ

−= ∑ H . In this 

framework where neural network models are often described (14), we have 

,1

K

j j i j i jj
i j

h Jσ σ σ
=

≠

= +∑ ∑H  where each binding site j is identified as a “neuron,” jσ  

indicates the state of the jth neuron, ln( )j jh RT q= − is the “input” to that neuron, and 

, ,ln( )i j i jJ RT ω= − is the synaptic connection between the neurons i and j. Because hj 

biases the neuron to the “on” state ( 1jσ = ) only if qj > 1 or [ ]j jTF K> , we can identify 
the binding strength Kj as the “firing threshold” of the jth neuron. Because this network 
contains “hidden units,” which are “neurons” not linked directly to the controlling inputs 



 

[A] and [B] (e.g., the binding sites of the auxiliary proteins R and S as shown in Fig. 7), 
the system is known as the “Boltzmann machine” (14). 

The usual operation of neural networks (including the Boltzmann machine) amounts to 
finding the values of the connection matrix elements ,i jJ  to implement the desired tasks, 

e.g., classification. The operation of the transcription control system we describe here is 
somewhat different: The ,i jJ  values are constrained to take on one of the four discrete 
values corresponding to the form of protein–protein interaction described by Eq. M2. 
Instead, it is the firing thresholds that can be tuned continuously.  
 

Promiscuity of Protein Interactions. At high protein concentrations, a nonspecific, 
glue-like interaction between TFs can lead to many spurious interactions that jeopardize 
the intended cis-regulatory control. Here, we provide a simple estimate of the range of TF 
concentrations over which this problem can be safely ignored. We will only consider 
spurious interactions that occur while the TFs are bound to DNA, because the TF 
molecules spend most of the time bound to the genome (either specifically or 
nonspecifically) due to electrostatic attraction (15, 16). For the same reason, we neglect 
possible spurious interactions between TFs and other, non-DNA-binding proteins. Let N 
denote the total number of activated TF molecules in a bacterial cell at a given instant in 
time. The average separation distance between two such TFs along the DNA is 

N= Γl where a typical genome size Γ is 5 × 106
 bp for bacteria. Two activated TF 

molecules will associate with each other if the interaction energy Eint overcomes the 
entropy cost of association. The latter is ≈ ln( / )RT al , where the microscopic length a 
represents the range of interactions between activated TFs; we take 10 bp as a 
conservative upper bound for a. For a weak interaction energy of Eint ≈ 2 kcal/mol, we 
can then safely ignore spurious interactions as long as N is less than or equal to 104. Thus, 
at a typical cellular concentration of ≈100 molecules per cell, one species of activated TF 
can interact weakly with ≈100 other species before spurious interactions can affect cis-
regulatory control at all.  
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