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Distribution of Initiation Times Reveals Mechanisms
of Transcriptional Regulation in Single Cells
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ABSTRACT Transcription is the dominant point of control of gene expression. Biochemical studies have revealed key molecular
components of transcription and their interactions, but the dynamics of transcription initiation in cells is still poorly understood. This
state of affairs is being remedied with experiments that observe transcriptional dynamics in single cells using fluorescent reporters.
Quantitative information about transcription initiation dynamics can also be extracted from experiments that use electron micro-
graphs of RNA polymerases caught in the act of transcribing a gene (Miller spreads). Inspired by these data, we analyze a general
stochastic model of transcription initiation and elongation and compute the distribution of transcription initiation times. We show
that different mechanisms of initiation leave distinct signatures in the distribution of initiation times that can be compared to ex-
periments. We analyze published data from micrographs of RNA polymerases transcribing ribosomal RNA genes in Escherichia
coli and compare the observed distributions of interpolymerase distances with the predictions from previously hypothesizedmech-
anisms for the regulation of these genes. Our analysis demonstrates the potential of measuring the distribution of time intervals
between initiation events as a probe for dissecting mechanisms of transcription initiation in live cells.
INTRODUCTION
One of the key findings of the genomic era is the unexpect-
edly high similarity between the genomes of different or-
ganisms (1). As the number of genomes being sequenced
is increasing, it is becoming clear that the biggest difference
among organisms is not to be found in their protein-coding
sequences, but in the ways in which their genes are regulated
(2–5). This is putting the spotlight on the parts of the
genome that are responsible for gene regulation and prompt-
ing the question: how do changes in regulatory sequences
alter the way in which cells respond to intra- and extracel-
lular signals (6)?

More often than not, genetic regulation occurs at the level
of transcription, by which cells control the amount of
messenger RNA of each gene they express (7). Regulation
of transcription is commonly achieved by the integration
of multiple intracellular signals at the regions of DNA up-
stream from and in proximity to the gene’s coding region.
This ‘‘promoter region’’ consists of a collection of transcrip-
tion factor binding sites and, in eukaryotes, nucleosome
positioning sites. Together, these binding sites dictate the
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binding and unbinding of specific transcription factors, co-
factors, and chromatin remodeling factors, which, in turn,
either promote or inhibit the assembly of the transcriptional
machinery at the gene.

The collection of transcription factor binding sites (which
includes enhancer regions in eukaryotes), their position, and
affinity for transcription factor proteins constitutes the pro-
moter architecture. Considerable effort has been directed to
elucidating how promoter architecture determines measur-
able quantities like the average transcriptional response
(8–11) of cells to a given stimulus, as well as the popula-
tion-wide fluctuations of that response (12–15). Although
we have witnessed considerable progress on this front in
recent years, many mysteries remain even in simple organ-
isms such as bacteria. In particular, how promoter architec-
ture affects the dynamics of transcription initiation in single
cells remains poorly understood. To answer this question,
experiments are being done in which the number of RNA
molecules from a gene of interest is measured at a single-
cell level in a population of isogenic cells (12,16–18). The
measured distribution of mRNA numbers in the cell popula-
tion can then be used to test the predictions of different
models of transcription initiation in the hope that some of
these are supported by the data (19–30). This approach
has led to the discovery of bursty mechanisms of transcrip-
tion initiation (12,16). However, this method of inferring the
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Noise in Transcription Initiation Times
kinetics of transcription is limited by the fact that the mRNA
copy number reflects additional processes downstream of
transcription, such as the nonlinear degradation of mRNA
and proteins (31), maturation time of fluorescent reporters
(32), mRNA transport (33), mRNA splicing (34), and small
RNA regulation (35). The stochastic nature of these pro-
cesses may introduce fluctuations in the number of mRNAs
that masks the contribution of the transcriptional dynamics
(36–38).

In contrast, experiments that catch RNA polymerase
(RNAP) molecules in the process of transcribing a gene
provide a more direct readout of transcription initiation dy-
namics. Techniques developed by Miller and his group in a
series of landmark papers over several decades rely on im-
aging actively transcribed genes in recently lysed cells by
electron microscopy (39–44). In these images, the positions
of transcribing polymerases along a gene can be determined
(Fig. 1 A). Interpolymerase distance distributions can be
extracted from these positions, and, with a few reasonable
assumptions (36), these can be used to extract information
about the distribution of times between successive initiation
events (Fig. 1 B). The information contained in these distri-
butions of interpolymerase distances is akin to that obtained
in live cells by fluorescently labeling nascent RNAs to
observe transcription initiation events in real time at the
single-cell level (19,20,45–49), as illustrated in Fig. 1 B.

Here, we calculate the distribution of times between suc-
cessive initiation events to quantitatively test mechanistic
models of transcription initiation in cells. To accomplish
this, we introduce a stochastic model of transcription that in-
corporates both initiation and elongation kinetics. Using the
derived analytical results in conjunction with simulations,
we show that the kinetics of initiation leaves a signature
in the distribution of transcription initiation times that can
be used to discern different models of transcription initia-
tion. To showcase the power of this approach, we have rean-
alyzed a set of micrographs of Escherichia coli genomic
DNA that provided evidence of transcriptional bursting, a
phenomenon that was later found to be widespread across
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all organisms (50). In fact, to our knowledge, McKnight
et al. used Miller spreads to provide the first evidence of
transcriptional bursting (51). We show that by filtering the
information contained in these micrographs through our
theoretical framework, we can test different models of regu-
lation of ribosomal promoters in E. coli that have been pro-
posed to account for the cell’s response to an increase in rrn
operon copy number. We find that some of these previously
proposed models produce distributions of interpolymerase
distances that are inconsistent with the Miller spread data,
whereas others are in excellent agreement.
METHODS

Data analysis and parameter estimation

We evaluate the utility of our theoretical framework by employing it to gain

mechanistic insights into the regulation of ribosomal genes in E. coli. To

this end, we have reanalyzed data obtained from images of elongating

RNAP molecules on ribosomal RNA (rRNA) genes in E. coli. Images of

RNAPs were obtained from electron micrographs of fixed cells using the

Miller spread technique by Voulgaris et al. (39), and the distances between

neighboring RNAPs were measured by them. To extract the data from the

published interpolymerase distance distribution plots in Fig. 3 B of (39),

we used DigitizeIt, a free online tool for digitizing data plots.

Voulgaris et al. (39) increased the number of rrn operons in E. coli cells

by inserting an rrn operon on a multicopy plasmid. They observed that the

rate of rRNA transcription per operon is reduced to maintain a constant

number of rRNA in the cell. In fact, electron micrograph (EM) images

showed that fewer RNAP molecules were engaged in transcribing each

rrn gene, consistent with previous studies (52). Moreover, RNAP molecules

formed bunches separated by gaps along the genes. Although the authors

ruled out transcription elongation or termination as origins of these

bunches, they suggested that the bunches are caused by stochastic interrup-

tions of initiation, or promoter-proximal elongation events. Using our the-

ory, we analyze the distributions of intrabunch distances between RNAP.

In this study, we consider three models of transcriptional regulation of

ribosomal genes: the dead-end complex model, the cooperative recruitment

model, and the ‘‘ppGpp’’ model. For the dead-end complex model, after the

loading of polymerase molecules to the promoter at a rate kLOAD, each

RNAP molecule either escapes the promoter at a rate kESC and starts

transcribing the gene or forms a dead-end complex at the promoter at a

rate kDEAD. These dead-end complexes are unproductive and are removed

at a rate kOFF.
210 15
n time (min)

FIGURE 1 Positions of transcribing RNAP

carry the signature of transcription initiation

dynamics. A schematic of the key idea of this

work is shown. (A) The times between successive

transcription initiation events (‘‘initiation time’’)

can be extracted at the single-cell level using

fluorescent reporters for nascent RNA molecules

(19,20,45–49), or from electron micrograph

(EM) images of RNAP caught in the process of

transcribing a gene (39–44). Native elongating

transcript sequencing (85) can obtain the same

quantitative information as EM images. (B) The

distribution of times between individual transcrip-

tion initiation events can be extracted from exper-

iments and compared to theoretical predictions

based on stochastic models of transcription initia-

tion. To see this figure in color, go online.
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For the cooperative recruitment of RNAP by DNA supercoiling, RNAP

molecules are loaded onto the promoter at a rate kLOAD
LOW. After RNAP

initiates transcription at a rate kESC, it leaves the promoter DNA in a super-

coiled state, and subsequent loading of polymerases occurs at the promoter

at a faster rate, kLOAD
HIGH. The rate of relaxation of the supercoiled state is

kRELAX.

For the third model, the production of ‘‘control molecules’’ (e.g., ppGpp)

reduces the initiation rate by regulating the initiation process by converting

the active promoter-RNAP complexes into inactive ones. It is described by

the same kinetic scheme as the dead-end complex model. However, the rate

of inactivation of RNAP-DNA complex is given by kON, with every other

rate remaining the same. Each of the three models considered above has

five parameters.

To test these proposed models based on the experimentally observed

transcriptional bunching data for rrn genes, we first extract all the model

parameters by fitting the predicted inter-RNAP distance distributions to

the data from wild-type E. coli cells with seven rrn operons, as reported

in (39). The authors in (39) analyzed the interpolymerase distance distri-

butions extracted from the micrograph images by defining a ‘‘transcrip-

tional bunch’’ as a group of RNAPs separated by less than 240 bp

from each other (39). The distribution of distances greater than 240 bp

is referred to as interbunch distribution. Evidently, the intrabunch distri-

bution is dictated by the biochemical rates kESC (rate of promoter

escape), kLOAD (rate of RNAP loading onto the promoter, which is called

kLOAD
HIGH for the supercoiling mediated recruitment model), and tclear

(time for an RNAP to clear the promoter). In Fig. 3 C, we show the in-

terpolymerase distribution for the seven rrn promoters for the ribosomal

genes in wild-type E. coli cells. Using Eq. 4 we find the probability dis-

tribution of interpolymerase distances as a function of these different

rates is given by

p1ðxÞ ¼ 1

v

kLOADkESC
kLOAD þ kESC

�
exp

�
� kESC

�
x

v
� 30

v

��

� exp

�
� kLOAD

�
x

v
� 30

v

���
:

(1)

Here, 30 bps is roughly the size of an RNAP molecule, and v is the rate of

transcription elongation of the RNAP molecules along a gene. By

comparing the data from the experiments for interpolymerase distances

within a bunch and the prediction from the model, we extract kLOAD,

kESC, and tCLEAR. By fitting the model (see Fig. 3 C), we extract the rates

kESCz 3/s, kLOADz 3/s, and tclearz 0.3 s (tclear¼ ð30=vÞ); v is the rate of
elongation, which we take to be 78 bps/s (39). These three parameters are

common to all three models examined.

Next, we extract the remaining two parameters for each of these three

models (see Fig. 4, A–C) by making use of the intrabunch distances (39).

The mean intrabunch distance allows us to extract the average time the pro-

moter spends in the inactive state, which does not lead to initiation. From

Fig. 3 A of (39), we extract the mean gap between RNAP bunches to be

�5 s. Hence, for the three bursting models, we take kOFF (dead-end com-

plex model) ¼ kOFF (ppGpp model) ¼ kLOAD
LOW (cooperative recruitment

model) z 0.2/s. To obtain the fifth parameter of these models, we assume

that the addition of extra copies of ribosomal genes to the E. coli cell re-

duces the average transcription rate per gene to keep the level of rRNA

in the cell constant. In other words, for the models considered above, the

total initiation rate remains constant, or nI ¼ Constant, where n is the num-

ber of ribosomal genes and I is the initiation rate on one of the genes. The

initiation rate for a wild-type strain with n ¼ 7 genes is I ¼ 1 initiation/s

(39). Using the formulas for the rate of average initiation for each of the

models of transcription initiation (see the Supporting Material), we find

for the cooperative recruitment model kRELAX z 0.055/s and for the kDEAD
(dead-end complex) ¼ kON (ppGpp model) z 0.047/s.
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Estimate of error bars

In the published data plots that were digitized to obtain our Fig. 3 C, no

error bars were given. To obtain estimates for error bars on the measured

frequencies of interpolymerase distances for ribosomal genes in wild-type

E. coli cells (Fig. 3 C), we consider the binomial counting error. Let i

˛1,.,I be the histogram bins that the measured distances fall in. The

probability (frequency) of a distance measurement falling in bin i is pi.

This is just a binomial trial, i.e., the data point is either in the bin or

not, and therefore the variance of the measured frequency for this bin is

pi (1�pi)/N, where N is the total number of distance measurements. The

error bars in Fig. 3 C are the standard deviations, i.e., square root of the

variance, for each bin. Based on the total number of distance measure-

ments reported, which is roughly 1000, the relative errors on the data

points are around 10%.
Limitations of the EM data

Interpolymerase distances extracted from EM images of RNAP molecules

transcribing a gene have known limitations. The possibility of RNAP mol-

ecules bound to the gene of interest being lost during preparation of samples

for EM imaging cannot be ruled out (53). This does open up the possibility

that the observed fluctuation in the interpolymerase distances is an artifact

of the experiment. Furthermore, the resolution of the EM images is typi-

cally 1.8 nm/pixel, and therefore any distance less than 5 bps cannot be

resolved (54).
Limitations of the modeling framework

A crucial assumption our model makes is that interpolymerase distances

along a gene of interest are governed by the initiation dynamics and not

the elongation dynamics. Although for the data set analyzed in this

study, this assumption is valid (as outlined in the Discussion; also see the

Supporting Material), one needs to be cautious when using this assumption

for other genes. Ideally, any kind of analysis of interpolymerase distances

should to be done on a gene-by-gene basis. However, because of the

simplicity of our modeling framework, we believe it serves as a good

starting point for analyzing interpolymerase distance distribution data.

Deviations from the model predictions could point to other transcriptional

processes such as elongation and termination.
RESULTS

Distribution of initiation times for an arbitrary
mechanism of transcription initiation can be
computed from a master equation

Transcription initiation is typically regulated by transcrip-
tion factors and cofactors that bind to the regulatory DNA
sequences and either inhibit or aid the binding of RNAP
molecules to the promoter. To connect mechanisms of tran-
scription initiation with measured times between successive
initiation events, we consider a stochastic model of tran-
scription with a general initiation mechanism, in which
the promoter can be in an arbitrary number of states defined
by different constellations of bound transcription factors and
cofactors. Using a chemical master equation approach
(22,55,56), we show that the distribution of times between
two initiation events and its moments can be computed
analytically for any mechanism of transcription initiation.
These equations allow us to discriminate between different
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mechanisms of initiation by comparing the predicted distri-
butions to experimental distributions of transcription initia-
tion times.

To compute the distribution of times between succes-
sive initiation events, we assume that the promoter can
be in N different discrete biochemical states and that tran-
sitions between different states occur as different tran-
scription factors bind and fall off their respective
binding sites. The rate of transition from the m-th to the
n-th promoter state is km,n, and the rate at which an
RNAP molecule initiates transcription from the m-th pro-
moter state is km,esc. The assumption that the transitions
between these states are random Poisson processes char-
acterized by rate constants leads to a chemical master
equation that describes the time evolution of Pm(t), the
probability that the promoter is in the m-th state (m ¼ 1,
2,.., N) at time t:

dPm

dt
¼

XN
n¼ 1

½kn;mPn � km;nPm� � km;escPm: (2)

Solving this chemical master equation for all the states m
from which the promoter initiates transcription with rate
km,esc, leads to a general formula for the probability distribu-
tion q1(t) of the time intervals between successive transcrip-
tion initiation events (details of the calculation can be found
in the Supporting Material):

q1ðtÞ ¼
XN
m¼ 1

km;escPmðtÞ: (3)

Assuming a uniform elongation rate v (37,57) along the
gene, the distribution q1(t) of time intervals between succes-
sive initiation events directly translates into a distribution of
distances p1(x) between RNAPs along the gene. In other
words, the interpolymerase distance distribution along a
gene is given by

p1ðxÞ ¼ q1

�x
v

� 1

v
: (4)

In the ensuing investigation of regulation of ribosomal
genes, Eq. 4 forms the basis of our analysis of positions of
RNAP molecules along a gene at a given moment in time,
which provides a quantitative test for different models of
transcription initiation. Although transcription elongation
of ribosomal genes is typically more complicated and
involves pausing and backtracking of polymerases along
the gene (58), here we assume that transcriptional pausing
happens on timescales that are negligible compared to
the times between transcription initiation events (59). For
a detailed discussion of this model assumption, see the
Supporting Material.
The distribution of transcription initiation times
can be used to discern between different models
of initiation

To illustrate how the distribution of times between succes-
sive initiation events can be used to extract mechanistic
insights about the process of transcription initiation, we
consider three different models of initiation as case studies
(see Fig. 2).

Poisson (single rate-limiting step) model

The Poisson model is the null model of initiation, which
is usually associated with constitutive promoters (12).
In this model, initiation happens with a constant proba-
bility of kLOAD per unit time, as shown in Fig. 2 A.
In bacteria, this step could, at the molecular scale,
represent the rate of loading of RNAP molecules to the
promoter DNA, whereas for eukaryotes, this step could
correspond to the formation of the preinitiation complex.
As obtained from Eq. 3, the one-state model is character-
ized by exponentially distributed times between succes-
sive initiation events. One of the key properties of an
exponential distribution is that its mean and standard
deviation are equal. Therefore, the CV2 (defined as the
ratio of the variance to the square of the mean) is always
equal to one, independent of the rate kLOAD, as shown in
Fig. 2 A.

Two-limiting-steps model

Next, we consider a model in which initiation happens in
two sequential rate-limiting steps. This is the situation in
which two steps in the sequence of events leading to initi-
ation are of comparable duration. For example, in bacteria,
the first step could correspond to an RNAP molecule bind-
ing to the promoter with a rate kLOAD. In eukaryotes, this
step could represent the loading of the transcriptional
machinery at the promoter (23,48). In the second step,
the promoter-bound RNAP molecule escapes the promoter
at a rate kESC and starts transcribing the gene. For several
promoters in yeast (36) and E. coli (60), it has been
reported that initiation proceeds through two sequential
steps.

For this case, using Eq. 3, we find that the waiting-time
distribution between successive initiation events is gamma
distributed. This result agrees with previous theoretical
studies (25) and leads to the following relationships between
the kinetic rates associated with this mechanism (kLOAD and
kESC) and the mean and the coefficient of variation of the
waiting-time distribution:

Mean ¼ kESC þ kLOAD
kESCkLOAD

;

CV2 ¼ k2ESC þ k2LOAD
ðkESC þ kLOADÞ2

:

(5)
Biophysical Journal 114, 2072–2082, May 8, 2018 2075
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FIGURE 2 Different models of transcriptional

regulation lead to distinct signatures in the initia-

tion times. (A) The one-step model of transcription

initiation is depicted. Initiation happens at a con-

stant rate kLOAD. The times between successive

initiation events are exponentially distributed.

The square of the coefficient of variation is plotted

as a function of the mean, in which we change the

mean by changing the rate of initiation, kLOAD. We

confirm the analytical results using Gillespie simu-

lations (65). The histograms and closed circles

represent simulation results. (B) The two-step

model of transcription initiation is depicted. Initia-

tion happens in two sequential steps: the rate of

RNAP loading onto the promoter occurs with

rate kLOAD, followed by RNAP escaping the pro-

moter, leading to transcript elongation at a rate

kESC. The distribution of times between successive

initiation events and the square of the coefficient of

variation of the distribution as a function of the

mean are shown. To change the mean, we change

the rate of loading of RNAP polymerase molecules

on the promoter, kLOAD. As in (A), simulation results are compared to the analytical results. (C) The ON-OFF model is depicted. The promoter switches

between two states: an active and an inactive one. The rate of switching from the active state to the inactive state is kOFF and from the inactive to the active

state is kON. From the active state, transcription initiation proceeds with a probability per unit time, kESC. The distribution of times between initiation events

and the square of the coefficient of variation as a function of the mean are shown. Results from Gillespie simulations (65) are shown for comparison.

To change the mean, we tune the rate kON of switching from the inactive to the active state. To illustrate the distinctive impact of the different

initiation models on the distribution and moments of the times between successive initiation events, we use the following parameters: kOFF ¼ 5/min,

kON ¼ 0.435/min, kLOAD ¼ 0.14/min, and kESC ¼ 0.14/min, which are characteristic of yeast promoters (36). To see this figure in color, go online.
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As shown in Fig. 2 B, when we tune either one of the two
rates of the model while keeping the other one constant, the
coefficient of variation initially decreases as a function of
the mean, develops a minimum when the two rates become
equal, and then asymptotically goes to one. In the limit of
one rate being much slower than the other one, the
waiting-time distribution becomes exponential, leading to
a coefficient of variation of one.

ON-OFF promoter

The third scenario we consider is the ON-OFF model of
initiation. This model of initiation has been established
as the canonical model of transcriptional regulation for
both bacteria (19) and eukaryotes (17,21,61–64). In this
model, the promoter switches between two states: an
active state from which transcription initiation can occur,
and an inactive state from which initiation does not occur.
The two states might correspond to a free promoter and
one bound by a repressor protein, or a promoter covered
by nucleosomes. The rate of switching from the active
to the inactive state is kOFF and from inactive to the active
state is kON. The rate of initiation from the active state is
kESC.

In this case, we find that the waiting-time distribution
between successive initiation events is given by a sum
of two exponentials, as shown in Fig. 2 C. Thus, it can
be distinguished from a single exponential expected
from the one-state promoter on the condition that the
decay constants of the two exponentials are well-
2076 Biophysical Journal 114, 2072–2082, May 8, 2018
separated in magnitude. The mean and the coefficient of
variation as functions of the different biochemical rates
are given by

Mean ¼ kON þ kOFF
kONkESC

;

CV2 ¼ 1þ 2kOFFkESC

ðkON þ kOFFÞ2
:

(6)
When we tune the rate kON, the CV2 increases as a
function of the mean and eventually saturates, as shown in
Fig. 2 C.

We compare our analytical results for the three models
described above against Gillespie simulations (65). This
allows us to numerically generate multiple time traces of
initiation events. From these different time traces, we
obtain the distribution of initiation times as well as the cor-
responding values of the mean and variance. The histo-
grams for the times between initiation events for all the
three models are shown in Fig. 2, A–C. We also show
the coefficient of variation as a function of the mean
for these models as we tune the relevant rates in Fig. 2,
A–C. These results imply that we can discern these three
different models of initiation based on the predictions
they make for the waiting-time distribution of consecutive
initiation events as a function of the different experimen-
tally tunable parameters.
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The dynamics of transcription initiation of
ribosomal genes in E. coli can be extracted from
images of transcribing polymerases in fixed cells

To demonstrate how the distribution of interpolymerase dis-
tances along a gene can be used to extract dynamical infor-
mation about the process of transcription initiation in vivo,
we have reanalyzed data obtained from images of elongating
RNAP molecules on rRNA genes in E. coli, which were ob-
tained using the Miller spread technique by Voulgaris et al.
(39). In Fig. 3 C, we reproduce the interpolymerase distance
distribution for the seven ribosomal genes in wild-type
E. coli cells (39). A remarkable feature of this distribution
is the presence of a peak at small distances. This is inconsis-
tent with a Poisson initiation mechanism (19) described
above. Indeed, the presence of a maximum in the probability
at intermediate distances suggests the two-limiting-steps
model of initiation (Fig. 3 B), in which, for example, the po-
lymerase first binds to the promoter and then escapes the
promoter, leading to elongation, and in which the two steps
occur with comparable rates. Recent in vivo studies in yeast
have shown that initiation can proceed in multiple sequential
steps, in which the rates involving these steps have compa-
rable magnitude (36). In addition, when analyzing this
data, we consider the time it takes for the polymerase to
clear the promoter by elongating through it.

To test the hypothesis of two sequential steps leading to
initiation, we fit Eq. 4 to the experimental distribution ob-
tained from the images and assume an elongation speed of
78 bp/s (as measured elsewhere (39)). We find that the two-
limiting-steps model is in good agreement with the data.
Furthermore, the fit provides estimates for the rates of pro-
moter escape, the rate of RNAP loading onto the promoter,
and time to clear the promoter (kLOAD z 3/s, kESC z 3/s,
and tCLEAR z 0.3 s), all of which are in good agreement
with previous measurements (66) (see the Methods).

Bursting accompanies the downregulation of the
transcription of rrn operons in the presence of
additional copies of the rrn genes

In a second set of experiments, EM images were used to
shed light on a previously reported effect (52), namely
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of promoter escape) z 3/s, kLOAD (rate of RNAP loading onto the promoter) z
the elongation speed v ¼ 78 bps/s, as reported in experiments (39). To see th
that the transcriptional activity of individual rrn genes is
inversely proportional to the copy number of these genes
in such a way that the net transcriptional output of rrn
genes in the cell is kept constant. Surprisingly, the EM
showed that when the copy number of ribosomal genes
was altered by placing extra rrn genes on plasmids, a
very different pattern of polymerase occupancy of the rrn
genes emerged. Besides the mean number of RNAP mole-
cules along each gene decreasing with increased gene-copy
number, it was also observed that RNAP molecules were
then grouped in bunches along the gene, which is indica-
tive of transcriptional bursting. Moreover, it was observed
that the mean and the variance of the interpolymerase dis-
tances within a bunch remained unchanged as the copy
number varied (39). To explain the observed reduction in
the mean number of RNAP molecules along each gene,
Bremer et al. (67) focused on the fact that a significant
fraction of RNAPs in the cell are engaged in transcribing
the ribosomal genes. In that case, changing the gene-
copy number will significantly alter the concentration of
free polymerases available for transcription initiation.
This will, in turn, decrease the rate of transcription initia-
tion, which is assumed to be proportional to the free
RNAP concentration. This ‘‘free RNAP hypothesis’’ (67),
along with the two-step model of transcription initiation
(Fig. 1 B), predicts that the mean number of RNAPs per
gene will decrease in response to an increase in the number
of genes, as observed experimentally, but it cannot account
for the observed bunching of polymerases, as was shown in
a previous theoretical study (25). Therefore, to account for
the bunching of RNAPs seen in experiments by Voulgaris
et al. (39), it is necessary to consider models of initiation
with promoter states that are off-pathway to elongation.
Indeed, several such models have been proposed to explain
the downregulation of individual rrn genes in response to
an increase in the gene-copy number (39). These models
can be broadly classified into three different classes. Using
our mathematical framework, we put to the test these
different classes of models with the goal of gaining insight
into the unresolved question of how the transcription of
ribosomal genes is regulated in response to an increase in
the gene-copy number.
nce (bp)
0 240 320

FIGURE 3 Initiation of transcription of ribo-
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The first proposed class of models considers the forma-
tion of long-lived, nonproductive initiation complexes at
the promoter (68–70). For example, nonproductive com-
plexes that cannot exit the abortive initiation state into pro-
ductive elongation have been observed in vitro (25). The
second class of models assumes cooperative recruitment
of RNAP molecules to the promoter by an RNAP molecule
already present on the promoter (71–73). For instance, when
an RNAP molecule initiates transcription, it can leave the
promoter DNA in a supercoiled state, as illustrated in
Fig. 3 B. In the supercoiled state, the energy barrier for
melting a strand of DNA to make a transcriptional bubble
is lowered, leading to an increased rate of RNAP loading
onto the promoter (25). Both these classes of models can
lead to bunching of RNAP molecules on the gene, as
observed in the experiments (39). However, a common
feature of both classes of models is that they incorporate
the ‘‘free RNAP’’ hypothesis, in that an increase in the num-
ber of rrn genes in the cells leads to a lower concentration of
free RNAP and thus to a reduction in the rate of RNAP
loading onto the promoter (red arrows in Fig. 4, A and B).
Consequently, for both classes of models, the mean and vari-
ance of the intrapolymerase distance distribution within a
ModelsModels
A

B

C

ModelsIntra-bunch statistics

42

311

3

2

1

ppGpp

ESCLOAD

DEAD

OFF

3

2

1

ESCLOAD

ON

OFF

ESCLOAD
HIGH

RELAX

LOAD
LOW ESC

M
ea

n(
bp

)

7 9 11 13
60

70

80

90

100

M
ea

n(
bp

)

7 9 11 1360

70

80

90

100

7 9 11 13
60

70

80

90

100

M
ea

n(
bp

)

Va
ria

nc
e(

bp
2 )

7
25

35

45

Number of Genes

Number of Genes

Number of Genes

 V
ar

ia
nc

e(
bp

2 )

7
25

35

45

N

7
25

35

45

Va
ria

nc
e(

bp
2 )

change in gene-copy number affects both polymerase loading rates (red arrow

that the mean and variance of the intrabunch RNAP distances increase with the

of genes increases, the rate of rRNA production increases. This triggers the prod

rate by modulating the promoter-RNAP interactions. ppGpp regulates the initiatio

ones. It is described by the same kinetic scheme as the dead-end complex mod

RNAP-promoter complex (kON) because of ppGpp binding to the complex that

whereas the rate of RNAP loading onto the promoter is unchanged. The mean

remain constant, as observed in experiments. In all the plots, the two data poin

2078 Biophysical Journal 114, 2072–2082, May 8, 2018
bunch will increase as the rrn gene-copy number is
increased, which is in contrast to the experimental observa-
tions as shown in Fig. 4, A and B. It must be noted that the
interpolymerase distance distribution within a bunch is
dictated by the biochemical rates kESC (rate of promoter
escape), kLOAD (rate of RNAP loading onto the promoter,
which we denote as kLOAD

HIGH in the supercoiling mediated
recruitment model), and tclear (time for an RNAP to clear
the promoter). Hence, any change in one of these rates
would lead to a change in the interpolymerase distance
distribution within a bunch, contrary to what is seen in
experiments.

The third proposed class of regulatory models for the
transcription of ribosomal genes considers a secondary mo-
lecular messenger, the abundance of which in the cell is
regulated in response to the changing number of ribosomal
genes. These molecules either inhibit or activate the tran-
scription of rrn genes (Fig. 3 C) (74). One such model is
based on the alarmone nucleotide molecule ppGpp, which
is capable of inactivating the promoter-RNAP complex
upon binding to the polymerase (74,75). Formation of
such inactive complexes can lead to bursty transcription
initiation dynamics caused by the inactivated polymerase
9 11 13
Number of Genes

9 11 13
umber of Genes

9 11 13
Number of Genes
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blocking the promoter. Another set of experiments has
shown that the number of ppGpp molecules increases with
increasing ribosomal gene-copy number (76). Consistent
with these observations, we propose a kinetic model of tran-
scriptional regulation of ribosomal genes in which RNAP-
promoter complexes are inactivated by ppGpp molecules
that increase in concentration as the rrn gene-copy number
is increased (shown in Fig. 4 C). The key assumption of
this class of models that distinguishes it from the first two
is that an increase in the number of rrn genes does not signif-
icantly change the number of free RNAPs in the cell (74,75).

The mean and variance of the interpolymerase distance
distributions within a bunch for the secondary messenger
mechanism are consistent with the experimental results.
Because the key assumption of this model is that an increase
in the number of genes does not significantly change the
number of free RNAPs in the cell (74,75), the rate of
RNAP loading onto the promoter remains unchanged.
This has the effect of keeping the distribution of distances
between RNAPs within the bunch unchanged (Fig. 4 C).
At the same time, the proposed mechanism generates the
bursting kinetics that is observed in EM, suggesting that it
may be a candidate mechanism for regulating the transcrip-
tion of rrn genes. We note that any mechanism based on sto-
chastically and transiently preventing promoter escape by a
bound polymerase would have the same outcome. Although
ppGpp-based mechanism is a plausible candidate, as this
mode of its action has been documented before, whether it
is in fact responsible for the changes in transcription initia-
tion that accompany the increase in rrn gene-copy number is
still an open question.
DISCUSSION

The dynamics of transcription in live cells is poorly under-
stood. Because of the difficulties in directly imaging the
process of transcription (19,47,48,50,77), experimental
methods for counting the products of transcription (such
as RNA and protein molecules) in single cells have been
developed over the past years. The protein and mRNA dis-
tributions carry the signature of the dynamics of transcrip-
tion and hence can be exploited to decipher the underlying
mechanisms of transcriptional regulation (12,16,47,78).
However, both mRNA and protein counts are affected by
noisy processes other than transcription, such as mRNA pro-
cessing, binomial partitioning, nonlinear degradation of
mRNA molecules, etc (31,33,34,79–82), which can poten-
tially mask the signature of transcription on protein and
mRNA distributions.

EM images of RNAP molecules engaged in the process of
transcribing a gene at a given instant in time (also known as
‘‘Miller spreads’’) provide information about the position
of polymerase molecules on the gene (39–44). Similar
information can be extracted by observing transcription
initiation events in real time using fluorescent reporters
(19,20,45–49). These measurements are not affected by
posttranscriptional processes and are therefore more direct
readouts of transcription compared to mRNA and protein
counting (83). In this study, we have derived mathematical
equations that allow us to interpret and analyze the interpo-
lymerase distance distribution, or equivalently, the waiting-
time distribution between successive initiation events across
a population of isogenic cells. To demonstrate the potential
utility of our analytical results, we fit the interpolymerase
distance distribution for ribosomal genes in E. coli (acquired
from EM) to a theoretical distribution computed for a two-
step model of initiation. The model fits the data well, allow-
ing us to extract the rates that characterize transcription
initiation dynamics.

It must be noted that other mechanisms, like fluctuations
in the promoter clearing time, could also generate a peaked
distribution of interpolymerase distances in Fig. 3 C. A
multistep initiation model, in which initiation happens in
more than two sequential steps, could also account for a
peaked interpolymerase distribution. Although we cannot
rule out these and other possibilities, we make use of the
two-step initiation model as a simple scenario that explains
the data well and provides mechanistic insight into the dy-
namics of initiation that leads to experimentally testable
predictions.

We also reanalyze data from images of RNAP tran-
scribing ribosomal genes in wild-type and mutant strains
of E. coli. We show that previously proposed mechanisms,
based on the effect that extra rrn gene copies might have
on the concentration of free RNAPs in the cell, are inconsis-
tent with the observed interpolymerase distance distribu-
tions. In contrast, we find that an alternative possibility
(74), in which the alarmone nucleotide ppGpp may interact
with promoter-bound RNAP and prevent promoter escape,
produces bursting transcription initiation kinetics that is
consistent with experimental observations.

Our model assumes that interpolymerase distance distri-
butions are governed by transcription initiation dynamics.
However, stochastic transcription elongation dynamics can
also impact interpolymerase distances. Depending on the
timescales of the two processes, they will affect the distribu-
tion differently (see Supporting Material for details). If the
initiation timescales are much longer than the elongation
timescales, the distribution of RNAP distances will remain
largely unaffected by the elongation dynamics, as in the
case of most of the mRNA promoters in E. coli (36).
Because the ribosomal genes are very highly transcribed,
the initiation and elongation timescales become compara-
ble, and hence the effect of elongation on the RNAP dis-
tance distributions can be significant (58). To better
understand this interplay of the two, we use a model of initi-
ation and elongation proposed by Klumpp et al. (58) that
incorporates ubiquitous pauses on the elongating RNAPs.
Using stochastic simulations (65,84), we explore the effect
of elongation dynamics on the interpolymerase distance
Biophysical Journal 114, 2072–2082, May 8, 2018 2079
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distributions for ribosomal genes (for a detailed discussion,
see the Supporting Material). We find that the interpolymer-
ase distribution, for rate parameters that are pertinent to
experiments on rrn genes (39), is solely a result of the tran-
scription initiation dynamics, and that elongation has little
impact on it.

We believe that the approach and ideas presented here
will be helpful to uncovering detailed kinetic information
about the process of transcription initiation in live cells.
SUPPORTING MATERIAL

Supporting Materials and Methods, two figures, and two tables are available

at http://www.biophysj.org/biophysj/supplemental/S0006-3495(18)30407-7.
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