AN APPLICATION OF THE POISSON DISTRIBUTION

By R. D. CLARKE, F.I.A.
of the Prudential Assurance Company, Ltd.

Readers of Lidstone's Notes on the Poisson frequency distribution ($7 . I . A$. Vol. LXXI, p. 284) may be interested in an application of this distribution which I recently had occasion to make in the course of a practical investigation.

During the flying-bomb attack on London, frequent assertions were made that the points of impact of the bombs tended to be grouped in clusters. It was accordingly decided to apply a statistical test to discover whether any support could be found for this allegation.

An area was selected comprising 144 square kilometres of south London over which the basic probability function of the distribution was very nearly constant, i.e. the theoretical mean density was not subject to material variation anywhere within the area examined. The selected area was divided into 576 squares of $\frac{1}{4}$ square kilometre each, and a count was made of the numbers of squares containing $0,1,2,3, \ldots$, etc. flying bombs. Over the period considered the total number of bombs within the area involved was 537. The expected numbers of squares corresponding to the actual numbers yielded by the count were then calculated from the Poisson formula:

$$
\mathrm{N} e^{-m}\left(\mathrm{I}+m+m^{2} / 2!+m^{3} / 3!+\ldots\right)
$$

where

$$
\mathrm{N}=576 \quad \text { and } \quad m=537 / 576
$$

The result provided a very neat example of conformity to the Poisson law and might afford material to future writers of statistical text-books.

The actual results were as follows:

No. of flying bombs per square	Expected no. of squares (Poisson)	Actual no. of squares
0	226.74	229
I	211.39	211
2	98.54	93
3	30.62	35
4	7.14	7
5 and over	5767	1
	576	

The occurrence of clustering would have been reflected in the above table by an excess number of squares containing either a high number of flying bombs or none at all, with a deficiency in the intermediate classes. The closeness of fit which in fact appears lends no support to the clustering hypothesis.

Applying the χ^{2} test to the comparison of actual with expected figures, we obtain $\chi^{2}=1 \cdot 17$. There are 4 degrees of freedom, and the probability of obtaining this or a higher value of χ^{2} is $\cdot 88$.

