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The rapid pace of experimental
advance and acquisition of exciting
news kinds of data in cell biology
makes it ever more important to
develop conceptual frameworks that
unify and explain that data.

Mathematical theory forces us to for-
mally state our thoughts in the same
way that writing a computer program
demands a precise statement of the
underlying algorithm.
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The pace of modern science is staggering. The quantities of data now flowing
from DNA sequencers, fluorescence and electron microscopes, mass spec-
trometers, and other mind-blowing instruments leave us faced with information
overload. This explosion in data has brought on its heels a concomitant need for
efforts at the kinds of synthesis and unification we see in theoretical physics.
Often in cell biology, when theoretical modeling takes place, it is as a figure 7
reflection on experiments that have already been done, with data fitting provid-
ing a metric of success. Figure 1 theory, by way of contrast, is about living
dangerously by turning our thinking into formal mathematical predictions and
confronting that math with experiments that have not yet been done.
Theoretical models complement bio-
chemistry, genetics, bioinformatics,
and other frameworks for querying bio-
logical systems.

Theory allows us to sharpen our think-
ing and hypotheses.
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What is the Role of Theory in the Life Sciences?
People say that to learn about the philosophy of science, one should not listen to what scientists
say, but rather watch what they do. Most of the time, if cell biologists use theory at all, it appears
at the end of their paper, a parting shot from figure 7. A model is proposed after the experiments
are done, and victory is declared if the model ‘fits’ the data. But there is another way to go about
using theory. This second approach not only provides a conceptual framework for experiments
that have already been done but, more importantly, it also uses theory to produce interesting,
testable predictions about experiments that have not yet been done. This type of theory often
appears at the beginning of the paper, an opening volley from figure 1, to justify the experiments
that follow. Here I describe the opportunity offered by practicing ‘Figure 1 theory’, where the
theory comes first, and everything from the experimental design to the data analysis and
interpretation flow from it.

It is an important time to reexamine the role of theory in biology. The explosion of data in the life
sciences has created a deep tension between fact and concept. Indeed, the frenzy surrounding
big data has led some to speculate ‘the end of theory’ [1]. The supposition is that if we can find
the right correlations between different measurables, we need not bother with finding the
underlying ‘laws’ that give rise to those correlations. The French mathematician Henri Poincaré
famously noted ‘A science is built up of facts as a house is built up of bricks. But a mere
accumulation of facts is no more a science than a pile of bricks is a house’. Biology has many
rooms and hallways of exquisite beauty, but there are still many bricks awaiting their place in the
structure of biological science. Examples abound. Quantitative microscopy is now providing a
picture of when and where the macromolecules of the cell are found. Mass spectrometry and
fluorescence microscopy give an unprecedented look at the mean and variability in the number
of mRNAs, lipids, proteins, and metabolites in cells of all kinds. DNA sequencing now routinely
provides a base pair resolution view of genomes and their occupancy by proteins such as
histones and transcription factors. Yet we are often lost amid the massive omic and imaging
databases we have collected without a theoretical understanding to guide us. When successful,
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Figure 1. Broad Reach of Statistical Mechanical Models of Allostery. The top example shows an ion channel known
as the nicotinic acetylcholine receptor and the bottom example shows the gene regulatory molecule known as Lac repressor.
The Monod–Wyman–Changeux model (MWC) considers the inactive and active states in all of their different states of ligand
occupancy [36]. The Bohr parameter provides the critical natural scaling variable that makes it possible for data from different
mutants to all fall on one master curve as shown in the final column [27]. Different colored data points correspond to different
mutants of the ion channel (top) or repressor molecule (bottom). Ion channel data from [37] and repressor data from [38].
Figure 1 theory tells us from the get-go exactly what data we need to collect to attempt to test our
theoretical musings. As a result of the experimental advances driving cell biology, there is
enormous pressure to turn facts into a corresponding conceptual picture of how cells work [2].

What exactly do we mean by theory? In many cases, our first understanding of some biological
problem might be based on powerful, cartoon-level abstractions, already a useful first level of
theory that can itself serve a Figure 1 role. These abstractions make qualitative predictions that
we can then test. However, by mathematicizing these cartoon-level abstractions, we go farther,
by formally committing to their underlying assumptions we can thus use the logical machinery of
mathematics to sharpen our hypotheses and more deeply explore their consequences. Jeremy
Gunawardena has amusingly but thoughtfully referred to this kind of theory as the exercise of
converting our ‘pathetic’ thinking into mathematical form and then exploring the consequences
of the assumptions behind that thinking [3].

How Can Theory Enlighten Us?
Where is the evidence that mathematical theory has the power to expand our understanding of
the living world in the same way that microscopy, genetics, and biochemistry, for example,
already have? In fact, as has been noted elsewhere, there is a long tradition of deep and
fundamental biological insights that required quantitative analysis [3,4]. One of my personal
favorites concerns the question of the physical limits on how cells can detect environmental
stimuli. Quantitative reasoning has provided us with insights into processes as diverse as
chemotaxis, in which cells can detect tiny chemical gradients, or vision, where networks of
molecules make it possible for photoreceptors to detect small numbers of photons [5–7]. For
example, in the context of chemotaxis, theoretical considerations shed deep light on the
mechanisms of both gradient detection and how cells adapt to changes in the ambient
chemoattractant concentration [5–8]. Another celebrated example is the way in which proba-
bility distributions serve as a window into biological mechanisms [9]. The famed Luria–Delbrück
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experiment on the origins of genetic mutations provided critical insights into the mechanisms of
evolution across all domains of life [10]. Similarly, the ongoing debate over when the statistics of
mRNA distributions are characterized by the Poisson distribution is helping to clarify the
mechanistic underpinnings of the processes of the central dogma as they unfold inside a cell
[11–14].

When successful, theory can bring us both enlightenment and surprise. One form of enlightenment
is through the existence of what one might call metaconcepts. Think about all of the different
scenarios in the natural world where the notion of ‘resonance’ (one of the most far-reaching
metaconcepts I can think of) shows up, whether in the back-and-forth motion of a child on a swing
or the optical resonators that are central to the many ways we now sculpt light. A compelling
biological example is offered by the mathematics of repeated trials of some experiment with only
two outcomes (e.g., the familiar heads and tails from a coin flip). This thinking, although seemingly
very remote from biology, is actually an overarching theme for understanding many biological
processes. For example, thinking about coin flips provides a quantitative basis for answering the
question of whether the segregation of carboxysomes in cyanobacteria is an active process or
rather the result of random partitioning [15]. Further, for those cases in which molecular partitioning
during cell division is random, coin-flip thinking provides a powerful means of converting arbitrary
fluorescence units from our microscopy experiments into precise molecular counts [16–19].

One of the most beautiful examples of a metaconcept from biology is provided by the notion of
allostery as shown in Figure 1 [20–22]. A wide variety of different biological phenomena are
mediated by molecules that can exist in two different conformational states, one that we will dub
the active state and the other the inactive state. A crucial feature of these molecules is that they
can bind a ligand that has different binding affinities for the active and inactive states, thereby
biasing the relative probabilities of these two states. By speaking the language of mathematics, it
is possible to unite phenomena as diverse as the Bohr effect in hemoglobin, the accessibility of
genomic DNA to DNA-binding proteins, the response of chemotaxis receptors to changes in
chemoattractant concentration, the analysis of mutants in quorum sensing, and the induction of
transcription factors. As hinted at in Figure 1, all of these phenomena can be described by a
single equation that parameterizes their activity as a function of ligand concentration, revealing a
deep unity that is hidden from view when these problems are discussed verbally, although many
theoretical challenges remain (see Outstanding Questions) [23–27].

As scientists, we are often interested in finding unifying principles. How do we know when we find
them? The ability to collapse the results of more than one experiment onto a single master curve
reveals that we might have found some deeper concepts that unite apparently distinct phenom-
ena. Stated differently, such data collapses suggest that we have found the natural variables of a
given problem. An example of this has already been shown for the case of allostery in Figure 1,
where the natural variable is the Bohr parameter. The quantitative study of gene expression
provides another attractive example of this idea. The input–output function of a given genetic
regulatory architecture depends on the constellation of binding sites for transcription factors that
can either activate or repress transcription. For the simplest of these regulatory architectures,
namely, simple repression where a single binding site for a repressor controls expression, we
define the fold-change in gene expression as the ratio of two quantities, the level of expression in
the presence of repressor over the level of expression in its absence. In this case, the relation
between fold-change in gene expression and the number of repressors (R) is given by the formula

fold-change ¼ 1 þ R
NNS

e�bDerd

� ��1

; [1]

where NNS is the number of sites in the genome and Derd measures the binding energy of the
repressor on its operator [28–31]. By way of contrast, when there are multiple promoters (N)
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competing for the attention of those same repressors, the expression for gene expression is given
by the intuitively unenlightening equation

fold-change ¼ 1
N

PN
i¼0

N
i

� �
N�ið ÞQi

j¼1
ð2R�jþ1Þ

NNS
e�bDerdð2R�jþ1Þuð2R�j þ 1Þ

PN
i¼0

N
i

� �Qi
j¼1

ð2R�jþ1Þ
NNS

e�bDerdð2R�jþ1Þuð2R�j þ 1Þ
; [2]

shown here not to convey understanding but rather to reveal obscurity! Part of the reason that this
equation is so hard to parse is that it does not reflect the ‘natural variables’ of the problem [32].
Many biological processes are first formulated in terms of the variables we know the most about.
In the case of gene expression this might be the concentration of transcription factors and their
affinity for their cognate binding sites. Equations 1 and 2 describe the simple repression regulatory
function in terms of these variables and are plotted in Figure 2 (top left). But this is not the most
revealing form for these equations. If they are reformulated in terms of an aggregate parameter –

the fugacity, lr – we can see how different gene regulatory functions are related to each other [33],
allowing us to write an equation for the fold-change in gene expression that absorbs both of the
previous expressions as

fold-change ¼ 1 þ lre�b 2 r
� ��1

; [3]
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Figure 2. Bringing Different Repression Problems into the Same Fold. The top left graph shows measurements of
fold-change in gene expression for a number of different simple repression scenarios including different binding site strengths,
repressor copy numbers, and numbers of repressor binding sites across the genome. The data collapse on the top right shows
a parameter-free treatment of the same problem in terms of repressor fugacity. The bottom panel shows the different regulatory
knobs that are used to control gene expression and that are all accounted for in the fugacity framework [33].
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plotted in Figure 2 (top right). Interestingly, the fugacity formulation accounts for three effects
simultaneously: (i) transcription factor copy number, (ii) transcription factor binding strength, and
(iii) the competition for multiple sites on the DNA for the same transcription factors. One of the
exciting outcomes of a theoretical description like this is that it can offer a view in which things that
were apparently different are not different at all.

How Can Theory Surprise Us?
Sometimes, people use the word surprise if they find a particular fact to be novel. Further, they
might dismiss a theoretical effort by noting some particular theoretical analysis is reasoning
about facts that are already known. For example, ‘we already know that protein X phosphor-
ylates protein Y resulting in transcription’, the implication being that digging into the problem
quantitatively offers nothing new or surprising since the key facts are already in hand. I would like
to distinguish between finding a fact surprising and finding discrepancies between a conceptual
model and data surprising. Each has its own important place in the evolution of understanding of
a given phenomenon. To illustrate this, consider trying to predict the tides. That same argument
about phosphorylation when turned to the tides would read ‘it is not surprising that tides are
higher during a full moon’, a value judgment based on the primacy of facts over predictive
understanding. If you watch the sea and the sun and the moon all day, indeed, you may come to
the conclusion that the tides are higher during a full moon. But this is a far cry from the kind of
substantive understanding that makes it possible to say how the tides vary every minute of the
day, every day of the year, and, further, how those tides vary from one point on the California
coast to another. Overall, the resulting theory that allows us to predict tides still tells you that the
tides are higher during a full moon, so are you not surprised because you already knew that fact?
In my opinion, it is often when we turn the current best understanding of a given biological
problem into mathematical language and use it to make quantitative predictions that we are then
able to know what is surprising and what is not.

A biological example that makes this point is illustrated in Figure 3. One of the most intriguing
aspects of genomes is action at a distance, referring to the fact that binding of proteins on one
part of the genome can affect what happens elsewhere on the genome. Perhaps the most well-
known example of this kind of effect is the presence of enhancers in the genomes of multicellular
organisms. But even bacteria exhibit action at a distance with transcription factors binding at
several sites simultaneously and looping the intervening DNA as shown schematically in Figure 3.
In the results of this now classic experiment (see Figure 3C), the level of gene expression was
measured as a function of the distance between two repressor binding sites [34]. Is the curve
shown in Figure 3 surprising? Several features that we can wonder about are the periodicity of
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Outstanding Questions
To what extent is biology amenable to
the kind of rich interplay between the-
ory and experiment more familiar in its
more quantitative partner sciences?

Can biological measurements get to
the point of precision and reproducibil-
ity that they suffice to distinguish
between competing quantitative
models?

How do we construct conceptual
frameworks that allow us to tame the
‘big data’ that has become a mainstay
of modern biology?

How can we construct a theoretical
understanding of the data now flowing
from DNA sequencers, fluorescence
and electron microscopes, mass spec-
trometers, and other impressive mod-
ern instruments?
the graph as well as the amplitudes of the peaks. Although the periodicity can be attributed to the
approximately 10 base pair helical repeat of the DNA double helix, the amplitudes of the peaks
and especially the maximum at 70.5 base pairs remains a deep and surprising problem, but only
when viewed through the quantitative filter of what we know about DNA elasticity, which tells us
that at length scales shorter than the persistence length the DNA should be difficult to bend.

A Role for Figure 1 Theory
One explanation for indifference to examples such as that of DNA looping as deep theoretical
challenges is what I would liken to the Kazakh poetry effect. The argument goes something like
this: there is no first rate poetry from Kazakhstan. How might someone come to this view? Well,
because how many of us have actually seen or heard an outstanding Kazakh poem? The fallacy
in this thinking can be carried over to the biological context. It is hard to appreciate the beauty of
a language that one does not even speak so when a thoughtful and interesting biological
argument is made in mathematical language, there is a risk that some people will not understand
it. Of course, this cuts in both ways. Just as it might be hard for those that do not use
mathematics as their natural language for describing the world to find a given mathematically
reasoned hypothesis surprising, there are many languages within biology (e.g., genetics,
bioinformatics, etc.) that are similarly opaque to those who do not speak them. There is no
shortage of physical scientists who are ready to make misguided and dogmatic pronounce-
ments about the lack of rigor in biology, or its supposed lack of fascinating problems and deep
concepts.

In a recent book, noted historian of science Stephen Brush uses the history of physics,
chemistry, and biology to explore the circumstances under which new theories are adopted
[35]. He notes that the scientific method as represented in oversimplified textbooks argues
that ‘adoption’ of new theories is supposedly always based on predicting the results of
experiments that have not yet been done, perhaps best exemplified by the way Mendeleev's
periodic table heralded the existence of new chemical elements. This view is founded on the
idea that it is only when those concepts predict something that has not been known before
that concepts are truly adopted. Interestingly, Brush argues that in many famous cases from
physics such as the adoption of both general relativity and quantum mechanics, that instead,
it was the explanation of already known effects that carried the most weight. Although
Brush's observations make it clear that figure 7 theory has its place, in my view, there has
thus far been a largely missed opportunity to use Figure 1 theory as a guide to sharpen our
thinking and to help us design experiments that otherwise would not even have been thought
of. Living organisms exhibit beautiful and surprising phenomena at every turn. In my view,
there is no one approach that guarantees success in uncovering the secrets of the living
world. The thesis of this brief essay is that theoretical descriptions of biological phenomena
couched in the language of mathematics have the capacity of revealing insights that would
otherwise remain hidden. Future directions for these approaches are presented in Outstand-
ing Questions.
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