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Summary

How cells control their size and maintain size homeostasis

is a fundamental open question. Cell-size homeostasis has
been discussed in the context of two major paradigms:

‘‘sizer,’’ in which the cell actively monitors its size and trig-
gers the cell cycle once it reaches a critical size, and

‘‘timer,’’ in which the cell attempts to grow for a specific
amount of time before division. These paradigms, in

conjunction with the ‘‘growth law’’ [1] and the quantitative

bacterial cell-cycle model [2], inspired numerous theoret-
ical models [3–9] and experimental investigations, from

growth [10, 11] to cell cycle and size control [12–15]. How-
ever, experimental evidence involved difficult-to-verify as-

sumptions or population-averaged data, which allowed
different interpretations [1–5, 16–20] or limited conclu-

sions [4–9]. In particular, population-averaged data and
correlations are inconclusive as the averaging process

masks causal effects at the cellular level. In this work,
we extended a microfluidic ‘‘mother machine’’ [21] and

monitored hundreds of thousands of Gram-negative Es-
cherichia coli and Gram-positive Bacillus subtilis cells un-

der a wide range of steady-state growth conditions. Our
combined experimental results and quantitative analysis

demonstrate that cells add a constant volume each gener-
ation, irrespective of their newborn sizes, conclusively

supporting the so-called constant D model. This model
was introduced for E. coli [6, 7] and recently revisited [9],

but experimental evidence was limited to correlations.
This ‘‘adder’’ principle quantitatively explains experimental

data at both the population and single-cell levels,
including the origin and the hierarchy of variability in the

size-control mechanisms and how cells maintain size
homeostasis.
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Results

At the Population Level, New Experimental Data Confirm
the Growth Law

Population-level parameters derived from our single-cell data
followed established patterns for microbial growth known as
the growth law [1]: the average newborn cell volume hvbi
increased and the average generation time htdi decreased,
respectively, as the nutrient-imposed growth rate hli =
h1/tdi ln2 increased (newborn refers to the cells right after
birth; Figure 1A). The newborn cell volume depended expo-
nentially on the nutrient-imposed growth rate (hereafter
referred to as growth rate, unless otherwise noted), hnbi = A
exp(Bhli), in quantitative agreement with the growth law [1]
(Figure 1C, red symbols and line; A is the y intercept, and B
is the slope of the red line). Moreover, newborn length hsbi
and width hwbi, averaged over the entire set of individual
cells in each growth condition, also showed an exponential
dependence on the average growth rate hli (Figure S1A avail-
able online).
The size of individual cells also increased exponentially as

s(t) = sb2
at (where a is the instantaneous elongation rate),

and. their width did not change significantly between birth
and division (Figure S1B; [21]; hereafter, we use size and vol-
ume synonymously). The average instantaneous elongation
rate was identical to the average growth rate of the population
since h1/s ds/dti = hai ln2 = h1/tdi ln2 = hli.

At the Single-Cell Level, Individual Cells Show Systematic

Deviations from the Growth Law
Individual cells, however, exhibited intrinsic variability even
under constant growth conditions, and we asked whether
the quantitative relationship between the average size and
the average growth rate also applied at the single-cell level.
For example, the SDs of the growth rate and the newborn
cell size were w15% and w14% of their respective means
(Figure 1B). Therefore, when the growth-rate distributions for
two different growth conditions partially overlapped as shown
in Figure 1B, individual cells in the overlap region could have
had the same growth rate l = (ln 2)/td. Thus, if the growth
rate solely defined the cell’s growth physiology, individual
cells with the same l should have had on average the same
size as described by the growth law hnbi = A exp(Bhli). We
found this was not the case. For all seven growth conditions,
the size versus growth rate measured from individual cells,
nb versus l, systematically deviated from the population-level
growth law (Figure 1C, blue symbols and lines versus red sym-
bols and line). This deviation indicates that, at the single-cell
level, the size of individual cells is controlled by a mechanism
that is different from the growth law hnbi = A exp(Bhli) (see
below).

Correlations of Growth and Size Parameters Contradict

Both Sizer and Timer Models
The newborn cell size (sb) and the generation time (td) of indi-
vidual cells were negatively correlated (Figure 1D, left), which
excluded the timer model of cell-size control. Otherwise, we
would have seen constant td with respect to sb. Furthermore,
timer models showed instability when accounting for the
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Figure 1. Growth Law at the Population Level and Systematic Deviations at the Single-Cell Level

(A) Top: time series of a typical cell growing in a nutrient-rich medium. Bottom: sample images of dividing E. coli cells in steady-state exponential growth at

37�C in seven different growth media.

(B) Partially overlapping distributions of the growth rate and the newborn size measured from individual cells in two different growth conditions. The vertical

lines show the population average values. Cells in the overlap region can have the same growth rate or newborn cell size.

(C) Population average of single-cell measurements demonstrates exponential dependence of newborn cell volume on the average growth rate (red). How-

ever, sb versus l of individual cells (binned data in empty blue circles; measured by following them from birth to division) shows systematic deviations from

the average growth law. Thus, although the cells in the overlap region in (B) can have the same growth rate or newborn cell size, the size of individual cells are

controlled by a mechanism that is different from the growth law. Otherwise, all blue symbols would have fallen on top of the red line.

(D) Correlations between rescaled growth parameters at the single-cell level with SDs from the entire set of E. coli data. Left: generation time versus size at

birth. Middle: elongation rate versus size at birth. Right: size at division versus size at birth. Dashed lines indicate predictions from the adder principle from

this work. The first correlation falsifies the timer model, whereas the last correlation falsifies the sizer model.

See also Figure S1.
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observed exponential growth of individual cells (Supplemental
Information). The fact that cells born small take on average
more time before they divide is in principle consistent with a
sizer model. However, the strong positive correlations be-
tween the dividing size sd and sb (Figure 1D, right) ruled out
the model because the sizer predicted that sd should be
constant.

Cells Instead Employ ‘‘Adder’’ Principle

Our data instead support a model in which the size added
between birth and division (D = sd 2 sb) is constant for given
growth conditions. We found that, although D varied sig-
nificantly between growth conditions and also between
individual cells, D was on average constant irrespective of
the newborn size sb in each growth condition (Supplemental
Information). In fact, the entire conditional distribution
r(Djsb) had the same shape as the nonconditional distribu-
tion r(D), and distributions of D from different experimental
conditions collapsed onto a single curve when rescaled by
their mean (Figure 2, right; Figure S2). The distribution of
the size added in each generation, D, was thus independent
of the newborn cell size.
We also confirmed the constancy of D in two additional

E. coli strains from our previous work (K12 MG1655 and
B/r) [21] (Figure S3) and E. coli size mutants (Dpgm and
ftsA*) [16]. Furthermore, we also confirmed the validity of
the model in the Gram-positive B. subtilis (Figures 2B
and 2C).
The collapse of the conditional distributions in Figure 2

established the constant D model, or adder (as opposed to
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Figure 2. Experimental Evidence of Constancy of D in Bacteria

(A) E. coli: average D with respect to the newborn size sb, with each bin containing >103 cells.

(B andC)B. subtilis (B) and E. coli sizemutants (C). All rescaled distributions conditional to different newborn size ranges collapse onto one another, demon-

strating that E. coli and B. subtilis cells grow by a constant size for division, independent of the newborn cell size.

See also Figures S2 and S3.
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‘‘timer’’ or ‘‘sizer’’). Next, we explain quantitatively conse-
quences of this adder principle on cell-size homeostasis.

Adder Ensures Size Homeostasis
An immediate consequence of addition of constant D is that it
automatically ensured size homeostasis because at every cell
division, the cell approached (albeit passively) the population
average as illustrated in Figure 3A (data depict the average
behavior in all growth conditions). If a cell born at size sb =
hsbi + dsb stochastically added an uncorrelated size D and
divided in the middle with some precision, then the daughter
sizes on average were hsbi + dsb/2. After n consecutive divi-
sions, the original size deviation of the newborn cell on
average decreased as dsb/2

n (Figure 3A). The size homeosta-
sis principle was confirmed by our data for both E. coli and
B. subtilis (Figures 3B and 3C).

Addition of Constant Size and Exponential Elongation

Explain Correlations
The constant Dmodel predicted that autocorrelations of sb, sd,
and td decayed by a factor of two in each generation and that
the correlation coefficient between the generation time of the
mother and its daughters was21/4, which was also confirmed
by the data (Figure S4). Intuitively, the negative correlation re-
flects the increased generation time of the daughter cells that
were born smaller than sb due to stochastic, premature division
of the mother cell [4]. Since all cells elongated exponentially
with the elongation rate proportional to the cell length, cells
born at sb < hsbi would require more time to elongate by D for
division than cells born at sb > hsbi (Figure 1D, left, dashed line).
Distributions of the Growth and Division Parameters

Collapse when Rescaled by Their Respective Means
The constant D model in fact provides a quantitative explana-
tion for the distributions of quantities involved in growth and
size control. The six distributions of the relative septum posi-
tion s1/2, elongation rate a, division size sd, newborn size sb,
generation time td, and size increment D are shown in Fig-
ure 4A. The coefficients of variation (CVs) of four distributions
are related in the D model as

�
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�2
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�
st
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�2
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�
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�2

; (Equation 1)

where s denotes the SD of the distribution (see theory section
in Supplemental Information for details). This predicted hierar-
chy of variability was confirmed by our data for both E. coli and
B. subtilis (Figure 4B). Note that the size at birth sb was slightly
more variable than the size at division sd because of the small
variability of the septum position s1/2. The elongation rate a

was subject to its own physiological control and variability
and showed negligible correlations with the distributions
determined by D (Supplemental Information).
The constancy ofDwas finally supported by the scale invari-

ance of the distributions shown in Figure 4A. In the constant D
model, the average of the three size variables are related as
hDi = hsbi = hsdi/2 and, if r(D) shows scale invariance, the three
distributions r(sb), r(sd) and r(td) also inherit the property of
scale invariance of r(D) (theory section in Supplemental Infor-
mation). In support of our theoretical prediction, all experi-
mental r(D) and other size distributions collapsed onto each
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Figure 3. Mechanism of Size Homeostasis Following the Adder Principle

(A–C) For all newborn cells regardless of their size, if the cells always add a constant D and divide in the middle, their respective newborn size automatically

converges to D (A). If D is subject to fluctuations without correlations from one generation to the next, and the cell divides in the middle with some precision,

the newborn size on average still converges to hDi. Our data confirm this size homeostasis mechanism for both E. coli (B) and B. subtilis (C). Data in (B) and

(C) show the average from all growth conditions used for each organism.

See also Movie S1.
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other (Figure 4A; [23, 24]). Hence, the variation of all the statis-
tics with growth conditions is determined by the unique
parameter hDi.

Discussion

Proteome and Biological Origin of Constancy of

Added Size
Since the proteome is a good proxy for cell size, the constantD
is consistent with the ‘‘structural models’’ discussed by Fantes
et al. [22]. Key features of the structural models include the
following: (1) individual cells elongate exponentially, (2) initia-
tors of cell cycle are produced at the same rate as the cell elon-
gation rate, and (3) accumulation of the initiators to a threshold
triggers the cell cycle [22]. Since the cellular volume and total
number of proteins increase with the growth rate, the cellular
fraction of protein initiators should reduce tomaintain the con-
stancy of the threshold. In a recent work by Scott et al. [11], the
bacterial proteome is partitioned into three ‘‘sectors’’: R, con-
taining ribosomal proteins; Q, containing housekeeping pro-
teins; and P, containing the rest of the proteins. Using prote-
ome data for the relative fraction 4p of the P-sector proteins
in E. coli (Figure 4E, left; [11]) and the respective average cell
volume hVi (Figure 1C, red line), we found that the total number
of P-sector proteins per cell Np = 4p3 hVi is relatively constant
in all growth conditions for different E. coli strains (see Figure 4
and Supplemental Information). Thus, proteins in the P sectors
behave as the initiators postulated in [22]. This leads to the
prediction that the majority of proteins involved in metabolism
(e.g., nutrient transporters andmetabolic sensors [15]) and the
cell cycle should belong to the P sector of the bacterial prote-
ome (with their constant basal level to the Q sector). Note that
the total proteome per cell increases exponentially with
respect to the average growth rate; the growth law ([5]; Fig-
ure 1C) can thus be interpreted as a response of the average
cell size (total proteome per cell) to nutrient conditions such
that the average P-sector proteins per cell is approximately
constant with respect to the nutrient-imposed growth rate.
There is a clear experimental avenue for the future that will
investigate howDwill changewhen the proteome composition
is perturbed by, e.g., transcription or translational inhibitors.

Extension to Other Organisms
The growing number of modern single-cell data sets provides
a unique opportunity to determine the applicability of our find-
ings to other bacteria as well as to eukaryotes. Analysis of
bacteria, such as Caulobacter [25, 26], and single-celled eu-
karyotes should illuminate the role played by programmed
degradation of regulatory proteins in cell-size homeostasis.
Fantes [27] considered structural models for fission yeast
S. pombe and dismissed them based on existing data sets.
While differences might indeed be expected between eukary-
otes and bacteria, extensive modern single-cell data sets are
now available in, e.g., budding yeast [28], and could be used
to address the question [26]. It will also be of great interest
to determine whether other non-rod-shaped organisms,
particularly those that exhibit tip growth and/or nonuniform
morphologies, including mycobacteria, hyphal fungi, and pro-
tists like Stentor, also add constant volume or maintain their
size through other independent mechanisms. We finally
remark that the size and the shape of cells play a major role
in their physiology in multicellular organisms as well, namely
during Xenopus embryogenesis [29].

Hierarchy of Growth Parameters and the Meaning of

Biological Noise
Weshowed that only two parameters, the elongation rate a and
the added sizeD, are sufficient to reproduce thedistributions of
all growth and division parameters of both E. coli andB. subtilis
in all growth conditions without any adjustable parameters
(Equation 1 and Figure 4C; Supplemental Information). We
thus propose that a and D represent two basic controls of
physiology and size homeostasis and that the size at birth
and division, as well as generation time, are slaved to them.
Ordering the variances of the rescaled distributions, the dis-

tribution of the septum position s1/2 is the smallest, and the
added size D is the largest (Figure 4A). Previously, sizer was
supported because the coefficient of variance for division
size (10%) was smaller than that for generation time (40%–
60%) [19]. Therefore, interpreting coefficient of variance as a
biological ‘‘noise’’ should be taken with caution since D is a
basic control parameter for size homeostasis, yet D shows
the largest variability.

Conclusions
Wedemonstrated that both E. coli andB. subtilismaintain cell-
size homeostasis by adding a constant size D. The constant D
model quantitatively explains the distributions of growth-
related parameters and their variability. How bacteria can
overlap their cell cycles without making fatal mistakes in the
absence of eukaryotic-like cell-cycle checkpoints is a long-
standing open question [30, 31]. Our results provide a new
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Figure 4. Origin and Quantitative Consequences of Constancy of Added Size D

(A) Six distributions are shown in the ascending order of their relative widths. All growth parameters from different growth conditions show scale invariance,

i.e., collapse when rescaled by their respective means.

(B and C) Among the six distributions in (A), four distributions are determined by D (division size sd, newborn size sb, generation time td, and D) (B). See

Equation 1. Thus, r(D) and r(a) are sufficient to reproduce all distributions for all growth conditions for both E. coli (C) and B. subtilis (Supplemental Infor-

mation) without any adjustable parameters.

(D and E) ConstantD is consistent with the ‘‘structural models’’ discussed in [22], which assume that the cell grows to accumulate fixed amounts of cell-cycle

regulators in each generation. Since metabolism and cell-cycle proteins are neither housekeeping nor ribosomal proteins, this prediction can be quantita-

tively tested using the proteome data [11] and the growth law in Figure 1C. Indeed, the total P-sector proteins per cell is constant in all growth conditions (E).

See also Figure S4 and Table S3.
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perspective on this issue and in the search for the underlying
molecular mechanisms. A direction to be pursued in the future
is the constancy of the added size D and its relationship with
the proteome [11]. That hints at an ensemble of molecular
players and entails both exponential dependency of the
average cell size on growth rate (the growth law) and con-
stancy of D at steady state. It will thus be important to interfere
with protein synthesis and assess the resulting effects on the
cell-size distributions.

Experimental Procedures

Strains

For physiological study, it is important to use a prototrophic strain. For

E. coli, we chose the strain K12 NCM3722, constructed, sequenced, and

extensively tested by Sydney Kustu’s laboratory [32]. We used SJ202, a

nonmotile derivative of NCM3722 (DmotA). For B. subtilis experiments, we

chose a strain in the 3610 background with Coml (Q12L) mutation to allow

competence. We used a derivative with reduced motility and biofilm forma-

tion by deleting epsH and a flagellin protein hag, respectively.

Growth Media

E. coli growth experiments were performed in seven different nutrient con-

ditions. The average generation time in these conditions evenly spanned
from 17.1 to 51.4min at 37�C. The growthmedium is based onMOPS, devel-

oped by Fred Neidhardt [33], and is commercially available from Teknova

(http://www.teknova.com). B. subtilis growth experiments were performed

in four different growth conditions with average doubling times between

16.9 and 38.9 min. The details of the growth media are listed in Tables S1

and S2. Prior to growth of the cells in the microfluidics device, all cultures

were grown in a 37�C water bath shaker, shaking at 240 rpm.

Sample Preparations

All experimental steps—from inoculation to imaging—were performed at

37�C 6 0.1�C. To this end, all equipment was stationed in a 50 3 70 environ-
mental chamber to eliminate any side effect of temperature fluctuations in

the cell growth and physiology. Within the chamber, the temperature distri-

bution was homogeneous, with forced air circulation within 60.1�C, and
constantly monitored at multiple locations. See Supplemental Information

for more information.

Microscopy

Image acquisition and analysis were performed with an inverted micro-

scope (Nikon Ti-E) equipped with Perfect Focus (PFS 3), a 1003 oil immer-

sion objective lens (NA 1.45), and white LED transmission light (TLED, Sutter

Instruments, 400–700 nm), and an Andor NEO sCMOS camera was used for

phase-contrast imaging. The illumination condition was 50 ms exposure

with illumination intensity set at 10% of the maximum TLED intensity. The

frequency of the time-lapse imaging was chosen such that about 20 or

http://www.teknova.com
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more images were taken per generation time. Imaging in phase contrast

eliminated potential artifacts common in fluorescence imaging. Analysis

of the large number of phase-contrast images required development of

custom high-throughput image analysis software as described in Supple-

mental Information.

Model for the D Control

We denote by s the cell size along the elongating axis of the rod and by sb
and sd the size of cells at birth and division. We assume the width of the

cell is roughly constant. If s(t) is the size of a cell at the current time t, its

added size is denoted D(t) = s(t) 2 sb. The D model posits that the mecha-

nism of control involves the single variable, D = sd 2 sb, the size added be-

tween birth and division. The density of cells n(s, D0, t) having size s and

added size D0, with g(s) = ds/dt, obeys the continuity equations

vtn
�
s;D

0
; t
�
+ vs

�
gðsÞn�s;D0

; t
��

+ vD0
�
gðsÞn�s;D0

; t
��

= 2g
�
D

0 �
gðsÞn�s;D0

; t
�
;

(Equation 2)

gðsÞnðs; 0; tÞ=4gð2sÞ
Z N

0

gðxÞnð2s; x; tÞdx: (Equation 3)

The left-hand side in Equation 2 is the total time derivative, and the two

drift terms are due to the elongation of the cells, i.e., ds/dt = g(s) and

dD(t)/dt = g(s). The right-hand side accounts for the division of cells. The

Poissonian splitting rate function g(D) is related to the distribution rDd(D)

for the size added at division of individual cells as r(D) = g(D)exp(2!g(x)
dx). Indeed, the exponential term is the probability that the cell will not divide

up to D and g(D)dD is the probability of division in the range (D, D + dD). Sim-

ple algebra leads then to

gðDÞ= rDdðDÞ
12

R D

0
dxrDdðxÞ

: (Equation 4)

The conversion of the rate of division to unit time involves the Jacobian

jdD(t)/dtj = g(s) that appears in the right-hand side of Equation 2. Finally,

Equation 3 is the boundary condition that accounts for cells having all D =

0 at birth, irrespective of their size 2s at division.

Equation 2 goes back at least to [34, 35], and the formalism was then

expanded and utilized for the sizer, the timer, and their combinations in a se-

ries of papers and books (see, e.g., [8, 24, 36–39]). We took the pragmatic

approach of extracting the functions g and g from the distribution of the

sizes at division and of the elongation rates and using them to simulate

the cell-size control process at the level of individual cells. We then

compared statistical observables alternative to those used for the calibra-

tion of the model. As detailed in the Supplemental Information, this pro-

cedure allowed us to rule out timer and sizer models and to establish the

consistency of the D model.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, four figures, three tables, and one movie and can be found with

this article online at http://dx.doi.org/10.1016/j.cub.2014.12.009.
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We have become aware of an error in Equation 1 and Figure 4B of this article. The corrected Equation 1 should read as follows, to

match Equation 25 in the Supplemental Information, which presents a full derivation of the correct Equation 1 without the error:
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Figure 4B with a corrected annotation is shown below. The data in Figure 4B remain unchanged.

Please note that these errors do not impact the results of our study. The authors apologize for any confusion.
Figure 4B. Origin and Quantitative Consequences of Constancy of Added Size D
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