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Abstract
The ability to quantify transcriptional dynamics in individual cells via live imaging has

revolutionized our understanding of gene regulation. However, such measurements are lacking
in the context of vertebrate embryos. We addressed this deficit by applying MS2-MCP mRNA
labeling to the quantification of transcription in zebrafish, a model vertebrate. We developed a
platform of transgenic organisms, light sheet fluorescence microscopy, and optimized image
analysis that enables visualization and quantification of MS2 reporters. We used these tools to
obtain the first single-cell, real-time measurements of transcriptional dynamics of the
segmentation clock. Our measurements challenge the traditional view of smooth clock
oscillations and instead suggest a model of discrete transcriptional bursts that are organized in
space and time. Together, these results highlight how measuring single-cell transcriptional
activity can reveal unexpected features of gene regulation and how this data can fuel the
dialogue between theory and experiment.

Introduction
Development is driven by highly dynamic and coordinated gene regulatory programs.

Rapid switches (Afzal and Krumlauf 2022), transient excursions (Bothma et al. 2014), and
oscillations (Kageyama et al. 2008; Palmeirim et al. 1997) in gene expression are commonplace
across the tree of life. While the last few years have resulted in an explosion of our ability to
map the gene regulatory networks dictating developmental dynamics, predictively
understanding the links between transcriptional dynamics, cell fate decisions, and tissue
patterning remains an open, fundamental problem in developmental biology (Garcia et al. 2020).

The MS2-MCP system is a widely used method for precise, quantitative measurements
of real-time transcriptional dynamics of individual genes (Bertrand et al. 1998; Golding et al.
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2005; Chao et al. 2008; Larson et al. 2011; Garcia et al. 2013) (Fig. 1A). In this system, a
transgene is tagged with multiple copies of a viral stem loop sequence (“MS2”), whose cognate
binding partner (“MCP”, MS2 coat protein) is fused to a fluorescent protein. Upon mRNA
synthesis, MCP binds the MS2 loops within the nascent transcript, producing a region of
enhanced fluorophore concentration (a “spot”) that can be detected with a fluorescence
microscope (Fig. 1A). The intensity of the resulting fluorescent spot is proportional to the
number of RNA polymerase II molecules on the gene.

To date, precise, quantitative measurements of transcriptional dynamics via the
MS2-MCP system have been limited to single cells in culture, tissue samples, invertebrate
model organisms, such as flies and worms, and plants (Garcia et al. 2013; Lammers, Kim, et al.
2020; Wildner et al. 2023; Lee, Shin, and Kimble 2019; Corrigan et al. 2016; Alamos et al. 2021;
Park et al. 2014). In these contexts, the MS2-MCP system has transformed our understanding
of gene expression by revealing highly dynamic gene regulatory programs and novel molecular
mechanisms of transcriptional regulation (Lim 2018). However, similar measurements have yet
to be achieved in a living vertebrate. Given its established genetic toolkit and amenability to live
imaging, the zebrafish is a prime candidate for exploring single-cell transcriptional dynamics in
vertebrates. While MS2 has been used in zebrafish to study mRNA localization, previous
implementations have faced issues of MCP aggregation that prevented quantification of
transcription (Campbell et al. 2015; Fedder-Semmes and Appel 2021; Costa et al. 2020; Zhang
et al. 2020).

Further, even if the genetic implementation of MS2 in vertebrates such as zebrafish was
optimized, large challenges to using this technology to quantify transcriptional dynamics in intact
vertebrate animals remain. For example, compared to flies or worms, zebrafish embryos are
larger, denser, and exhibit greater motion during development, posing challenges in both image
acquisition and analysis. Due to high cell motility during tailbud elongation (50 μm/h is a typical
speed; see (Lawton et al. 2013)), fields of view hundreds of micrometers in length are required
to track groups of cells for multiple hours. Simultaneously, one must be able to detect signals
coming from diffraction-limited spots made of only tens of fluorophores. Large fields of view,
over time, result in large (here, ~1 TB) datasets. The large size of the data, together with dense
nuclei and strong, heterogeneous fluorescence backgrounds, complicate cell tracking and MS2
spot quantification. Thus, the full power of the MS2 system to quantify transcriptional dynamics
has yet to be realized in zebrafish or any other vertebrate animal. As many aspects of
vertebrate development and physiology fundamentally differ from invertebrates, entire fields of
questions concerning transcriptional dynamics—including questions of direct biomedical
relevance—remain unanswerable.

Here, we report the establishment of the MS2 system in transgenic zebrafish together
with the development of an allied platform of light sheet fluorescence microscopy and
computational image analysis to quantify transcriptional dynamics of MS2 reporters in complex
and dynamical vertebrate embryos. We generated a new transgenic zebrafish line expressing a
reengineered MCP that avoids protein aggregation. To enable the fast, large volume imaging,
we used light sheet fluorescence microscopy and demonstrated that this method can retain the
sensitivity required to detect MS2 spots. To make it possible to track cells and quantify spots in
large datasets with strong background, we developed a computational image analysis pipeline
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that combines parallelized chunk-based file handling, GPU-acceleration, and deep learning,
achieving fast and accurate measurements of transcriptional dynamics in single cells.

We applied this platform to a paradigmatic example of vertebrate-specific gene
expression dynamics: the segmentation clock. In vertebrate embryo development,
somites—morphological segments that prefigure the bones and muscles of the adult—are
formed rhythmically and sequentially at the posterior end of the elongating body axis from the
presomitic mesoderm (A. C. Oates, Morelli, and Ares 2012; Palmeirim et al. 1997). This
rhythmic specification is dictated by a highly conserved biological clock that consists of an
oscillatory gene regulatory network (A. C. Oates, Morelli, and Ares 2012), which is rooted in an
auto-repression motif (Fig. 1B). While protein reporters have given insight into the dynamics of
these oscillators, revealing smooth, sinusoidal oscillations in single cells, how oscillations are
generated at the transcriptional level has been unknown. Due to the low-pass filtering effect of
RNA and protein accumulation and degradation (Fig. 1C), high frequency dynamics are
smoothed out at the protein level, making them invisible to the protein reporters available to
date. For example, single-cell transcription rates could mirror protein levels, oscillating in a
smooth, sinusoidal fashion (Fig. 1D), or they could be sharp and discrete (Fig. 1E). Both
scenarios would produce smooth protein oscillations.

At the tissue scale, our transcriptional measurements recapitulate the known global
picture of somitogenesis: the core clock gene her1 expression oscillates over time and travels in
a wave-like pattern from the tailbud to the forming somites. However, at the single-cell level we
find that, in contrast to the smooth cycles of protein levels observed with fluorescent protein
fusions, transcription rate is modulated in a sharp, discrete manner, resulting in bursts of
transcription. While these bursts are largely periodic, they also exhibit a degree of stochasticity.
Simulations of the protein oscillations predicted to occur based on these transcriptional
dynamics are regular and sinusoidal, indicating a mechanism of robust oscillations that is
compatible with stochastic transcription. To begin to explore how regular oscillations arise from
transcriptional bursting, we developed a minimal mathematical model that extends the canonical
two-state bursting model (Lammers, Kim, et al. 2020) to include auto-repressive feedback. A
preliminary analysis of waiting time distributions for the active and inactive transcriptional
intervals provides evidence for a mechanism in which Her1 dimers increase the probability of a
burst ending, but where burst initiation events are purely stochastic and not affected by Her1
concentration.

All together, this work provides the tools necessary for studying transcriptional dynamics
in zebrafish to the greater community and presents new measurements that challenge the
existing paradigm of somitogenesis. Further, the pipeline presented here constitutes a
framework that can be used to launch quantitative live imaging and theoretical dissection of
transcriptional dynamics in other vertebrate systems.

Results

Implementing MS2 in zebrafish embryos to quantify transcriptional dynamics of the
segmentation clock
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While transient expression of transgenes via injection of one-cell stage embryos is
common in zebrafish (Campbell et al. 2015), this approach is not ideal for reproducible,
quantitative measurements of transcription due to the possibility of positional effects and other
sources of variation from injections (Stuart et al. 1990; Roberts et al. 2014). Therefore, we
generated two stable transgenic zebrafish lines via I-SceI meganuclease transgenesis
(Soroldoni, Hogan, and Oates 2009): one carrying a reporter construct containing MS2 stem
loop sequences inserted downstream of the her1 regulatory region, dubbed “her1-MS2”, and
another carrying an MCP-mNeonGreen (herein “MCP”) fusion driven by a ubiquitin promoter
(Fig. 2A, Methods). The her1-MS2 construct was built off of previously established fusion protein
reporter constructs, with the fluorescent protein switched for the MS2 stem loops (Soroldoni et
al. 2014). Our approach differs from previous works on the MS2 system in zebrafish, which used
transient injection of MS2 loops (Campbell et al. 2015; Fedder-Semmes and Appel 2021; Costa
et al. 2020; Zhang et al. 2020).

We also made modifications to the MCP construct. Specifically, previous work used
tandem dimer MCP with a nuclear localization signal (Campbell et al. 2015) and saw unwanted
aggregation of the coat protein. We suspected that this aggregation was due to tandem dimer
MCP and therefore used regular MCP. Further, while the nuclear localization signal has proven
useful for keeping background levels low when monitoring transcript localization in the
cytoplasm (Forrest and Gavis 2003), it can lead to overly high background levels in the nucleus
that interfere with transcription measurements. Therefore, we did not include a nuclear
localization signal in our construct.

We used I-SceI transgenesis because it is highly efficient and typically generates single
insertion events (Soroldoni, Hogan, and Oates 2009). Single insertion events are ideal here
because multiple insertion events could result in multiple MS2 spots, which would complicate
our analyses. However, I-SceI transgenesis can insert multiple copies of the transgene at the
same site, which raises two potential issues. First, multiple copies of the her1 promoter might
activate asynchronously, which would produce complicated MS2 signals. As we demonstrate
below, we observe largely periodic signals, indicating either a single insertion or multiple
insertions acting in unison. We elaborate on this point further in the Discussion section.

A second potential issue is that since our construct contains the full her1 coding
sequence, it is possible that extra functional copies of Her1 would alter clock function and
produce developmental defects. To address this potential issue, we performed extensive
characterization of segmentation clock patterning and somite formation in our transgenic lines.
For both MS2 and MCP zebrafish lines, heterozygous animals showed normal patterns of her1
expression (Fig. 2B, left and middle; Supplemental Fig. 1A-D) and minimal somite boundary
formation defects consistent with previous Her1 protein reporter lines (Soroldoni et al. 2014;
Delaune et al. 2012) (Supplemental Fig. 1F), indicating healthy somitogenesis. Further, in situ
hybridization against the MS2 sequence mirrored the patterns of her1 expression (Fig. 2B, right;
Supplemental Fig. 1E), demonstrating that our construct faithfully reports on her1 activity.

To assess the feasibility of detecting her1-MS2 spots, we imaged embryos on multiple
types of fluorescence microscopes. To visualize nuclei, we crossed MCP-mNeonGreen fish with
a line carrying h2b-mScarlet (O’Brown, Megason, and Gu 2019) (Methods). In her1-MS2/+;
MCP-mNeonGreen/+; h2b-mScarlet/+ animals, green fluorescent puncta representing nascent
her1-MS2 transcripts were readily detectable using both light sheet (Fig. 2C-D, Supplemental
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Fig. 2A-B) and laser-scanning confocal (Supplemental Fig. 2C-D) fluorescence microscopes. In
control experiments with embryos expressing only MCP-mNeonGreen and no her1-MS2,
fluorescent puncta were not detected (Supplemental Fig. 2B).

In preliminary time lapse imaging experiments on a laser scanning confocal (Zeiss 880
with AiryScan), we found that achieving even a barely-detectable MS2 signal with 1 minute time
resolution (required to capture substructure within the oscillations, whose period is ~30 min)
resulted in a small field of view of 100x50x20 μm3, or approximately 50 nuclei. To image the full
tissue would require a field of view of approximately 500x500x400 μm3. Due to significant cell
motion during somitogenesis (Lawton et al. 2013), we found that manual adjustment of the
microscope stage was required every few minutes to keep the same cells in the field of view
(Movie 1 ). To capture multiple oscillations, this constant adjustment must be done for multiple
hours and the resulting movies registered together, making this approach impractical.
Consequently, we exclusively used light sheet fluorescence microscopy, which enabled us to
capture the full tissue containing somites, presomitic mesoderm, and tailbud, with 1 minute time
resolution and acceptable signal-to-noise ratios (Royer et al. 2016) (Methods).

We built a computational image analysis pipeline (Supplemental Fig. 3A, B) to extract
quantitative measurements of transcriptional dynamics from our images. As elaborated in the
Methods section, the large size (~1 TB) of the image datasets and strong and heterogeneous
background signal posed new challenges to the analysis of MS2 data. Specifically, the large
size of the data called for out-of-memory computing schemes and speed optimization of every
step of the pipeline, while the strong background required sophisticated algorithms for spot
classification and localization. Overall, these challenges, which were new to the analysis of MS2
data in general, necessitated the development of specialized software. The pipeline tracks
nuclei and identifies spots in parallel, then spots are assigned to nuclei and the sequences of
MS2 spot intensities over time—”traces”—are constructed. Initial examination of traces revealed
clear oscillations (Fig. 2E).

We performed extensive characterization of the pipeline’s accuracy (Methods,
Supplemental Fig. 3C-H). Through comparison with 26 manually obtained traces, we found that
our 3D nuclear tracking was approximately 80% accurate (21/26 nuclear trajectories showed no
errors), with an error rate of around 1 nuclear tracking error per 5 nuclear trajectories, or on
average 1 error per 500 minutes (see also Movie 2). Examples of tracking errors include
swapping nuclear identities between neighboring cells, grouping two nuclei into one, and
splitting one nucleus into two (Supplemental Fig. 3G).

Through comparison with manually curated traces, where spot detection was done
entirely by human visual inspection, we found that spot detection was extremely accurate.
Specifically, we found a false positive rate of 4% and a false negative rate of 8% (Supplemental
Fig. 3H, I). When both manual traces and pipeline traces detected a spot, the resulting spot
intensities were highly correlated with an R2 of 0.91 (Supplemental Fig. 3I). Through analysis of
simulated spots, we found that our spot fluorescence quantification algorithm was also highly
accurate, with typical errors of around 5% (Supplemental Fig. 4, Methods). As our MCP
background was expressed quite heterogeneously throughout the tissue, it is possible that in
some cells MCP levels were low enough to not saturate the MS2 stem loops, introducing a
background-dependent signal (Wu, Chao, and Singer 2012). However, we observed only a very
weak correlation (R2=0.26) between a spot’s background and its (background-subtracted) signal
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(Supplemental Fig. 3E), indicative of MCP saturation and reliable measurements of absolute
fluorescence intensity.

Taken together, these results demonstrate that we successfully implemented the MS2
system in zebrafish for quantifying her1 transcriptional dynamics. We then turned to studying the
behavior of her1 transcription at tissue and single-cell scales.

her1 transcriptional dynamics recapitulate protein oscillations and wave patterns at the
tissue scale

We first assessed how the tissue-scale dynamics of the segmentation clock at the
transcriptional level compare to the measurements obtained from Her1 protein dynamics
reported by fluorescent protein fusions (Soroldoni et al. 2014; Delaune et al. 2012). Previous
protein measurements revealed collective oscillations that travel as a phase wave from posterior
to anterior, arresting at the formation of a new somite (Soroldoni et al. 2014; Delaune et al.
2012). The oscillation period varies with temperature, being approximately 30 minutes at 28 C.

While the dynamics of protein reporters can be directly visualized in movies (Soroldoni et
al. 2014; Delaune et al. 2012), MS2 spots are too small and dim to be picked up in raw 3D
renderings or projections of the full tissue. Therefore, to visualize transcriptional dynamics, we
false colored nuclei in proportion to their spot intensity (Fig. 3A-C, Movie 3, Movie 4). The
resulting movies showed oscillations and waves similar to movies of fluorescent proteins,
qualitatively recapitulating previous protein-level dynamic measurements.

However, some differences between our transcriptional movie and previous protein
movies are noticeable. First, the bulk wave patterns we observe are noisier, with a higher
prevalence of high frequency flashing. Second, there are clear periods of relative silence
tissue-wide (compare Fig. 3B to Figs. 3A and 3C, Supplemental Fig. 5) that are not apparent at
the protein level.

To more directly validate our construct against previous protein measurements, we
compared the protein dynamics predicted by our transcriptional data to actual protein-level
measurements of Her1 dynamics. Using a linear production/decay model (based on Fig. 1C)
and our MS2 traces as input, we generated visualizations of the predicted Her1 protein
concentrations (Fig. 3D-F, Movie 5). These predicted protein patterns are smoother than the
MS2 patterns, showing gradual waves traveling from posterior to anterior. These patterns are
visually similar to previous movies of actual protein reporters (Soroldoni et al. 2014; Delaune et
al. 2012). The silent periods observed in the MS2 data were largely absent in the predicted
protein data, consistent with previously measured protein dynamics (Soroldoni et al. 2014;
Delaune et al. 2012). The absence of silent periods in protein dynamics despite the existence of
such silent periods in transcription is due to the added timescales of mRNA and protein decay
(on the order of 10 minutes each) smoothing and delaying the oscillations. Thus, once protein
production and decay are taken into account, our transcriptional reporter faithfully recapitulates
the behavior of established protein reporters at a qualitative level.

To quantitatively validate our reporter, we captured transcription and protein
spatiotemporal patterns in kymographs (Fig. 4). To make this possible, we defined an
anterior-posterior axis with a combination of manual labeling (following the notochord) and
spline interpolation (Fig. 4A, Movie 6, Methods). We grouped cells into equally-spaced bins
along this axis (Fig. 4B, every 10th bin is shown for visual clarity), summed the spot intensities
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in each bin and plotted them over time. The resulting MS2 kymograph (Fig. 4C) shows clear,
regular oscillations throughout the tissue, with periods of approximately 30 min, consistent with
protein measurements (Soroldoni et al. 2014). Further, the left-down sloping of the stripes
indicates the traveling phase wave from posterior to anterior, with a speed of approximately 100
μm/h, consistent with previous measurements (Soroldoni et al. 2014). The predicted protein
kymograph (Fig. 4D) largely mirrors the MS2 kymograph, though the protein kymograph is
visibly smoother and phase shifted with respect to the MS2 one, as expected from the time lag
between transcription and translation.

All together, these observations demonstrate that, at the tissue scale, the transcriptional
dynamics of the segmentation clock largely mirror protein dynamics, with some differences:
transcriptional activity appears noisier than accumulated protein levels, and the total amount of
her1 transcription clearly oscillates in time.

Single-cell transcriptional oscillations comprise sharp, quasi-periodic bursts
Exploiting the unique power of the MS2 system, we next investigated transcriptional

dynamics in single cells. Individual MS2 traces (Fig. 5A, green lines; Supplemental Fig. 6) show
clear periodicity. However, in contrast to previously measured smooth protein oscillations
(Delaune et al. 2012; Soroldoni et al. 2014), our observed transcriptional dynamics are strikingly
sharp and discrete. Further, we observed examples of multiple, distinct transcriptional pulses in
rapid succession, which we refer to as bursts (Fig. 5A, black arrows). We visually inspected
these bursts and confirmed the rapid disappearance and reappearance of the MS2 spot (Fig.
5B, C). Remarkably, even for these cases with a higher frequency of transcriptional bursting,
predicted protein traces for single cells are smooth, roughly sinusoidal, and regular in period,
similar to measured protein traces (Fig. 5A, cyan lines; Methods) (Delaune et al. 2012; Rohde et
al. 2021).

To quantify the bursty character of our traces, we implemented a conservative
burst-calling algorithm based on simple thresholding of a moving-averaged filtered trace that
infers the underlying promoter state (Fig. 5D, Methods). With this approach, a pulse in MS2
signal is called a separate burst only if it is surrounded by at least 3 minutes of inactivity (no
spots detected for 3 time points) on either side. Therefore, our analysis likely undercounts
bursts and does not consider bursts that occur on timescales less than a few minutes.

Combining promoter state and predicted protein data, we measured that 14±2% (mean ±
std. dev. across two embryos) of protein oscillations are generated by 2 or more transcriptional
bursts (Fig. 5E, Methods). We validated this result on a subset of 28 manually curated traces,
for which we visually confirmed that each drop in MS2 signal between bursts corresponds to a
clear disappearance of a spot in the image and not to an error in spot detection or nuclear
tracking. On this manually curated dataset, we measured that 19±7% of protein oscillations are
generated by 2 or more transcriptional bursts, in agreement with the result obtained from the full
dataset.

These sharp, noisy pulses are reminiscent of transcriptional bursts in other unicellular
and multicellular systems (Lammers, Kim, et al. 2020; Tantale et al. 2016; Chubb et al. 2006;
Muramoto et al. 2012; Fukaya, Lim, and Levine 2016; Lee, Shin, and Kimble 2019). Canonical
bursts are stochastic (Lammers et al. 2020), at odds with the notion of regular oscillations.
However, unlike canonical bursty systems, the segmentation clock is strongly regulated by
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auto-repression: Her1 proteins repress her1 transcription (Fig. 1B). This feedback loop must
produce or modulate bursts in such a way as to generate regular oscillations. To shed light on
the mechanism by which Her1 regulates its own transcriptional bursting and how stochastic
transcriptional bursts might interplay with auto-repression to generate noisy but regular
oscillations, we turned to mathematical modeling.

Burst timing statistics support a model of burst duration regulation
The ability to directly observe transcriptional bursting in the segmentation clock raises

new possibilities for uncovering the molecular mechanisms underlying clock oscillations through
an iterative dialog between experiments and theory. To begin to explore how bursting might
interplay with regular oscillations, we turned to mathematical modeling (Fig. 6A). We extended
the classic two-state bursting model to include feedback that accounts for the auto-repression of
her1, ignoring interactions with other clock components such as her7 (Appendix, Section 3).
Feedback can occur via regulation of transcription rate, (‘amplitude regulation’), burst frequency
(‘frequency regulation’), burst duration (‘duration regulation’), or a combination thereof. In
preliminary explorations of parameter space, we found that quasi-regular oscillations can
emerge from the sole regulation of either amplitude (Fig. 6B), frequency (Fig. 6C), or duration
(Fig. 6D). This observation points to the possibility of dynamically rich regulatory strategies,
where multiple aspects of bursts are modulated to achieve oscillations, and calls for theoretical
predictions that can be tested to rule in or out each strategy.

As a first step in uncovering the mechanisms regulating her1 bursts, we attempted to
identify signatures of the different regulatory strategies of bursting dynamics in the distribution of
active and inactive intervals of bursts. The active interval, also known as burst duration, is the
length of time that the promoter is in the ON state. The inactive interval is the interval over which
the promoter is in the OFF state. In unregulated bursting, the distributions of both intervals are
exponential, reflecting the Poisson-nature of the ON and OFF switching events. At the opposite
extreme, regular oscillations have narrow, peaked interval distributions that become more
peaked as the oscillations become perfect. We reasoned that when kon is regulated but not koff,
the active interval (controlled by koff) should follow an exponential distribution while the inactive
interval (controlled by kon) should be more peaked to allow for bursts to occur in a periodic
fashion. Alternatively, for koff regulation, we expect the inactive interval should be exponentially
distributed, while the active interval would be peaked. To account for the MS2 measurement
process affecting our ability to resolve bursts, we simulated realistic MS2 traces from the
promoter state trajectories created by each model according to an established method
(Lammers, Galstyan, et al. 2020), incorporating a finite sampling rate, measurement noise, and
a detection threshold (Methods). We then applied the same burst calling algorithm on this
simulated dataset as we used on the real data, and computed the distributions of active and
inactive intervals.

For the amplitude regulation parameter set in Figure 6B that supports oscillations, we
found that both active and inactive interval distributions were non-exponential. Instead, these
distributions were peaked, consistent with regular transcriptional oscillations (Fig. 6E(i)). While
both intervals should in theory follow an exponential distribution, in this example the bursting
dynamics are faster than the experimental sampling time. As a result, individual bursts are
blurred together into regular, composite bursts whose interval distributions are non-exponential.
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For frequency regulation, as expected, the inactive interval distribution was non-exponential,
while the active interval distribution was largely exponential but with a short interval cutoff due to
the shortest bursts producing MS2 signals below our detection limit (Fig. 6E(ii)). For duration
regulation, the opposite held (Fig. 6E(iii)). These differing predictions for burst timing statistics
offer a first pass for opportunities to uncover which regulatory strategies are at play.

Turning to the data, we found interval distributions most similar to those in our example
of duration regulation—a peaked, non-exponential active interval distribution, (Fig. 6F, green
circles) and a broader, exponential inactive interval distribution (Fig. 6G, green circles). To
assess the significance of this deviation of the active interval distribution from an exponential,
we compared the data to simulations of a null model of unregulated bursting, with kon and koff set
by the average interval distributions in the experimental data (Fig. 6F, magenta diamonds). Even
accounting for the MS2 measurement process, the measured distribution is more peaked than
the unregulated null model, which closely aligns with the theoretical exponential distribution (Fig.
6F, black line). In contrast, the inactive interval distribution is indistinguishable from both
simulated and analytic predicted unregulated distributions (Fig. 6G). This preliminary result
supports a model in which the her1 promoter stochastically fluctuates between ON and OFF
states, but Her1 proteins increase the probability of switching to the OFF state in such a way as
to create regular oscillations of Her1 protein. However, more work must be done to validate this
result, including properly assessing the role of the experimental detection limit in altering the
shape of these interval distributions, as well as more thoroughly exploring parameter space of
the model.

While there is more work to do, we emphasize that these measurements of burst
dynamics are the first of their kind in a living vertebrate and make possible a wide range of
exciting directions. In particular, combining the MS2 technology and theoretical model
developed here with perturbations that alter segmentation clock function will allow us to directly
test the hypothesis of duration regulation.

Discussion
In this work, we established the use of the MS2-MCP mRNA labeling system for

quantifying transcriptional dynamics in zebrafish embryos, to our knowledge, a first in any intact
vertebrate animal. We used this technology to measure the dynamics of her1, a genetic
oscillator in the core of the segmentation clock. In contrast with the smooth, sinusoidal
oscillations seen at the protein level (Delaune et al. 2012; Soroldoni et al. 2014), at the
transcription level oscillations are discrete and burst-like. Due to the low-pass filtering effects of
RNA and protein accumulation, these high frequency bursting dynamics get smoothed out at the
protein level. Thus, our finding highlights the power of the MS2 system in being able to reveal
novel dynamical features of gene regulation that would remain invisible to the classic approach
of fusing proteins to fluorescent proteins.

Our observation of segmentation clock oscillations being composed of discrete
transcriptional bursts raises the question of how these bursts are created and regulated to
ensure proper protein dynamics that will ultimately drive vertebrate segmentation. In a simple
mathematical model, we found that quasi-regular oscillations could be produced if Her1 protein
modulated burst amplitude, frequency, or duration, or a combination thereof. We found
preliminary evidence for a model of duration regulation in the form of burst timing distributions,
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echoing the results of similar, previous models (Wang, Lefranc, and Thommen 2014; Lengyel
and Morelli 2017) (see Appendix, Section 3.5 for more discussion). The mechanism of duration
regulation could be more directly validated by measuring her1 transcription while knocking down
Her1 protein, either through mutants or morpholinos, and looking for changes in burst
amplitude, frequency, or duration. Such an experiment is only possible with RNA labeling
technologies like MS2: as demonstrated above, these different mechanisms can give rise to
identical protein dynamics and are only distinguishable at the level of transcriptional dynamics.
Moreover, disentangling effects of breaking the feedback loop from effects of the knockdown
itself using a Her1 protein reporter would be complicated because Her1 protein dynamics
cannot be reliably quantified if the Her1 protein itself is knocked down (Andrew C. Oates and Ho
2002). Our tools thus present a unique opportunity to dissect the transcriptional regulation of an
auto-repressive system.

One potential caveat to our interpretation of multiple bursting events during one protein
oscillation is the possibility of multiple copies of the her1-MS2 reporter construct having been
inserted during transgenesis. I-SceI meganuclease transgenesis typically produces only one
integration event, but can integrate multiple copies at the same site (Soroldoni, Hogan, and
Oates 2009). In this case, some of the stochasticity in bursting we observe could be due to the
independent activation of multiple reporter copies, rather than to fluctuations of a single
promoter’s state. The fact that the majority of her1-MS2 traces are regular, with one
transcriptional burst per protein oscillation, suggests that, if multiple reporter copies exist, they
act largely in unison. This interpretation is consistent with recent work on the pairing of her1 and
adjacent clock gene her7, which showed that when her1 and her7 are on the same
chromosome (in cis) they are more likely to transcribe concurrently than when they are on
opposite chromosomes (in trans). Future analysis of the nature of the insertion will be needed to
clarify this issue. Specifically, new landing site technologies for the insertion of transgenes in a
single copy would make it possible to circumvent any of the potentially confounding effects of
multiple copy insertions (Mosimann et al. 2013; Bhatia et al. 2021; Hadzhiev et al. 2016).

Despite the potential for our fish containing multiple copies of the transgene, most of our
results are largely insensitive to the reporter copy number. The tissue-scale dynamics of Figure
4C average over individual cells, washing out small-scale fluctuations. The relative stochasticity
of active and inactive transcriptional intervals in Figure 6F would be sensitive to different copies
of the promoter firing independently. However, the fraction of multiple burst events per protein
oscillation is small (~14%). Therefore, even if we assume that all of these multiple burst events
are the result of multiple copies of the reporter and exclude them, the overall shape of the active
and inactive interval distributions would be unaffected. Finally, the measurement most affected
by multiple copies would be the distribution of the number of bursts per protein oscillation (Fig.
5E).

One further limitation of our results is that, at present, it is unclear to what extent one can
compare the amplitude of our MS2 signals from different nuclei. Systematic error in the overall
fluorescence intensity of spots can arise from multiple sources, including cell-cell variability in
MCP expression from our ubiquitin promoter, variable light scattering with tissue depth, and
non-uniformity of the excitation beam in light sheet imaging. Exploring alternative promoters with
less variability for driving MCP expression will be a useful future endeavor. Further, while the
quantification of fluorescence with laser-scanning confocal microscopy is relatively well
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established, future work is needed to more rigorously assess how to maximize the accuracy of
in vivo quantitative fluorescence measurements done with light sheet microscopy. Addressing
these issues will be important for inferring the degree of burst amplitude regulation present in
the segmentation clock, though should not affect inference of burst timing regulation.

Outside the segmentation clock, the role of transcriptional bursting in genetic oscillators
is relevant to a wide range of phenomena. Interestingly, we are aware of two other examples of
MS2 measurements of oscillating genes, both of which report bursts within protein-level
oscillations. Hafner et al. measured transcription in the p53 pathway and found that
approximately 30% of p21 oscillations (period ~5 hours) contained multiple bursts (Hafner et al.
2020). Wildner et al. studied transcription in the yeast gene CUP1 in response to metal
stressors and inferred bursting on the timescale of minutes within oscillations of period ~30
minutes (Wildner et al. 2023). Together with our results, these findings suggest that
transcriptional bursting may in fact be a common feature of genetic oscillators.

Beyond zebrafish, we expect several of the challenges faced here to also be present in
other vertebrate systems, such as organoids and mouse pre-implantation embryos. The large
size and photosensitivity of these systems make light sheet fluorescence microscopy a useful
imaging approach, which comes with well-known challenges of image processing and analysis.
Further, these tissues are also often dense and possess strong, structured fluorescence
backgrounds that complicate particle detection (Fu et al. 2023). Our image analysis pipeline for
MS2 spot quantification, along with the plasmids for MCP and MS2 constructs, may be a useful
starting point for such endeavors.

In sum, we envision the tools presented here will be useful for expanding this field further
into the domain of vertebrate tissues, where they will help us understand how highly dynamic
gene expression programs achieve robustness, and how they fail to do so in disease states.
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protocols (protocol number 2018-01-10640-1) . All zebrafish used in this study were embryos in
the somitogenesis period. Sex differentiation occurs later in zebrafish development (Westerfield
2007) and thus was not a factor in our experiments.

Zebrafish
Transgenic zebrafish lines of her1-MS2 and MCP-mNeonGreen (Fig. 2A) were

generated using I-SceI meganuclease-mediated transgenesis (Soroldoni, Hogan, and Oates
2009). Briefly, DNA was co-injected with I-SceI meganuclease into the cell of one-cell stage
wild-type embryos (AB for her1-MS2, TL for MCP-mNeonGreen). Post-injection, I-SceI enzyme
activity was assayed by electrophoresis. One day later, embryos were screened to confirm the
fluorescence of mKate2, mNeonGreen, or eGFP, whichever was appropriate to the injected
DNA. Injected embryos were raised to adulthood and outcrossed to wild-type (AB or TL)
zebrafish. If offspring exhibited fluorescence, they were selected to be raised for experiments
and their parent was selected as a founder.

The MCP construct uses a ubiquitin promoter (Mosimann et al. 2011) and encodes a ten
amino acid linker between the coat protein and fluorescent protein.

The MS2 reporter transgene uses the shared regulatory region between her1 and her7,
along with the her1 coding sequence (Soroldoni et al. 2014). The her7 coding sequence was
replaced with nuclearly localized mKate2, a red fluorescent protein, which serves as a marker of
transgenesis (and the presence of MS2) during embryo screening. The her1 promoter drives the
expression of the her1 coding sequence followed by MS2v5 (Wu et al. 2015) inserted just before
the her1 3’UTR.

Sequences for all constructs used in this work can be found at
https://benchling.com/garcialab/f_/f9Cist7M-zebrafish-ms2-paper/.

Zebrafish lines were created at the Max Planck Institute at Dresden and then transferred
to the UC Berkeley Zebrafish facility, where they were raised with standard procedures.

For a nuclear marker, we used a line carrying h2b-mScarlet (O’Brown, Megason, and Gu
2019). MCP-mNeonGreen fish were crossed with h2b-mScarlet and offspring were screened for
the presence of both fluorophores on a Zeiss AxioZoom widefield microscope.

For imaging, the combined MCP-mNG; h2b-mScarlet fish were crossed with her1-MS2
in the evening and embryos were transferred to 19°C after they reached shield stage. The next
morning, embryos were screened for mNeonGreen and mScarlet, and transported from UC
Berkeley to the CZ Biohub for light sheet imaging. The presence of the her1-MS2 reporter was
screened visually on the light sheet via observation of spots.

Light sheet imaging
Embryos were imaged using two microscopes: a Zeiss Z1 light sheet microscope and

Dorado, a 4-objective multiview home-made light sheet microscope (Royer et al. 2016). For both
microscopes, embryos were dechorionated using sharp forceps, embedded in 0.1% low melting
point agarose (dissolved in E3 media), and pipetted inside optically clear FEP tubes (Zeus Inc.
custom order, 2 mm inner diameter) following an established protocol (Kaufmann et al. 2012).
E3 media was defined as 5mM NaCl, 0.17mM KCl, 0.33mM CaCl2, 0.33mM MgSO4, pH
adjusted to 7.3 with Tris-HCl pH 7.5 1M. A plug of 1.5% agarose was inserted at the bottom of
the tube to prevent the leakage of the lower-concentrated agarose. The embryos were oriented
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such that their tailbud pointed toward the wall of the tube. Once mounted on the microscope, the
samples were excited with two light sheets using 488 nm and 560 nm lasers sequentially to
avoid bleed-through.

Multiview light sheet details: The light sheets were generated using two Nikon
N10XW-PF objectives (0.3 NA, 3.5 mm WD). Stacks of 400 z-slices with a spacing of 0.97 μm
and a frame interval of 1 minute were acquired during 3 hours at 28 C. The total size of the field
of view was 388x1000x1000 μm (z-y-x), with a pixel size of 0.485 μm in x-y. Images were
acquired using two Nikon N16XLWD-PF detection objectives (0.8 NA, 3.0 mm WD) and two
Hamamatsu ORCA-Flash 4.0 V3 Digital CMOS cameras. The use of two lightsheets and two
cameras results in four images per channel for each time point, which are later computationally
fused as described below.

During image acquisition, we encountered a hardware communication issue that led to a
blocked filter wheel and subsequently missed images for approximately 10% of time points. We
removed these blank time points but accounted for the missing time intervals. The rest of the
scans were unaffected.

Zeiss Z1 light sheet details: The light sheets were generated using one Zeiss 10x/0.2
illumination objectives. Stacks of 409 z-slices with a spacing of 1 μm and a frame interval of 1.5
minutes were acquired over 3 hours at 25 C. The total size of the field of view was 409x437x437
μm (z-y-x), with a pixel size of 0.228 μm in x-y. Images were acquired using a Zeiss 20x/1.0
water immersion objective and two PCO Edge 5.5 CMOS cameras. In this experiment, only one
light sheet and one camera per color channel were used, so no fusion of images from multiple
cameras was required.

Data and code availability
Code for the full image analysis pipeline can be found at

https://github.com/bschloma/zms2.

The output of this code for the two datasets in this paper along with two manually
curated datasets and additional files included as Supplementary Data Files.

Code for reproducing the plots in this paper, including model simulations, can be found
at https://github.com/bschloma/zebrafish-ms2-paper.

Image processing
The raw images were first converted to the zarr format (Miles et al. 2020). Then, for each

time point, the four images that constitute each channel were fused using the dexp Python
package (Yang et al. 2022). The fusion is done in two steps. First, the volumes from different
light sheets and the same camera are fused, resulting in one volume per camera, two volumes
in total. These two volumes are registered to compensate for a minimal misalignment between
the cameras and then fused, resulting in a single volume. During fusion, the brightness of one of
the volumes is adjusted to the other, and then, they are blended together. To increase the
robustness of the registration, the median translation from multiple registrations between
volumes from different cameras is used. After fusing the images, the intensity of the Histone
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channel was normalized across the time series. A Gaussian blur and background subtraction
were also applied during this step to facilitate nuclear segmentation, but no further processing
was done to the MCP channel.

Nuclear segmentation and tracking
Cell nuclei and their boundaries were detected using a 3D U-NET (Ronneberger,

Fischer, and Brox 2015) (code available upon request). Detected nuclei were segmented and
tracked over time using the approach described in (Bragantini, Lange, and Royer 2023). Both
the segmentation and tracking were performed on a desktop computer (Intel Core i9 11900K,
GeForce RTX 3090 24GB, 128 GB RAM) running Ubuntu 20.04.

Spot analysis
To perform spot analysis, we developed a custom Python pipeline. Our pipeline takes in

two zarr arrays, one corresponding to the MCP channel images and the other corresponding to
a label matrix that encodes the nuclear segmentation and tracking information, and outputs a
pandas DataFrame with spot location and intensity information.

The goal of the spot analysis is to locate all of the true MS2 spots and quantify their
intensity. The pipeline is organized into the following steps (Supplemental Figure 3A):

1. Detection: a first pass of detecting spots is performed using simple filtering and
thresholding.

2. Classification: voxels containing detected spot-like objects are classified into ‘spot’ and
‘not spot’ using a convolutional neural network classifier, which outputs a probability of
belonging to the ‘spot’ class. The user provides a threshold probability value to reject
false spots (we used 0.7).

3. Quantification: the intensity of the remaining spots is measured by estimating a
background level of pixels just outside the spot, subtracting this background from spot
pixels, and summing the resulting pixel values.

Detection: First, bright skin cells that surround the presomitic mesoderm were removed from the
image using blurring and thresholding. Then, potential spots were identified with a simple
Difference of Gaussians filter and thresholding the filtered image. The filtering and binary
thresholding is done on each 2D z-slice independently on a GPU using the cucim library. The
resulting 3D mask was then transferred back to the CPU for the label matrix calculation. The
centroid of each object in the label matrix was computed as an approximate location of the
potential spots in the image.

Classification: A small convolutional neural network was trained to classify voxels as containing
a spot or no spot. Voxels were 9x11x11 pixels3. The network was implemented in Keras. The
network architecture was inspired by a model used to classify fluorescence microscopy images
of bacteria (Hay and Parthasarathy 2018). Schematically, the network consists of 2 convolution
layers followed by a fully connected layer that outputs the probability of containing a spot.
Specifically, the first 3D convolutional layer has 4 kernels, each of size 3x3x3 pixels3, ReLU
activation and ‘same’ padding, followed by max pooling. The second 3D convolutional layer has
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the same parameters as the first and is also followed by max pooling. We then flatten into a
dense layer with 512 neurons and ReLU activation. During training, this layer is followed by a
Dropout layer with dropout = 0.5. The result is then fed into a single sigmoid neuron for output.

The small size of this network allows it to be trained on a small number of hand-labeled
spots. We manually classified 1250 voxels from 4 time points, resulting in a training dataset with
227 spots and 1023 “not spots”. We trained the model by minimizing the binary cross-entropy
loss using the Adam optimizer with a learning rate of 10-4 and batch size of 8 in 5-fold cross
validation. We augmented the training data with random rotations. To offset class imbalance
during training, we used class weights equal to half the inverse fraction of each class in the
training data. After 100 training epochs, the validation loss decayed to 0.21 ± 0.05 (mean ±
standard deviation) and remained stable (Supplemental Fig 3C). The final average validation
area under the curve (AUC) was 0.97 ± 0.01.

During spot analysis, the initial set of detected candidate spots is filtered down using a
probability threshold of 0.7.

Quantification: Spot quantification occurs through particle localization, background estimation
and subtraction, and then integration over a defined ellipsoid of size (4x4x4) pixels3, or (2x2x4)
microns3. Our pipeline contains two particle localization algorithms: least-squares Gaussian
fitting and the radial center algorithm (Parthasarathy 2012), which is an analytic estimate of
particle center based on radial symmetry. Both methods are highly accurate. The radial center
algorithm is inherently much faster, as it requires no fitting. However, we implemented
multi-processor parallelization of scipy’s least_squares function that is quite fast in practice. As
discussed more below, Gaussian fitting has the benefit that the best-fit width parameters have
strong predictive power in further discriminating between true and false spots. Throughout this
paper, we used the Gaussian fitting method.

Importantly, because of the background MCP-mNeonGreen expression in and around
each nucleus has spatial structure, straightforward application of both particle localization
algorithms, which assume uniform background with Poisson noise, fail on the majority of spots.
To minimize the structured background, we first perform Difference of Gaussians filtering on the
spot voxel and then estimate particle centers.

Next, we estimate the background levels for each spot individually and subtract that
background from the spot pixel intensities. Background estimation can be done in one of two
ways. The first way is to re-fit a 3D Gaussian to the spot in real space, but with fixed center and
width parameters, extracting just an offset and amplitude. Gaussian fitting is the standard way to
estimate background levels of MS2 spots (Garcia et al. 2013). The second way is to take a
“shell” of pixels of a fixed width and distance from the spot center and average the intensity of
the shell. Using a shell of inner width = 4 pixels and outer width = 6 pixels, we find that the two
methods of background estimation strongly agree with one another (Supplementary Fig 3F, R2 =
0.94). In all data in this paper, we used the shell method, as it is faster.

With the background estimate in hand, we subtract this background from all pixels in the
voxel, enforcing non-negativity. We then define an ellipsoid of size 4x4x4 pixels3 and sum the
background-subtracted intensities.

To assess the accuracy of this quantification procedure, we generated a library of
synthetic spots with known integrated intensity and realistic background and noise
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(Supplemental Fig. 4A). Specifically, we modeled spots using a Gaussian point spread function
(PSF) and a constant offset. We then modeled the structured background by adding to this
Gaussian an exponential function with decay length equal to 10 pixels and a random orientation
in 3D. Finally, we modeled shot noise by assigning to each pixel value a Poisson random
number with mean equal to the intensity of the noise-less pixel.

We ran our spot quantification pipeline on this library and assessed intensity accuracy as
a function of spot amplitude (which sets the signal-to-noise ratio) and the amplitude of the
exponential gradient. We measured the relative accuracy of the intensity measurement, defined
as (measured intensity - true intensity) / true intensity, across spot parameters and also using
two different spot localization methods: first, Gaussian fitting on the raw pixels, and second,
Gaussian fitting on Difference-of-Gaussians (DoG)-filtered images, the latter to remove the
structured background. We found that localization using DoG-filtered images led to considerably
enhanced accuracy across spot parameters (Supplemental Fig. 4B).

To make contact with the experimental data, we defined two readily measured
parameters: signal:background ratio (where signal is the mean background-subtracted spot
pixel intensity) and the “structuredness” of the background, defined as the ratio of the
variance:mean of the shell pixels that define the background. For a uniform background with
Poisson noise, the structuredness is 1. Binning our simulations in this 2D space, we created an
accuracy regime diagram (Supplemental Fig. 4C). Averaging across all spots in our dataset, we
found that the experimental data had a signal:background value of 0.35 ± 0.24 (mean ±
standard deviation), i.e., 35% above background, and a structuredness value of 40 ± 21,
reflecting the highly structured MCP background visible in the spot images. Nevertheless, with
DoG-based localization and our Gaussian combined with our exponential model of spots, we
infer that our spot intensity quantification is highly accurate, with an relative error of at most
40%, but typically around 5%.

Trace assembly
MS2 traces are assembled by assigning spots to nuclei and linking them through time

using the nuclear tracking information. First, we check if a spot’s centroid falls within a region
identified as a nucleus by the “Segments” label matrix that is output from dexp-dl. If a spot does
not fall within a nucleus, then we perform a search for the nearest nucleus within a cube of size
11 pixels in x and y and 7 pixels in z, centered on the spot. If multiple spots are assigned to the
same nucleus, we pick the one with the highest probability value from the neural network
classifier.

After assigning each spot to a nucleus, we assemble a draft of the traces and begin
iteratively refining them. In each iteration we perform the following steps. We identify regions of
transcriptional activity by thresholding a moving average of the trace using a window of 5 time
points and a threshold of 1 a.u. (effectively any non-zero point passes the threshold). For each
point in the “on” region of the trace such that the raw trace has a value of zero and has an
adjacent point with a value greater than zero, we attempt to fill in that point. We extract a voxel
centered on the location of the adjacent point but at the “empty” time point. We then run this
voxel through our spot classification and quantification routines. We accept or reject the spot
using either the spot classifier or quantification parameters. For all data in this paper, we kept
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only spots for which all Gaussian width parameters (sigma_x, sigma_y, and sigma_z) fell within
the range 0.5 and 3.0 pixels, which we found to be an effective filter by manual inspection.

Upon iterating this process, the set of found points that pass the given criteria will
converge. For all data in this paper, we used 10 iterations.

After the traces are assembled, we can make further cuts by rejecting spots based on
spatial location. Previous measurements of protein levels (Delaune et al. 2012) and smFISH
counts (Keskin et al. 2018) indicate that her1 transcription halts after somite boundary
formation. For reasons unknown, we found that background levels of MCP-mNeonGreen
increase in somites after boundary formation, leading to increased false positive detections in
this region. We therefore reject spots that are greater than 40 microns anterior of the last formed
somite, as measured along our defined anterior-posterior axis (see below). Similarly, we restrict
our analysis to spots detected within the PSM and tailbud tissues by rejecting spots that lie
greater than 50 microns from the anterior-posterior axis. Finally, for analysis of single-cell traces,
we keep only traces with greater than 10 spots.

Spot intensity uncertainty
The uncertainty in individual spot intensity was estimated using a method based on

(Garcia et al. 2013). A full derivation of the uncertainty is given in the Appendix. In brief, the
uncertainty was assumed to be dominated by the error in background estimation. This error is
measured by considering the time evolution of the background around each spot, fitting a mean
trend using a 4th order polynomial, and computing the RMS deviation of background levels from
this trend. In contrast to the original method (Garcia et al. 2013), we use a 4th order polynomial
as opposed to a spline as we found that additional degrees of freedom in the trend model led to
worse performance in a cross-validation scheme (Appendix).

In addition, and in contrast to previous works, due to the increased difficulty of the spot
detection problem we further incorporate uncertainty in spot detection via the empirically
measured false-positive and false-negative rates (Appendix). Combining both of these sources
of uncertainty, we arrive at the final uncertainty for an MS2 traces as

(1)σ = (σ
𝑙
)2 (1 − 𝑝) +  𝐼2𝑝(1 − 𝑝),           𝐼 > 0 

σ = 𝐼 𝑛(1 − 𝑛),                                            𝐼 = 0  

where is the uncertainty from background fluctuations, is the false-positive rate of detection,σ
𝐼

𝑝

is the false-negative rate of detection, is the intensity of the individual spot, and is the mean𝑛 𝐼 𝐼
intensity of the trace. From analysis of manually-curated traces, we measured and𝑝 = 0. 04

. depends on the trace, but is typically 1-10% of . See Appendix for more details.𝑛 = 0. 08 σ
𝐼

𝐼

Anterior-posterior axis
We define an anterior-posterior axis using a combination of manually placed points and

spline interpolation. Using the interactive data viewer napari (Sofroniew et al. 2022), we
construct a coarse anterior-posterior axis by manually placing around 10 points that span from
the last formed somite (which becomes the origin) to the tip of the tail bud in the first time point
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of the timeseries. We place these points in 3D using a napari Points layer, viewing one slice at a
time, roughly following the notochord. Keeping track of the location of that last formed somite,
we proceed to define coarse anterior-posterior axes every 50 time points until the end of the
movie. We then refine these anterior-posterior axes through spline interpolation. First, we
interpolate the anterior-posterior axis of each time point, going from 10 to 100 spatial positions,
using a B spline of degree 2. Then, for each 100 points along the new anterior-posterior axis,
we interpolate over time, using a B spline of degree 1. We use scipy’s splprep function to define
the spline.

Protein signal prediction
We use a linear model of transcription, translation, and protein maturation to predict what

mRNA (m) and protein signal (p) would be created by our MS2 traces (x), assuming that the
fluorescent intensity of the MS2 signal is proportional to the instantaneous rate of transcription
(Lammers, Galstyan, et al. 2020). Specifically, we model the system according to

(2)𝑑𝑚
𝑑𝑡 =  𝑟

𝑚
𝑥 −  γ

𝑚
𝑚

(3)𝑑𝑝
𝑑𝑡 = 𝑟

𝑝
𝑚 −  γ

𝑝
𝑝

The key parameters are the decay rates (γm , γp) of her1 mRNA and protein, respectively, which
we take from reference (Lewis 2003) to both be 0.23 1/min. The production rates (rm, rp) simply
set the concentration scales of mRNA and protein, respectively, which here can be taken as
arbitrary. The initial conditions of total mRNA and protein are unknown parameters. In the
Appendix, we show that the predicted mRNA and protein signals become independent of the
initial condition on the time scale of the decay constants. Therefore, for simplicity, we pick initial
conditions of mRNA(t=0)=protein(t=0)=0 and ignore approximately the first cycle of predicted
signals.

In Fig. 1B, we use this model to demonstrate the low-pass filtering effect of the central
dogma (more details in Appendix). We generated toy example MS2 traces consisting of either a
sine wave or a square wave and used these as inputs to the protein prediction model, which
outputs smooth oscillations in both cases.

Burst calling and calculating number of bursts per oscillation
We implemented a conservative burst calling algorithm based on thresholding a moving

average of the her1-MS2 traces. The moving average was computed via convolution with a
uniform kernel of size 3 time points, and we used a threshold of 1 a.u., effectively grouping any
non-zero signal into a burst. With this algorithm, fluctuations in her1 transcription are determined
as corresponding to distinct bursts only if they are separated by 3 time points of inactivity.

We defined oscillations using the predicted protein signal. We used scipy’s find_peaks
function to identify peaks in the predicted protein oscillation. We then collected burst start and
end times and assigned the bursts starting between the previous protein peak and the current
protein peak to the current protein peak. With all bursts being assigned to a protein peak, we
then computed a histogram of the number of bursts per protein peak, which we call the number
of bursts per oscillation.
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Generalized bursting model with feedback
Details of the mathematical model and its implementation are found in the Appendix, Section 3.
In brief, we extended the canonical two-state bursting model to allow for protein concentration to
increase the rate of transcription, decrease the rate of OFF→ ON events, or increase the rate of
ON → OFF events according to Hill functions.

Model parameters: Model parameters were chosen manually to produce simulated MS2 traces
that qualitatively resemble the experimental data and exhibit statistically increased regularity in
the resulting oscillations compared to unregulated bursting. To quantify the degree of regularity
in the resulting oscillations, we computed the coefficient of variation (CV, standard
deviation/mean) of the protein oscillation periods (see below for details). Lower values of the
period CV indicate more regular oscillations. As a lower bound on the period CV to be expected
for unregulated bursting, we use the minimum value of the CV of promoter state periods, which
in the unregulated bursting model is approximately 0.7. Thus, oscillations with a period CV of
less than 0.7 are more regular than can be accounted for by unregulated bursting. For all
simulations, the mRNA and protein decay rates were both set to 0.23 1/min (Lewis 2003). For
the simulations in Figure 6, the following parameters were used: (B) Amplitude regulation: the
transcription rate is repressed by the protein according to a Hill function, f(p) = 1/(1 + (p/KD)n),
evaluated at a delayed protein value p(t-𝜏). Parameters: k+=1.6 1/min, k-=3.2 1/min, r0=400
a.u./min, KD=1.0, n=2, 𝜏=8 min. Protein period CV=0.5. (C) Frequency regulation: kon is
repressed according to the same Hill function f(p) . Parameters: k+=300 1/min, k-=0.08 1/min,
r0=1.0 a.u./min, KD=0.01, n=2. Protein period CV=0.3. (D) Duration regulation: koff increases
with protein level according to an increasing Hill function g(p) = (p/KD)n/(1 + (p/KD)n). Parameters:
k+=0.08 1/min, k-=0.2 1/min, r0=1.0 a.u./min, KD=12.0, n=12. Protein period CV=0.5.

Simulated MS2 signals: From each simulation we extracted a time series of the promoter state
variable, which fluctuates between 0 (“OFF”) and 1 (“ON”). Using these promoter state traces,
we simulated realistic MS2 traces using the model of (Lammers, Galstyan, et al. 2020) that
encapsulates the effect of RNA polymerases being loaded on and off the gene with a memory
kernel of normalized length w. We further included multiplicative Gaussian noise with standard
deviation MS2 to simulate fluorophore emission and measurement uncertainty, and a detectionσ
threshold, below which the simulated MS2 signal was set to zero. We used the following
parameters: w = 3.65, MS2 = 0.2, and detection threshold = 0.2 * w * max(rm), where rm is theσ
mRNA production rate in equation 37 of the Appendix and is time-dependent in the case of
amplitude regulation.

Protein period regularity measurement: To assess the regularity of simulated protein oscillations
in our model, we used the scipy find_peaks function with prominence = 0.01 to identify the
locations of peaks in protein oscillations. We then defined the protein period as the intervals
between peaks and computed the coefficient of variation (CV, standard deviation/mean) of these
periods.
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Unregulated two-state bursting model predictions:We compared simulated and experimentally
measured burst interval distributions in the unregulated two-state model of transcriptional
bursting. In this model, the gene can be in one of two states, ON or OFF. The gene
stochastically switches between these states according to a simple Markov process with rates
kon and koff. Thus, the time spent in each state is exponentially distributed with mean equal to the
inverse rate. We empirically estimated kon and koff as the inverse of mean of the inactive and
active durations, respectively.
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Figures
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Figure 1: Protein reporters cannot distinguish between continuous and discrete modes
of transcriptional regulation of the segmentation clock . (A) Schematic of the MS2 system,
in which pre-formed fluorescent proteins (mNeonGreen) bind to nascent mRNA strands via a
step loop-coat protein interaction. Fluorescence therefore accumulates at a site of nascent
transcript formation. In this way, the MS2 system gives a near-real time readout of
transcriptional activity.(B) Oscillations are generated via auto-repression. (C) Schematic of the
central dogma showing the steps that lead to low-pass filtering. (D)-(E) Smooth protein
oscillations can be generated either by smooth modulation of transcription rate (D) or discrete
pulses (E), due to the low-pass filtering effect of product accumulation and decay.
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Figure 2: The MS2 system can be used to visualize transcriptional dynamics of the
zebrafish segmentation clock. (A) Details of the transgenic MS2 and MCP constructs. Stable
transgenic lines were made using I-SceI meganuclease transgenesis. (B) In situ hybridization
assays comparing her1 expression in wild-type and our transgenic embryos show that normal
her1 expression patterns are not affected by the presence of the her1-MS2 construct. Further,
an in situ assay against MS2 shows that this reporter recapitulates endogenous her1 expression
(see Supplemental Fig. 1 for additional data). (C) Geometry of a zebrafish embryo. Black box
represents the approximate field of view of the imaging experiment. Green box represents the
approximate field of view of the zoomed-in area shown in (D). (D) Maximum intensity projection
over 50 micrometers of the signal from MCP-mNG, her1-MS2 zebrafish showing several
fluorescent spots (white arrows) against the hazy background MCP expression in individual
nuclei. (E) Example her1-MS2 trace obtained for an individual cell within the presomitic
mesoderm showing oscillations. Error bars reflect uncertainty due to background fluctuations
and spot detection (see Methods). Panel (C) is adapted from BioRender.
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Figure 3: Transcriptional dynamics at the tissue scale recapitulate known features of
protein patterns. Snapshots of 3D renderings of the presomitic mesoderm and tailbud during
somitogenesis. (A-C): nuclei (gray) are false-colored in proportion to the intensity of their MS2
spots. (D-F): same as (A-C) but nuclei are colored in proportion to the predicted Her1 protein
level, given the MS2 signal on (A-C) (Methods). See also Movie 3, Movie 4, and Movie 5. Scale
bar: 100 μm. Time is measured from the start of image acquisition, which corresponds to
approximately the 15 somite stage.
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Figure 4 Tissue-scale analysis reveals transcriptional oscillations and wave-like patterns.
(A) 3D rendering of nuclei (gray) illustrating the anterior-posterior (‘AP’) axis (red circles). The
axis is defined coarsely every 50 time points and then spline interpolated in both space and time
(Methods). See also Movie 3. (B) 3D rendering of nuclei (gray) illustrating example bins along
the AP axis (colored nuclei). For simplicity, every tenth bin is highlighted. (C-D) Kymographs of
total her1-MS2 (C) spot intensity and predicted Her1 protein (D). Distance is defined along the
anterior-posterior axis as in (A). Spot AP positions are binned, with bin size = 6.5 microns, and
the sum of all intensities in each bin if plotted for each time point. In (C) and (D), contrast limits
are set from 0 to 0.4 times the maximum bin intensity.
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Figure 5: Single-cell traces reveal transcriptional bursts. (A) Measured single-cell her1-MS2
traces (green) and predicted Her1 protein levels (cyan) using a production/decay model
(Methods). Examples of multiple bursts giving rise to a single predicted protein oscillation are
highlighted with black arrows. Shaded error bars reflect uncertainty due to background
fluctuations and spot detection (Methods). (B) Zoom in to one burst in the last trace of (A). (C)
Single z-slices images showing examples of the rapid disappearance and reappearance of a
her1-MS2 spot, corresponding to the burst highlighted in (B). The z-slice of minute 59 is the
same as the previous time point. Spots are highlighted with white arrowheads.
Green=her1-MS2; MCP-mNG. Magenta=h2b-mScarlet. (D) Example of promoter state inference
via trace binarization. (E) Distribution of number of bursts per predicted protein oscillation for
two embryos. 14±2% of oscillations have multiple bursts within them.
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Figure 6: A two-state model of transcriptional bursting with feedback suggests multiple
mechanisms of repression could generate oscillations. (A) Schematic of the bursting model.
The promoter switches between active (ON) and inactive (OFF) states with rates kon and koff. In
the active state, mRNA is transcribed at rate rm and then translated into protein. The protein can
then modulate any of kon, koff, and rm to repress mRNA production and generate oscillations.
(B)-(D) Example of oscillations generated by modulation of the transcription rate, rm, (‘amplitude
regulation’), kon, (‘frequency regulation), and koff (duration regulation) respectively. Each panel
shows the binary promoter state (top) and a simulated MS2 trace (bottom). See the Methods
section for parameter values. (B) Amplitude regulation: the transcription rate is repressed by the
protein according to a decreasing Hill function, f(p) evaluated at a delayed protein value p(t-𝜏).
Because of this delay, the prediction of the MS2 signal before t=𝜏 cannot be computed, as
indicated by the red shaded region. (C) Frequency regulation: kon is repressed according to the
same decreasing Hill function f(p) . No explicit delay is required to generate oscillations. (D)
Duration regulation: koff increases with protein level according to an increasing Hill function g(p).
(E) Signatures of the three different regulatory strategies in the active and inactive interval
distributions. Shown in green are model predictions for the active and inactive burst interval
distributions under the three regulatory strategies, accounting for measurement noise, a
detection threshold of MS2 signals, and a realistic number of data points. Black lines are
maximum likelihood estimates of an exponential distribution, the theoretical expectation under a
model of unregulated bursting. Under amplitude regulation, both active and inactive intervals are
non-exponential. Under frequency regulation, active interval distribution is approximately
exponential, with a cutoff at short intervals due to the detection threshold, but the inactive
interval distribution is non-exponential. Under duration regulation, the active interval distribution
is non-exponential, while the inactive distribution is well-described by an exponential
distribution. Parameters are the same as in (B)-(D). (F) The experimentally measured interval
distributions (green circles) support a model of duration regulation, with the active interval
distribution being non-exponential and the inactive interval distribution being exponential. For
comparison, overlaid are simulated distributions (magenta) from a model with purely
unregulated bursts and realistic MS2 acquisition parameters that have the same means as their
experimental counterparts (See the Methods section for details on MS2 signal simulations). Also
overlaid are the ideal, analytic exponential distributions (black lines).
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Supplemental Figure 1: Further controls show overall healthy somitogenesis of her1-MS2
and MCP-mNeonGreen transgenic lines. (A)-(D): In situ hybridization assays against her1
and MS2 in various genotypes at the 12-14 somite stage embryos showing qualitative
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agreement of the her1 expression pattern. All embryos are offspring of a cross of her1-MS2 and
MCP-mNeonGreen heterozygous animals. (A) Wild-type embryos lacking both markers for MS2
and MCP show normal her1 expression patterns. (B) “her1-ms2” embryos carrying only the MS2
transgene show healthy her1 expression. (C) “mcp-mNG” embryos carrying only the MCP
transgene show healthy her1 expression. (D) Embryos carrying both transgenes show healthy
her1 expression. (E) In situ hybridization assay against the MS2 sequence in her1-MS2
embryos showing that the reporter qualitatively recapitulates the endogenous her1 expression
pattern. (F) In situ hybridization assay for the somite boundary marker xirp2a, showing
examples of no defect, small defect, strong defect. When defects do occur, they are limited to
the trunk region, which completes somite formation before our imaging experiments begin and
is thus not included in our analysis. (G) The majority of animals show no defects at 32 hours
post fertilization.
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Supplemental Figure 2: Characterization of spots on commercial light sheet and confocal
fluorescence microscopes. (A,B) Spots (white arrows) are detected on the Zeiss Z.1
Lightsheet but only when the reporter gene is present. MCP-mNeonGreen fish show no puncta
in the absence of the her1-MS2 reporter. Single z-slices of MCP-mNeonGreen (green);
h2B-mScarlet (magenta) embryos (A) with her1-MS2 or (B) without her1-MS2. (C)-(D) Two
examples of spots on a Zeiss LSM 880 confocal microscope with AiryScan processing. Contrast
was adjusted manually such that background MCP levels were approximately equal in all
images.
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Supplemental Figure 3: Overview of image analysis pipeline and its accuracy. (A)
Schematic of the full pipeline. The pipeline takes 4D image stacks as input, one for the nuclear
marker and one for the MS2-MCP reporter per light sheet view. Preprocessing using the dexp
package involves conversion to the zarr file format, fusion of multiple light sheet views (if
necessary), and normalization of the nuclear marker channel to prepare for nuclear
segmentation. After preprocessing, the nuclear and spot channels are split, with the nuclear
channel undergoing segmentation and tracking via our dexp-dl code and the spot channel
passing through our spot pipeline, called zms2, which detects and analyzes MS2 spots. The
outputs of these packages are combined into traces. Traces are then refined using an iterative
computational algorithm. In brief, the algorithm identifies abrupt gaps in traces and attempts to
fill them in by extracting a voxel around the expected spot location, passing it back through the
classification and quantification modules, and seeing if the spot passes a set of criteria
(Methods). (B) Schematic spot analysis section of the full pipeline. Candidate spots are
detected and then classified as a true spot or a false-positive detection using a binary CNN
classifier. The culled list of spots then undergo quantification, where the total fluorescence
intensity of the signal is computed. DoG=Difference of Gaussians, CNN=Convolutional Neural
Network. Skin masking=computational removal of bright and irrelevant skin cells. Thresholding
occurs on the DoG-filtered image to create a binary mask, which is transformed to a label matrix
that assigns a unique identifier to each candidate spot. (C) Binary cross-entropy loss function of
convolutional neural network spot classifier over training shows that the model converged with
minimal overfitting. Solid lines are means and shaded error bars standard deviations over 5
folds of cross validation. Blue=training set, Orange=validation set. (D) Area Under the Curve
(AUC) during training. (E) Spot intensity vs. background level (“offset”) showing an extremely
weak correlation (R2=0.26), which is indicative of MCP saturation and reliable measures of
absolute fluorescence intensity. (F) Comparison of two methods for background estimation,
described in the Methods section. “Shell” refers to taking the mean of pixel values in a shell
around the spot. “Fit” refers to fitting a Gaussian with an offset. We find that the two methods
give very similar results, with the data clustering closely around the 1:1 line (black dashed line)
and an R2of 0.94. The best fit slope is 1.049 +/- 0.003. (G) Examples of nuclear tracking errors,
including when the algorithm swaps the identities of nearby nuclei (left), and when it splits a
single nucleus into two segments (right). Shown are single z-slices of histones (magenta), with
the algorithm-assigned identity of each nucleus marked by a unique colored outline.
MCP-mNeonGreen background is faintly visible in green. (H) Example comparison of a
pipeline-derived trace (green solid line) and the corresponding manually-derived trace (orange
dashed line), obtained by manually clicking on spots in images and passing these spots through
the quantification pipeline. (I) Comparison of spot intensities between pipeline and manual
traces across 728 spots from 26 nuclei. Cases where both methods detect a spot are colored in
black. Linear regression to these points shows strong correlation (R2 = 0.91). Cases in which a
human detected a spot and the pipeline did not (false negative) are colored in red. These cases
are 8% of all spots. Cases in which a human did not detect a spot but the pipeline did (false
positive) are colored in cyan. These cases are 4% of all spots.
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Supplemental Figure 4: Characterization of spot intensity measurement accuracy using
synthetic spots. (A) Schematic of method for generating synthetic spots with structured
background. The PSF is modeled as a Gaussian function, to which we add a constant offset and
an exponential background, the latter being a simple model of the structured MCP background
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we observe in real spots. The wavevector, k, of the background is taken to have a length of 10
pixels (roughly the length of the spot in voxels) and a random direction. The pixels of the final
image are then drawn from a Poisson distribution with mean equal to g(x,y,z). (B) Relative error
in spot intensity (measured - true)/true vs true spot amplitude (the parameter A in the equation
in panel (A)) for different strengths of the exponential background (via the parameter AE). Left:
spot localization via Gaussian fitting of the raw image. Right: spot localization via Gaussian
fitting of a Difference-of-Gaussians (DoG)-filtered image. After localization, background
estimation is done with the “shell” method described in the Methods. Intensity is then the sum of
background-subtracted pixels inside a defined ellipsoid. Intensity errors are larger when
localization is done on the raw pixels, due to the structured background. (C) Left: Placing the
experimental data (red circle=mean, red bars=standard deviation across all spots) in a regime
diagram describing relative accuracy of the intensity measurement (heatmap) as a function of
signal/background and “structuredness” of the background. The x-axis, signal/background, is
the average background-subtracted value of spot pixel intensities, i.e., 0.1 = 10% above
background. The y-axis, structuredness of background, is the variance of shell pixels divided by
the mean of shell pixels. For a uniform background with Poisson noise, the structuredness will
be 1. The experimental data has a background with structuredness of approximately 40 on
average. The simulations from (B) were binned into a 2D histogram according to their
signal/background and structuredness levels to create the final heatmap of relative error. This
heatmap illustrates that, based on our model of spots, the DoG-based localization method
should lead to highly accurate intensity estimations, with a relative error of less than 10%. Right:
Schematic of the parameters used to define the axes of the heatmap on the left, using a single z
slice of a real spot (green) with shell pixels highlighted in orange.
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Supplemental Figure 5: Tissue-wide transcriptional activity. The total number of cells with
detected her1-MS2 spots oscillates over time with a period of approximately 25 min, similar to
the somitogenesis period.
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Supplemental Figure 6. 48 randomly chosen traces with at least 20 spots per trace.
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Supplemental Movie Captions

Supplemental Movie 1: Maximum intensity projections of AiryScan confocal microscopy images
of zebrafish embryo with nuclei shown in red and her1-MS2 in green. Due to cell motion,
manual adjustment of the microscope stage was required every few minutes to keep the same
cells in the field of view. These manual adjustments correspond to the discrete jumps in the
image observed throughout the movie.

Supplemental Movie 2: 3D rendering of light sheet fluorescence microscopy images of a
zebrafish embryo with nuclei false colored according to the label assigned to them by the
nuclear tracking algorithm. To better resolve somites, skin nuclei were computationally removed.
Some flickering in the movie occurs due to imperfect segmentation of the skin. Aside from this
surface-level flickering, the overall stability of colors conveys the high level of tracking accuracy.

Supplemental Movie 3: 3D rendering of light sheet fluorescence microscopy images of a
zebrafish embryo with nuclei shown in gray and false-colored in proportion to their her1-MS2
signal.

Supplemental Movie 4: Rotating 3D rendering of light sheet fluorescence microscopy images of
a zebrafish embryo with nuclei shown in gray and false-colored in proportion to their her1-MS2
signal.

Supplemental Movie 5: Animated 3D rendering of light sheet fluorescence microscopy images
of a zebrafish embryo with nuclei shown in gray and false-colored in proportion to their
her1-MS2 signal (left) and in proportion to their predicted protein signal (right). See Methods for
details of protein prediction.

Supplemental Movie 6: Animated 3D rendering of light sheet fluorescence microscopy images
of a zebrafish embryo with nuclei shown in magma and the anterior-posterior axis, defined
through a combination of manual labeling and spline interpolation, shown in white spheres.

Supplemental Data Files

Supplemental Data File 1: Dataset_1.pkl. pandas DataFrame that is the output of the image
analysis pipeline for Dataset 1 (from the Dorado light sheet microscope). Each row corresponds
to an MS2 spot. Columns contain various spot features. See the code for details. This dataset
was used for the majority of the analysis in this paper.

Supplemental Data File 2: Dataset_2.pkl. pandas DataFrame that is the output of the image
analysis pipeline for Dataset 2 (from the Zeiss light sheet microscope). Each row corresponds to
an MS2 spot. Columns contain various spot features. See the code for details. This dataset was
used only for the analysis of the number of transcriptional bursts per predicted protein
oscillation.
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Supplemental Data File 3: Dataset_1_Manual.pkl. pandas DataFrame that is the output of the
image analysis pipeline for the manually-curated Dataset 1 (from the Dorado light sheet
microscope). Spots were identified in images manually by dropping points in napari. Voxels
around these points were then fed through the quantification module (with no filling in). Each
row corresponds to an MS2 spot. Columns contain various spot features. See the code for
details. This dataset was used to complement the analysis of number of transcriptional bursts
per predicted protein oscillation and for plotting traces in Fig.5.

Supplemental Data File 4: Dataset_2_Manual.pkl. pandas DataFrame that is the output of the
image analysis pipeline for the manually-curated Dataset 2 (from the Zeiss light sheet
microscope). Spots were identified in images manually by dropping points in napari. Voxels
around these points were then fed through the quantification module (with no filling in). Each
row corresponds to an MS2 spot. Columns contain various spot features. See the code for
details. This dataset was used to complement the analysis of number of transcriptional bursts
per predicted protein oscillation.

Supplemental Data File 5: Non_Blank_Time_Points.pkl. numpy array that contains the true
scan numbers of each time point in the Dorado dataset. As discussed in the Methods section,
hardware communication issues during acquisition led to missing images for ~10% of scans.
These blank time points were removed from the image dataset, but the proper timing
information is stored in the non_blank_timepoints array.

Supplemental Data File 6: Dataset_1_Nuclear_Tracks.csv. .csv file that contains the location
and identity of every tracked nucleus.
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