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Abstract

In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not
immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops:
Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the
immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic
bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage), to the modern concept of gene
regulation to regulatory processes central to pattern formation during development of multicellular organisms. Though
there have been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA
looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use single-molecule
techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity for DNA looping by the Lac
repressor as a function of the concentration of repressor protein and as a function of the distance between repressor
binding sites. As with earlier single-molecule studies, we find (at least) two distinct looped states and demonstrate that the
presence of these two states depends both upon the concentration of repressor protein and the distance between the two
repressor binding sites. We find that loops form even at interoperator spacings considerably shorter than the DNA
persistence length, without the intervention of any other proteins to prebend the DNA. The concentration measurements
also permit us to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA
looping, or equivalently, the J-factor for looping.
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Introduction

The biological significance of DNA is primarily attributed to the

information implicit in its sequence. Still, there are a wide range of

processes for which DNA’s physical basis as a stiff polymer also

matters [1]. For example, the packaging of DNA into nucleosomes

appears to select for sequence motifs that are particularly flexible

[2,3]. In the setting of transcriptional regulation, there are a host of

regulatory architectures both in prokaryotes and eukaryotes which

require the interaction of sequences on the DNA that are not

adjacent [4–7]. These interactions are mediated by DNA-binding

proteins, which have to deform the DNA. In eukaryotes, action of

transcription factors over long distances seems the rule rather than

the exception. One of the most transparent examples of DNA

looping is in bacteria where some repressors and activators can

bind at two sites simultaneously, resulting in a DNA loop. This

effect was first elucidated in the context of the arabinose operon

[8]. It is an amusing twist of history that the two regulatory motifs

considered by Jacob and Monod, namely, the switch that makes

the decision between the lytic and lysogenic pathways after phage

infection [9] and the decision making apparatus associated with

lactose digestion in bacteria [5,10], both involve DNA looping as

well.

To understand the physical mechanism of the biological action

at a distance revealed by DNA looping, it is necessary to bring

both in vitro and in vivo experiments as well as theoretical analyses

to bear on this important problem. Over the last few decades there

have been a series of impressive and beautiful experiments from

many quarters that inspired our own work. In the in vivo context, it

is especially the work of Müller-Hill and coworkers that

demonstrates the intriguing quantitative implications of DNA

looping for regulation [11]. In their experiments, they tuned the

length of the DNA loop in one base pair increments and measured

the resulting repression. More recently, these experiments have

been performed with mutant bacterial strains that were deficient in

architectural proteins such as HU, IHF and H-NS [12,13]. On the

in vitro side, single molecule experiments using the tethered-particle

method [14–22] have also contributed significantly [23–28]. The

idea of these experiments is to tether a piece of DNA to a

microscope coverslip with a bead attached to the end. The DNA
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construct has the relevant binding sites (operators) for the protein

of interest along the DNA and when one of these proteins binds, it

shortens the length of the tether. As a result of the shorter tether,

the Brownian motion of the bead is reduced. Hence, the size of the

random excursions of the bead serves as a reporter for the status of

the DNA molecule (i.e. looped or unlooped, DNA-binding protein

present or not).

In addition to single-molecule studies, in vitro biochemical assays

have also shed important light on the interactions between

transcription factors and their DNA targets. Both filter binding

assays and electrophoretic mobility shift assays have been widely

used to study how variables dictating DNA mechanics such as

length and degree of supercoiling, alter the looping process [29–

33].

One of the missing links in the experimental elucidation of these

problems is systematic, single-molecule experiments which probe

the length, repressor concentration and sequence dependence of

DNA looping. Such experiments will complement earlier in vivo

work, which has already demonstrated how DNA length and

repressor concentration alter repression [11]. Our view is that such

systematic experiments will help clarify the way in which both

length and sequence contribute to the probability of DNA looping,

and begin to elucidate the mechanisms whereby transcription

factors act over long genomic distances. Further, such experiments

can begin to shed light on broader questions of regulatory

architecture and the significance of operator placement to

transcriptional control. To that end, we have carried out

experiments that probe the DNA looping process over a range

of concentrations of repressor protein and for a series of different

loop lengths. In addition, intrigued by the sequence preferences

observed in nucleosomal DNA, we have made looping constructs

in which these highly bendable nucleosomal sequences are taken

out of their natural eukaryotic context and are inserted between

the operators that serve as binding sites for the Lac repressor (the

results of those experiments will be reported elsewhere). The point

of this exercise is to see how the looping probability depends upon

these tunable parameters, namely, length, repressor concentration

and sequence.

Our key results are: (1) The concentration dependence of

looping as a function of repressor concentration (a ‘‘titration’’

curve) can be described by a simple equilibrium statistical-

mechanics model of transcription factor-DNA interactions. The

model predicts a saturation effect, which agrees with our

experimental observations. (2) By measuring this effect, we were

able to isolate the free energy change of looping (that is, separate

it from the binding free energy change), obtaining an

experimental measurement of its value for a range of different

lengths in an uncluttered, in vitro, setting. (3) Systematic

measurement of looping free energy as a function of inter-

operator spacing hints at the same modulations seen in

analogous in vitro work on cyclization [3,34], and in vivo work

on repression [11,12]. (4) Clear experimental signature of

multiple looped states, consistent with theory expectations [35–

38] and other recent experiments [26,28]. In the remainder of

the paper, we describe a series of experiments that examine both

the length and concentration dependence of DNA looping

induced by the Lac repressor. A companion paper gives

extensive details about our theoretical calculations [39].

Results

As argued above, one of our central concerns in performing

these experiments was to have sufficient, systematic data to make it

possible to carry out a thorough analysis of the interplay between

theories of transcriptional regulation (and DNA looping) [40–43],

and experiment. To that end, we have carried out a series of DNA

looping experiments using the tethered-particle method [23] for

loop lengths ranging from 300 to 310 bp in one base pair

increments as well as several representative examples for lengths

below 100 bp. The experiments described here use DNA

constructs harboring two different operators, symmetric operator

Oid and primary natural operator O1 as Lac repressor binding

sites. In addition, we have explored how the looping trajectories

depend upon the concentration of Lac repressor. The particular

experimental details are described in the ‘‘Materials and Methods’’

section.

A typical experimental trace resulting from these measure-

ments is shown in fig. 1. (Representative examples of experi-

mental traces from all of the lengths and concentrations

considered throughout the paper as well as examples of rejected

traces are shown in the Supporting Information S1.) As seen in

the figure, as with other recent work [26,28], there are clearly

two distinct looped states as seen both in the trajectory and the

histogram. Control experiments with one of the two binding sites

removed show only the highest peak, which further supports the

idea that the two lower peaks indeed indicate looped configu-

rations. One hypothesis is that these two looped states

correspond to two different configurations of the Lac repressor

molecule and its attendant DNA, which we will refer to as the

‘‘open’’ and ‘‘closed’’ configurations. Direct interconversion

between the two looped species suggested the two distinct

looped states are indeed due to different conformations of Lac

repressor protein [26]. An alternate hypothesis is that the two

peaks reflect different DNA topologies [44–46]. Although this

hypothesis does not obviously accommodate the apparent

observation of direct interconversion, nevertheless we will

present data from Monte Carlo simulations of DNA chain

conformations that show that it can quantitatively explain the

observed multi-peak structure observed in the data.

Concentration dependence
In order to extract quantities such as the free energy of looping

associated with repressor binding (or equivalently, a J-factor for

looping, essentially the concentration at which in a solution of

DNA with sticky ends, the probability of forming circles and

dimers is equal) and to examine how the propensity for looping

depends upon the number of repressors, we needed looping data

at a number of different concentrations. At very low concentra-

tion, we expect that there will be negligible looping because

neither of the operators will be bound by Lac repressor. At

intermediate concentrations, the equilibrium will be dominated by

states in which a single repressor tetramer is bound to the DNA at

the strong operator, punctuated by transient looping events. In the

very high concentration limit, each operator will be occupied by a

tetramer (see fig. 2 below), making the formation of a loop nearly

impossible.

This progression of qualitative behavior is indeed seen in fig. 3,

which shows data from eight distinct concentrations of Lac

repressor, as well as a single-operator control in which the DNA

lacks a secondary operator. Throughout this work we define

sequence length or loop length as the end-to-end distance between the

operators as shown in fig. 15. These curves correspond to a

sequence length of 306 bp and are generated by summing the

normalized histograms from all of the individual trajectories for

each concentration that pass our bead selection criteria (bead

selection criteria are discussed in detail in the Supporting

Information S1). A key feature of these data is the way in which

the two looped states are turned off as the concentration of Lac

DNA Looping by Lac Repressor
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repressor is increased to very high levels. This phenomenon is

expected since the Lac repressor exists always as tetramers under

the conditions used here [47,48], and competition for binding at

the second operator between loose Lac repressor and Lac

repressor bound to the other operator is stronger as the

concentration of Lac repressor increases. However, the two

different looped species have slightly different responses at high

repressor concentrations. For example, at 1 nM concentrations,

the intermediate looped state has become very infrequent,

whereas the shortest looped state remains competitive. Similar

concentration dependence of Lac repressor mediated DNA

looping was studied previously [24] at 4 pM, 20 pM and

100 pM. Those experiments revealed that looping is suppressed

as the concentration goes up.

One way to characterize the looping probability as a function of

concentration is shown in fig. 4. There are various ways to obtain

data of the sort displayed in this plot. First, by examining the

trajectories, we can simply compute the fraction of time that the

DNA spends in each of the different states, with the looping

probability given by the ratio of the time spent in either of the

looped states to the total elapsed time. Of course, to compute the

time spent in each state, we have to make a thresholding decision

about when each transition has occurred. This can be ambiguous,

because trajectories sometimes undergo rapid jumps back and

Figure 1. Different representations of TPM data. (A) Schematic of the TPM experiment. (B) Scatter plot of drift-corrected positional data. Each
dot corresponds to the instantaneous projected position of the bead at a particular instant in time. (C) Running average of Gaussian filtered RMS
motion over an effective window of 4 seconds. R is the distance from the bead center (dots in panel (B)) to the tether attachment point (centroid of
all dots in panel (B)). Red (solid) and green (dashed) lines represent naively expected motion, based on calibration measurements [91] in the absence
of any DNA binding protein, for 901 bp DNA and an imagined DNA for which 305+20.5 bp (the center to center distance between operators) are
subtracted off of the full length 901 bp tether. (Fig. 11 gives a more precise prediction of the expected excursions in looped states.) (D) Histogram of
the RMS motion. Different peaks correspond to looped (labeled B, bottom, and M, middle) or unlooped (labeled U) states. The lines shown here are
the same as those shown in (C). The presence of Lac repressor results in a shift of the excursion of the unlooped state with respect to the excursion
expected from the protein-free calibration curve. This is reflected in the fact that the U peak does not coincide with the red line. The DNA used here is
pUC305L1 (see Materials and Methods section) with 100 pM Lac repressor. A detailed discussion of how to go from microscopy images of beads to
traces and histograms like those shown here is given in the movie S1 in the Supporting Information.
doi:10.1371/journal.pone.0005621.g001
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forth between different states; it is not unequivocally clear when

an apparent transition is real, and when it is a random

fluctuation without change of looping state. A second way of

obtaining the looping probability is to use fig. 3 and to compute

the areas under the different peaks and to use the ratios of areas

as a measure of looping probability. This method, however, does

not properly account for possible variation between different

beads, because they are all added up into one histogram. A third

alternative is to obtain the looping probability for each individual

bead, by plotting its histogram and calculating the area under

that subset of the histogram corresponding to the looped states.

We used this last method to calculate the mean looping

probability and the standard error for each construct, which is

shown in fig. 4.

These results can also be explored from a theoretical

perspective using the tools of statistical mechanics [42,43,49].

The goal of a statistical mechanical description of this system is

to compute the probability of the various microstates available to

the repressor-DNA system as shown in fig. 2. The simplest model

posits 5 distinct states [23,24,26]: Both operators empty, Oid

occupied by repressor without looping, O1 occupied by repressor

without looping, Oid and O1 separately occupied by single

repressors and the looped state (the subtleties associated with the

statistical weight of the looped state are described in the

Supporting Information S1). The model does not take into

account the effect of non specific binding of Lac repressor to

non-operator DNA, because a simple estimate reveals that the

vast majority of repressors are free in solution rather than bound

nonspecifically to the tethered DNA. We argue that this effect is

negligible because the equilibrium association constant of Lac

repressor to non-operator DNA at conditions similar to ours is

around 106,107 M21 [50–56], which is roughly six orders of

magnitude less than the corresponding quantity for specific

binding [30,57–62]. Given such association constants, the ratio

between non specifically bound Lac repressor and the free Lac

repressor in solution is given as

RD½ �
R½ � ~KNS| D½ �

&2|10{5,

where RD½ � is the concentration of non-specifically bound Lac

repressor, R½ � is the concentration of Lac repressor in solution,

and D½ � is the DNA concentration, which is around 2 pM in our

experiment. For R½ �~200 nM, we have RD½ �&4 pM, which is

far smaller than the concentration of Lac repressor in solution.

It is convenient to describe the probability of the various states

using both the language of microscopic binding energies (and

looping free energies) and the language of equilibrium constants

(and J-factors). From a microscopic perspective, the key

parameters that show up in the model are the standard free

energy changes for repressor binding to the two operators, Deid and

De1, the looping free energy DFloop and the concentration of

repressor R½ �. The binding energy here contains two components.

One is the standard positional free energy required for bringing one

Lac repressor molecule to its DNA binding site at 1 M concentration

of Lac repressor. The other is the rotational entropy loss times {T ,

plus the interaction free energy due to the physical contact upon

protein binding [42,43,63]. The associated free energy with each

configuration gives the statistical weights of the equilibrium

probability (listed in the middle column of fig. 2). For example, to

obtain the probability of the looped state, we construct the ratio of

state (v) in the figure to the sum over all five states, as given by

Figure 2. States and weights for the Lac repressor-DNA system [42]. Each of the five state classes shown in the left column has a
corresponding statistical weight given by the product of the Boltzmann factor and the microscopic degeneracy of the state. All of the weights have
been normalized by the weight of the state in which the DNA is unoccupied. State (v) is treated as a single looped state, even though there are
multiple distinct looped configurations. The third column shows how to write these statistical weights in the language of equilibrium constants and
J-factors. The derivation of these weights and the relation between the statistical mechanical and thermodynamic perspectives can be found in the
Supporting Information S1.
doi:10.1371/journal.pone.0005621.g002
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ploop~ 8
R½ �

1 M
e{b De1zDeid zDFloopð Þ

� �

1z4
R½ �

1 M
e{bDe1ze{bDeid
� ��

z16
R½ �

1 M

� �2

e{b De1zDeidð Þ

z8
R½ �

1 M
e{b De1zDeidzDFloopð Þ

�{1

,

ð1Þ

where b~1=kBT and the temperature is in degrees Kelvin. As

detailed in the Supporting Information S1 and can be read off from

the right column in fig. 2, this microscopic description is conveniently

rewritten in terms of the equilibrium constants and J-factor for

looping as

ploop~
12

R½ �Jloop

K1Kid

1z
R½ �
K1

z
R½ �

Kid
z

R½ �2
K1Kid

z12
R½ �Jloop

K1Kid

: ð2Þ

Here Jloop is the average of the individual J factors corresponding to

different loop topologies. These topologies can be classified

according to the orientation of each one of the operators with

respect to the two Lac repressor binding heads as shown in fig. 5. We

define the state variables a and b that describe the orientation of O1
and Oid , respectively, and that can adopt a value of either 1 or 2.

The average Jloop is then

Jloop~
1

4

X
a,b

Jloop,a,b: ð3Þ

An alternative to this scheme is to construct the ratio punloop

�
ploop.

In the limit where the strongest operator, Oid , is always occupied,

this ratio takes the simple, linear form

pratio~
2K1

Jloop
z

2 R½ �
Jloop

: ð4Þ

This permits the determination of the J-factor as the slope of a

linear fit of the form without necessarily a need to obtain K1. Below

we discuss the validity of this particular model. For the remaining

data points at loop lengths L other than 306 bp, where no titration

was done, we can use the relation

Jloop Lð Þ~ pratio 306 bpð Þ
pratio Lð Þ Jloop 306 bpð Þ: ð5Þ

Just like in the titration case, this relation allows to obtain Jloop

without knowing K1, as long as we know at least one value of Jloop

and its corresponding pratio.

The data shown in fig. 4 can be fit in several different ways as

suggested by the three different formulae characterizing the

looping probability given above. The fit shown in fig. 4 is a full

nonlinear fit in which the parameters K1, K2 and Jloop are treated

Figure 3. Concentration dependence of the distribution of
bead excursions. The histograms show the distribution of RMS
motions averaged over 4 seconds at different concentrations of Lac
repressor. The blue histograms correspond to measurements for a
length between operators of Lloop~306 bp (see fig. 15), whereas the
red histogram is a control where O1 has been deleted. The two dashed
lines represent the naively expected motion, based on our calibration
measurements [91]. (See fig. 11 for a more precise prediction of the
peak locations.)
doi:10.1371/journal.pone.0005621.g003

Figure 4. Looping probability ploop, at different concentrations
of Lac repressor. The DNA used in these experiments is 901 bp long
and the loop length is Lloop~306 bp. The vertical axis gives looping
probability (fraction of time spent in either of the two looped states).
The fraction of time spent in the looped states was calculated for each
bead individually and the mean and standard error calculated for each
construct. The curve is a fit to the experimental data using the statistical
mechanics model described in the text. The obtained parameters are
shown in table 1 under ‘‘Nonlinear fit’’.
doi:10.1371/journal.pone.0005621.g004
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as fitting parameters. Alternatively, using this same data of fig. 4,

we can actually obtain the looping free energy, as well as the

binding energies by fitting the data to eqn. 1. Note that these two

descriptions are equivalent and each depends upon three unknown

parameters. Once one set of parameters is known, in principle, the

complementary parameters are also known. We find it convenient

to work in terms of both languages because in some discussions it is

useful to talk in terms of looping free energies, and in other

contexts, in terms of the looping J-factor. Finally, we can fit the

data corresponding to LacI concentrations of 10 pM and higher

using the linear model from eqn. 4. The results of these different

fits are shown in Table 1. These results are usefully contrasted with

results of other experiments on the lac operon, which are also

summarized in Table 1. We see from the table that the nonlinear

model fails to constrain the value of Kid reliably. In the case of the

O1 binding constants we see a difference of almost two orders of

magnitude with published dissociation constants, which translates

into a difference of roughly 4 kBT in the binding energy.

One of the challenges of single-molecule experiments like those

described here is that the concentration of protein introduced into

the system may not correspond to the actual concentration ‘‘seen’’

by the DNA that is tethered to the surface. For example, some of

the protein might be lost as a result of nonspecific binding to the

microscope coverslip. From the linear model shown in eqn. 4 it

follows that any error in the concentration will translate linearly

into an error in Jloop and K1. Therefore, in order for the above

discrepancy to be explained solely by surface effects on the LacI

concentration we would have to have a difference of between one

and two orders of magnitude between the concentration of the

stock that flowed into the chamber and the actual free

concentration within the chamber.

Once the parameters that characterize the model are in hand,

we can plot the probability of all five possible states as a function of

the Lac repressor concentration as shown in fig. 6. This figure

reveals that at the concentrations we normally use ( R½ �~100 pM),

the system is dominated by the looped state and the state with

single occupancy of Oid. A detailed discussion of the significance

of the looping free energies (or the J-factors) will follow later in

the paper once we have explored the question of the length

dependence of DNA looping in the lac operon.

Length dependence
1 bp resolution for a whole helical turn: Lloop = 300 bp to

310 bp. The beautiful in vivo repression experiments of [11]

demonstrate that the length of the DNA loop formed by Lac

repressor strongly affects the probability of loop formation

(especially for loop lengths less than 150 bp). In particular, those

authors (and others) [12,13,64,65] have observed ‘‘phasing’’: The

relative orientations of the two operators changes the ease with

which repressor can loop. Similar phasing effects have been

observed in in vitro cyclization assays [3,34,66,67]. What has not

been clear is how to concretely and quantitatively relate these

results on DNA mechanics from the in vivo and in vitro settings. Our

idea was to systematically examine the same progression of DNA

lengths that have been observed in vivo, but now using TPM

experiments. To that end, we have measured TPM trajectories for

a series of interoperator spacings measured in 1 bp increments.

The results of this systematic series of measurements for DNAs

harboring operators spaced over the range Lloop~300*310 bp
are shown in fig. 7 (as are the results for several shorter lengths to

be discussed in the next section). Each plot shows the probability of

the three states for a particular interoperator spacing.

The data can be converted into a plot of the dependence of the

looping probability on interoperator spacing as shown in fig. 8.

This figure shows ploop as a function of the DNA length between

the two operators. The looping probability shows a weak

Figure 5. Schematic showing the different looping topologies
associated with binding of Lac repressor. (A) Orientation of the
two operators on the DNA. Choice of labeling orientation is arbitrary.
(B)–(E) two parallel (P1 and P2) and antiparallel (A1 and A2) orientations
of the DNA when subjected to Lac repressor mediated looping. We
adopted the naming conventions given in refs. [36,37].
doi:10.1371/journal.pone.0005621.g005

Table 1. Results from the LacI titration experiments.

Parameter Nonlinear fit Linear fit Literature value

Jloop 8.666.3 nM 52640 nM See fig. 12

DFloop 18:6+0:7 kBT 16:8+0:8 kBT N/A

K1 0.4960.45 nM 3.062.5 nM 10,22 pM
[30,57–62]

De1 {20:0+0:9 kBT {18:2+0:8 kBT {23:2*{24:0 kBT

Kid 0.262.3 pM N/A 2.4,8.3 pM [92]

Deid {28+9 kBT N/A {24:1*{25:4 kBT

The probability of looping as a function of Lac repressor concentration shown in
fig. 4 was fitted to the two non-linear models from eqns. 1 and 2. Both models
were fit independently as a ways to check the robustness of the least-squares
methods with respect to data reparametrization. A subset of the data
corresponding to concentrations of LacI 10 pM and higher is fitted to the linear
model shown in eqn. 4 and its statistical mechanics counterpart. See section S4 in
the Supporting Information S1 for a discussion of the different data fitting
approaches. The literature values of the dissociation constants for O1 and Oid

correspond to bulk binding assays performed in concentration ranges close to our
TPM buffer conditions. The corresponding values for the binding energies of these
operators are obtained from the dissociation constants using eqns. S5 and S11.
doi:10.1371/journal.pone.0005621.t001
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dependence on the interoperator spacing but reveals no conclusive

signature of phasing; to really detect such phasing with confidence,

however, would require more measurements in single basepair

increments. The maximum looping is achieved when the two

binding sites are 306 bp apart, suggesting that at this distance, the

two sites are in an optimal phasing orientation for binding of the

two heads of Lac repressor. The ability to form stable out-of-phase

(two binding sites are on the opposite side of the DNA) loops with

only a small reduction in stability is consistent with previous

studies [26]. The relatively stable looping over the entire helical

repeat is also consistent with the relatively constant repression level

in vivo for similar interoperator spacing [11].

As already indicated in Table 1, the looping probability can be

converted into a corresponding looping free energy based on the

statistical mechanics model described above and culminating in

eqn. 1. The results of such calculation are shown in fig. 9. The

measurements on length dependence permit us to go beyond the

concentration dependence measurements by systematically ex-

ploring how the phasing of the two operators impacts the free

energy of DNA looping. One might expect that when the two

operators are on opposite sides of the DNA, additional twist

deformation energy is required to bring the operators into good

registry for Lac repressor binding. Our results show that the

phasing effect imposes an energy penalty DFloop that differs by

only about 1:5 kBT between the in-phase and out of phase cases.

An alternative interpretation of these same results on looping

probability is offered by the J-factor for looping as shown in

fig. 10.

To get a feel for the energy scale associated with twist

deformations, we perform a simple estimate. Twisting DNA for

a torsional angle h requires energy

DFt~kBTjtph2
�

2L ð6Þ

where jtp is the torsional persistence length for double stranded

DNA, which is around 250 bp [68–70]. L is the DNA length. For

half a helical turn twist, h~p and L~300 bp. The energy

introduced for half a helical turn is around 4:11 kBT . Our

experimentally determined looping energy difference between in-

phase and out-of-phase DNA, about 1:5 kBT , is indeed compa-

rable in magnitude to this estimate. Our simple estimate is high, in

part because it neglects the fact that in addition to twisting, a loop

can writhe to accommodate a nonideal operator phasing.

Additionally, the observed small magnitude of our observed

phasing modulation may reflect partially canceling out-of-phase

contributions of different topologies [39], not a low free energy

cost for twisting. Finally, the Lac repressor itself is flexible, and so

can partially compensate for nonideal phasing.

Sub-persistence length loops. One of the intriguing facts

about the architecture of regulatory motifs that involve DNA

looping is that often the loops formed in these systems have DNA

lengths that are considerably shorter than the persistence length of

DNA (i.e. 150 bp). For example, in the lac operon, one of the three

wild-type loops has a length of 92 bp. However, this trend goes

well beyond the lac operon as is seen for a variety of different

architectures found in E. coli, for example [1]. As a result, it is of

great interest to understand the interplay between transcriptional

regulation and corresponding mechanical manipulations of DNA

this implies.

So far, we have considered loops that are roughly two-fold

larger than the persistence length through our investigation of one

full helical repeat between 300 and 310 bp. To begin to develop

intuition for the mechanism of loop formation in the extremely

short loops exhibited in many regulatory architectures, we have

examined three different lengths: 89, 94 and 100 bp. One of the

reasons that the examination of these loops is especially important

is that it has been speculated that the in vivo formation of these

loops either requires special supercoiling of the DNA or the

Figure 6. Probabilities for different states of Lac repressor and operator DNA. The curves show the probabilities of the five classes of
microscopic states used in the statistical mechanics model based upon parameters shown in table 1. The vertical line corresponds to the
concentration at which the loop length experiments in the remainder of the paper are performed.
doi:10.1371/journal.pone.0005621.g006
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Figure 7. Length dependence of DNA looping. (A) Histogram of the tethered Brownian motion for DNAs with two Lac repressor binding sites
spaced from Lloop~300 bp (bottom) to 310 bp (top). (B) Histogram of the Brownian motion for DNAs with two Lac repressor binding sites spaced at
Lloop~89, 94 and 100 bp. The two dashed lines represent the naively expected motion based on our calibration measurements for the full length
tether and the same DNA when the center to center distance between operators is subtracted from the tether length. (Again see also fig. 11.)
Representative traces for each of the lengths shown here can be found in the Supporting Information.
doi:10.1371/journal.pone.0005621.g007

Figure 8. Looping probability ploop, as a function of interoperator spacing. (A) Looping probability for short constructs. (B) Looping
probability for one full helical repeat. These probabilities are obtained by averaging over the ploop of each bead. The error bars correspond to the
standard error associated with this magnitude. For more information see Supporting Information.
doi:10.1371/journal.pone.0005621.g008
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assistance of helper proteins that prebend the DNA [1]. However,

as indicated by the TPM results shown in fig. 7(B), even in our

controlled in vitro setting, where neither of these mechanisms can

act, Lac repressor is nevertheless able to form DNA loops. The

essence of these experiments is identical to those described earlier

in the paper except that now the overall tether lengths are shorter

so as to ensure that the loops are detectable. (Representative TPM

trajectories for these lengths are shown in the Supporting

Information S1.) It is clear from the histograms that of the three

lengths we have investigated, loop formation is most favorable at

94 bp. Interestingly, it also appears that different loops are being

formed for the in-phase and out-of-phase cases as evidenced by the

changes of relative strengths among the looping peaks for the

different constructs. The looping free energy and J-factor for

looping for these short constructs are shown in figs. 9(A) and 10(A).

Analysis of the TPM Experiment
Both the observed length and sequence dependence of the

formation of a repression complex are intriguing from the

perspective of DNA mechanics. In particular, DNA is not a

passive mechanical bystander in the process of transcriptional

regulation. To better understand the experiments carried out

here and how they might shed light on the interplay of

transcription factors and their target DNA, we have appealed

to two classes of models: i) statistical mechanics models of the

probability of DNA-repressor complex formation which depends

upon the looping free energy (these models were invoked earlier

in the paper to determine the looping free energy) and ii) Monte

Carlo simulations of the TPM experiment itself which include

the energetics of the bent DNA and excluded volume

interactions of the bead with the coverslip. Our Monte Carlo

Figure 9. Length dependence of free energy of looping, defined via eqn. 1 with choice of reference concentration 1 M. (A) Looping
free energy for short constructs. (B) Looping free energy for a full helical repeat.
doi:10.1371/journal.pone.0005621.g009

Figure 10. Looping J-factor resulting from TPM measurements. A) Effective J-factor for looping resulting from TPM data on short constructs.
(B) Effective J-factor for looping resulting from TPM data on a full helical repeat.
doi:10.1371/journal.pone.0005621.g010
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calculations allow us to compute how easily loops form, based on

a mathematical model of DNA elasticity. For illustration, we

have chosen a linear-elasticity model, that is, a model in the class

containing the wormlike chain, but any other elastic theory of

interest can be used with the same calculation strategy. Details of

these calculations appear in [39].

One of the puzzles that has so far been unresolved concerning

DNA mechanics at short scales is whether in vivo and in vitro

experiments tell a different story. In particular, in vivo experiments,

in which repression of a given gene is measured as a function of the

interoperator spacing [11,12], have the provocative feature that

the maximum in repression (or equivalently the minimum in

looping free energy) correspond to interoperator spacings that are

shorter than the persistence length. Some speculate that this in vivo

behavior results from the binding of helper proteins such as the

architectural proteins HU, H-NS or IHF [1,12,13] or the control

of DNA topology through the accumulation of twist. In the TPM

measurements reported here, there are neither architectural

proteins nor proteins that control the twist of the DNA. As a

result, these experimental results serve as a jumping off point for a

quantitative investigation of whether DNA at length scales shorter

than the persistence length behaves more flexibly than expected on

the basis of the wormlike chain model. To address this question,

we performed a series of simulations of the probability of DNA

looping for short, tethered DNAs like those described here using, a

variant of the wormlike chain model to investigate the looping

probability. Our theoretical model used no fitting parameters; the few

parameters defining the model were obtained from other, non-

TPM, experiments.

The fraction of time spent in the looped configuration is

controlled by several competing effects. For example, suppose

that a repressor tetramer is bound to the stronger operator, Oid.

Shortening the interoperator spacing reduces the volume over

which the other operator (O1) wanders relative to the second

binding site on the repressor, increases the apparent local

‘‘concentration’’ of free operator in the neighborhood of that

binding site, and hence enhances looping. But decreasing the

interoperator spacing also has the opposite effect of discourag-

ing looping, due to the larger elastic energy cost of forming a

shorter loop. Moreover, a shorter overall DNA construct

increases the entropic force exerted by bead–wall avoidance,

again discouraging looping [71]. To see what our measurement

of this looping equilibrium tells us, we therefore needed to

calculate in some detail the expected local concentration of

operator (the ‘‘looping J factor’’) based on a particular

mathematical model of DNA elasticity. Traditionally, DNA

has been modeled mathematically as a thin, elastic solid body

with a classical Hooke-law elastic energy function. Because

classical elasticity theory assumes that energy is a quadratic

(‘‘harmonic’’) function of strain, such models are collectively

called ‘‘harmonic-elasticity’’ models; one example is the

wormlike chain model. Accordingly, we used a harmonic-

elasticity model, to see if it could adequately explain our results,

or if, on the contrary, some non-harmonic model (for example

the one proposed in [72,73]) might be indicated.

To perform the required calculation, we modified the

Gaussian sampling method previously used in [71,74–76] (see

section S6 and [39]). Our code generated many simulated

DNA chains, applied steric constraints [71], and reported what

fraction of accepted chain/bead configurations had the two

operator sites at the correct relative position and orientation

for binding to the tetramer, which was assumed to be rigidly

fixed in the form seen in PDB structure 1LBG [77]. Once this

fraction has been computed, it is straightforward to relate it to

the looping J factor [39]. Note that the beauty of the looping J
factor is that it is independent of the particular binding

strengths of the different operators. To generate the simulated

chains, we assumed a linear (harmonic, or wormlike-chain

type) elastic energy function at the junctions in a chain of finite

elements. Our energy function accounted for the bend

anisotropy and bend–roll coupling of DNA, and yielded a

value for the persistence length j = 44 nm appropriate for our

experiment’s buffer conditions [78,79]. Our model did not

account for sequence dependence. We assume that this

simplification is appropriate for comparison to our experimen-

tal results for the case of the 300 bp constructs and the 90 bp

constructs with the sequence E8, but not with the sequence

TA. The simulation treated the bead and the microscope slide

as hard walls and accounted for bead–wall, bead–chain, and

wall–chain avoidance; we did not consider any interactions

involving the repressor tetramer other than binding.

The symmetry of each LacI dimer implies four energetically

equivalent ways for the two operators to bind when forming a

loop, and hence four topologically distinct loop configuration

classes [35–39]. We first asked whether this multiplicity of

looped states could explain the general structure of the

excursion distributions seen in fig. 7. Accordingly, we made

histograms of the distance between wall attachment point and

bead center for our simulated chains. Fig. 11 shows a subset of

the same experimental data seen in fig. 7, together with the

simulation results. Although the correspondence is not perfect, it

is clear that the simple physical model of looping outlined above

can account for many features of the data, for example the

locations of the looped peaks and their relative strengths,

including the variation as loop length is changed. We

acknowledge that we have no definitive reply to the argument

that the apparent direct transitions between the B and M peaks

of our distributions seem to require an open-to-closed

conformational switch in the tetramer [26]. We merely point

out that the existence of three peaks in the distribution, with the

the observed locations, is not by itself conclusive evidence of

such a switch. (Indeed, Villa et al. have argued that the opening

transition does not occur [80].)

We were also interested to see if the high incidence of looping

observed in our experiments on short (sub persistence length)

loops was compatible with the hypotheses of harmonic DNA

elasticity and fixed repressor geometry, or if on the contrary it

demanded some modification to those hypotheses. Accordingly,

we asked the simulation to compute the average J factor for

loop lengths near 305 bp, and also for loop lengths near 95 bp.

As discussed in ref. [39], the result of the simulation was that the

ratio of these quantities is J loop 95 bpð Þ
�

J loop 305 bpð Þ&0:02. In

contrast, fig. 10 shows that the experimental ratio is <0.3560.1,

roughly 20-fold larger than the theoretical value. Our

experimental results and those interpolated from our MC

calculations for J loop as a function of loop length are shown in

fig. 12.

We conclude that the hypotheses of linear elasticity, a rigid

protein coupler, and no nonspecific DNA–repressor interactions,

cannot explain the high looping incidence seen in our experi-

ments. (Special DNA sequences loop even more easily than the

random sequences reported here.) One possible explanation, for

which other support has been growing, is the hypothesis of DNA

elastic breakdown at high curvature [72,73,81]. An alternative

hypothesis is that for our shorter loops, both the lower and the

intermediate peaks in our distributions of bead excursion

correspond to the some alternative, ‘‘open’’ conformation of the

repressor tetramer [35,36,45,82–85]. To be successful, however,
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Figure 11. Theory and experiment for the probability density functions of RMS bead excursion for (A) our six ‘‘long chain’’
constructs and (B) our three ‘‘short chain’’ constructs. Blue dashed curves show the data in fig. 7, represented as sums of three Gaussians. Black
curves show our theoretically predicted distributions. Because our simulation results were not fits to the data, they did not reproduce perfectly the
ratio of looped to unlooped occupancies. For visualization, therefore, we have adjusted this overall ratio by a factor common to all six curves. This
rescaling does not affect the locations of the peaks, the relative weights of the two looped-state peaks, nor the dependences of weights on loop
length Lloop, all of which are zero-fit-parameter predictions of our model. The model yields these histograms as the sum of five contributions,
corresponding to the four looped topologies and the unlooped state. The topologies correspond to the different geometries shown in fig. 5. The
separate RMS displacements for each individual loop topology for the 89 bp case in (A) and for the 300 bp case in (B) are also shown, labeled
according to the scheme in [36].
doi:10.1371/journal.pone.0005621.g011

Figure 12. Effective J-factor from different experiments. Although the J factor obtained from cyclization experiments is not directly
comparable to the looping J factor studied in this paper (due to the differences in geometry), we present the two quantities together as functions of
loop length to summarize the work from many groups. Error bars have been omitted for clarity. The filter binding data is an order of magnitude
estimate.
doi:10.1371/journal.pone.0005621.g012
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this hypothesis would have to pass the same quantitative hurdles to

which we subjected our hypotheses.

Discussion

The regulatory regions on DNA can often be as large as (or even

larger than) the genes they control. The relation between the

biological mechanisms of transcriptional control and the physical

constraints put on these mechanisms as a result of the mechanical

properties of the DNA remains unclear. One avenue for clarifying

action at a distance by transcription factors is systematic single-

molecule experiments, which probe the dynamics of loop

formation for different DNA architectures (i.e. different sequences,

different transcription factor binding strengths, different distances

between transcription factor binding sites) to complement

systematic in vivo experiments that explore these same parameters.

In this paper, we have described an example of such a systematic

series of measurements, which begins to examine how the

formation of transcription factor-DNA complexes depend upon

parameters such as transcription factor concentration and the

length of the DNA implicated in the complex.

In the case of the lac operon, our in vitro measurements

demonstrate that the formation of the looped repressor-DNA

complex does not require any helper proteins, nor does it call for

supercoiling of the DNA (as appears to be required in other

bacterial regulatory architectures [5,6]). Further, we find that even

in the absence of these mechanisms, which can only enhance the

probability of loop formation, the formation of DNA loops by Lac

repressor occurs more easily than would be expected on the basis

of traditional views of DNA elasticity. A summary of the various

measurements of short-length DNA cyclization and looping is

shown in fig. 12. The idea of this figure is to present the diversity of

data that weighs in on the subject of short length DNA elasticity.

In particular, several sets of controversial measurements on DNA

cyclization present different conclusions on the ease of this process

at lengths of roughly 100 bp. Note that in addition, we have

included both the theoretical cyclization J-factor and looping J-

factor. The looping J-factor reveals that because of the less

restrictive looping geometry (end points are not at same point in

space and the tangents are not constrained to be equal), looping

costs less free energy than does cyclization. TPM experiments like

those presented here offer another avenue to resolve this issue, one

that does not involve the complex ligase enzyme, the need to

ensure a specific kinetic regime, nor other subtleties of the ligation

reaction inherent in cyclization measurements. However, as seen

in the figure, even here there are unexplained discrepancies

between different TPM experiments which call for continued

investigation. One observation from our own work that could have

an important bearing on the differences in TPM results between

different groups is that there is a substantial temperature

dependence to the looping probabilities and different groups

may be working at different temperatures.

Several intriguing mysteries remain which demand both

further experimentation as well as theoretical analysis, e.g.: i)

why are the probabilities of DNA loop formation systematically

higher than would be expected on the basis of traditional

arguments about DNA elasticity, and ii) what is the significance

of three repressor binding sites in the wild-type lac operon? To

explore these questions, TPM experiments with different DNA

sequences between the two operators, as well as with Lac

repressor mutants that are less flexible, would go a long way

towards clarifying the mechanisms at work and would provide a

basis for examining the even richer action at a distance revealed

in the eukaryotic setting.

Figure 13. Synthesis of DNA construct. A) Schematic of the procedure for construction of the plasmid with two Lac repressor binding sites. (B)
Schematic of the protocol for producing labeled DNA using a PCR reaction with labeled primers.
doi:10.1371/journal.pone.0005621.g013
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Materials and Methods

Plasmid DNAs
Plasmid DNAs, bearing two Lac repressor binding sites spaced

at a designed distance, are created using a point mutation method

(QuikChange site-directed mutagenesis, Stratagene) on plasmid

pUC19. Plasmid pUC19 was chosen as a starting template

because it is not only a high copy plasmid but also contains two

Lac repressor binding sites: O1 and O3. The procedure for

creating two binding sites separated by the desired distance from

template pUC19 is illustrated in fig. 13(A). We first mutate six

basepairs in the O3 site converting it to O3� in a way that

eliminates the binding affinity for this site [86]. The resulting

plasmid is called pUC19O1 indicating it only has a single O1 site.

To construct another binding site on the pUC19O1 plasmid, we

replace 20 bp with the Lac repressor binding sequence Oid at a

series of locations differing by 1 bp increments in their distance

from O1 using the mutagenesis method again. For some of the

secondary site construction, we have to use either deletion or

addition from already made plasmids with two designed binding

sites. The details on primers and templates used in this process are

listed in Table 2. The final product contains two binding sites O1
and Oid spaced at the desired distance.

The short loop DNA (89, 94 and 100 bp) was constructed in the

following way. Plasmid pZS22-YFP was kindly provided by Michael

Elowitz. The main features of the pZ plasmids are located between

unique restriction sites [87]. The YFP gene comes from plasmid

pDH5 (University of Washington Yeast Resource Center [88]).

A variant of the lacUV5 promoter [10] was synthesized and

placed between the EcoRI and XhoI sites of pZS22-YFP in order

to create pZS25’-YFP. This promoter included the 235 and 210

regions of the lacUV5 promoter, an AseI site between the two

signals and a O1 operator at position 245 from the transcription

start as shown in fig. 14(A).

The random sequence E8-89 [34] was obtained by PCR from a

plasmid kindly provided by Jonathan Widom. The primers used

had a flanking AatII site and Oid operator upstream and a

Table 2. Materials used in the mutagenesis process for
creating plasmids with two Lac repressor binding sites.

Molecule Primer Template Action Resulting Molecule

pUC19O1 Mut0 pUC19 Replace O1

pUC300 Mut1 pUC301 Delete 1 bp O1-300bp-Oid

pUC301 Mut2 pUC19O1 Replace O1-301bp-Oid

pUC302 Mut3 pUC19O1 Replace O1-302bp-Oid

pUC303 Mut4 pUC19O1 Replace O1-303bp-Oid

pUC304 Mut5 pUC19O1 Replace O1-304bp-Oid

pUC305 Mut6 pUC19O1 Replace O1-305bp-Oid

pUC306 Mut7 pUC19O1 Replace O1-306bp-Oid

pUC307 Mut8 pUC19O1 Replace O1-307bp-Oid

pUC308 Mut9 pUC19O1 Replace O1-308bp-Oid

pUC309 Mut10 pUC308 Add 1bp O1-309bp-Oid

pUC310 Mut11 pUC308 Add 2 bp O1-310bp-Oid

Primer sequences(59R39):
Mut0: ctaactcacattaattgcgttgAgctcGAGgTTcgctttccagtc.
Mut1: catacgagccggaa (G) cataaagtgtaaagc.
Mut2: ctcggaaagaaca AATTGTGAGCGCTCACAATT aaggccaggaacc.
Mut3: ctcggaaagaacat AATTGTGAGCGCTCACAATT aggccaggaaccg.
Mut4: cggaaagaacatg AATTGTGAGCGCTCACAATT ggccaggaaccgt.
Mut5: ggaaagaacatgt AATTGTGAGCGCTCACAATT gccaggaaccgta.
Mut6: gaaagaacatgtg AATTGTGAGCGCTCACAATT ccaggaaccgtaa.
Mut7: cggaaagaacatgtga AATTGTGAGCGCTCACAATT caggaaccgtaaaaag.
Mut8: ggaaagaacatgtgag AATTGTGAGCGCTCACAATT aggaaccgtaaaaagg.
Mut9: gaaagaacatgtgagc AATTGTGAGCGCTCACAATT ggaaccgtaaaaaggc.
Mut10: catacgagccggaag [C] cataaagtgtaaagc.
Mut11: catacgagccggaag [CG] cataaagtgtaaagc.
The capital letters in the primer sequences indicate the mutations. ‘()’ indicates
bp deletion and ‘[ ]’ indicates bp addition. The inter-operator distance indicated
here is the distance between two inner edges of the operators instead of center
to center distance that is commonly used in in vivo experiments [11–13,86,93].
doi:10.1371/journal.pone.0005621.t002

Figure 14. Promoter regions of the different short loop constructs. (A) Promoter region of pZS25-YFP which has a variant of the lacUV5
promoter and an O1 operator upstream overlapping the 235 region. (B) Final construct that allows to insert arbitrary DNA sequences between a Oid
and O1 operators.
doi:10.1371/journal.pone.0005621.g014
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flanking O1 operator, 235 region and AseI site downstream. This

PCR product was combined with the appropriate digest of

pZS25’-YFP to give raise to pZS250 Oid-E89-O1{45-YFP. This

is shown schematically in fig. 14(B). Finally, the different lengths

used by Cloutier and Widom [3,34] were generated from this

template using site directed mutagenesis.

Construction of labeled DNAs
In TPM experiments, DNA is linked between the substrate and a

bead. Two pairs of linkers: biotin-streptavidin and digoxigenin-anti-

digoxigenin, are chosen to permit specific linkage of the DNA to a

polystrene microsphere and glass coverslip, respectively. As

illustrated in fig. 13(B), PCR was used to amplify such labeled

DNA with two modified primers. Each primer is designed to be

about 20 bp in length and linked with either biotin or digoxigenin at

the 59 end (Eurofins MWG Operon). In the case of the long sequence

constructs, in order to optimize the PCR reaction linearized plasmids

with an AatII cut are used as the template. Detailed information

concerning the design of our PCR reactions is listed in Table 3 and

the constructs are shown schematically in fig. 15. The PCR products

Figure 15. Examples of the tether constructs used. (A) In the long distance constructs Oid was displaced keeping the total construct length
constant. (B) In the short distance constructs the sequence between the operators was altered, which results in each construct having a slightly
different total length. (Drawings not to scale.
doi:10.1371/journal.pone.0005621.g015

Table 3. Materials used in amplifying labeled DNA using PCR.

Molecule Template Length(bp) Resulting

pUC300L1 pUC300 900 Dig - 427bp-O1-300bp-Oid-132bp - Bio

pUC301L1 pUC301 901 Dig - 427bp-O1-301bp-Oid-132bp - Bio

pUC302L1 pUC302 901 Dig - 427bp-O1-302bp-Oid-131bp - Bio

pUC303L1 pUC303 901 Dig - 427bp-O1-303bp-Oid-130bp - Bio

pUC304L1 pUC304 901 Dig - 427bp-O1-304bp-Oid-129bp - Bio

pUC305L1 pUC305 901 Dig - 427bp-O1-305bp-Oid-128bp - Bio

pUC306L1 pUC306 901 Dig - 427bp-O1-306bp-Oid-127bp - Bio

pUC307L1 pUC307 901 Dig - 427bp-O1-307bp-Oid-126bp - Bio

pUC308L1 pUC308 901 Dig - 427bp-O1-308bp-Oid-125bp - Bio

pUC309L1 pUC309 902 Dig - 427bp-O1-309bp-Oid-125bp - Bio

pUC310L1 pUC310 903 Dig - 427bp-O1-310bp-Oid-125bp - Bio

E8-89 pZS250 Oid-E89-O1{45-YFP 445 Dig - 144bp-Oid-89bp-O1-171bp - Bio

E8-94 pZS250 Oid-E94-O1{45-YFP 450 Dig - 144bp-Oid-94bp-O1-171bp - Bio

E8-100 pZS250 Oid-E100-O1{45-YFP 456 Dig - 144bp-Oid-100bp-O1-171bp - Bio

Primer sequences(59R39):
Plen901F: Dig - ACAGCTTGTCTGTAAGCGGATG.
Plen901R: Bio - CGCCTGGTATCTTTATAGTCCTGTC.
PF1: Dig - ATGCGAAACGATCCTCATCC.
PR1: Bio - GCATCACCTTCACCCTCTCC.
The inter-operator distances indicated here is the distance between two inner sides of the operators instead of center to center distance. Primers Plen901F and
Plen901R were used for the long distance constructs. Primers PF1 and PR1 were used for the short distance constructs.
doi:10.1371/journal.pone.0005621.t003
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were then purified by gel extraction (QIAquick Gel Extraction Kit,

QIAGEN) and the concentration of the DNA was measured using

quantitative DNA electrophoresis.

TPM sample preparation
TPM sample preparation involves assembly of the relevant

DNA tethers and their associated reporter beads. Streptavidin

coated microspheres (Bangs lab) of diameter 490 nm served as our

tethered particle. Prior to each usage, a buffer exchange on the

beads was performed by three cycles of centrifugation and

resuspension in TPB buffer (20 mM Tris-acetate, pH = 8.0,

130 mM KCl, 4 mM MgCl2, 0.1 mM DTT, 0.1 mM EDTA,

20 mg/ml acetylated BSA (Sigma-Aldrich), 80 mg/ml heparin

(Sigma-Aldrich) and 0.3% biotin-free casein. Biotin-free casein

colloidal buffer (5% casein colloid with 0.001% Merthiolate, RDI,

Flanders, NJ) was used as a cassein source. This combination of

reagents was chosen in an attempt to maximize sample yield and

longevity, while minimizing non-specific adsorption of DNA and

microspheres onto the coverslip.

Tethered particle samples were created inside a 20–40 ml flow

cell made out of a glass slide with one hole near each end, glass

coverslip, double-sided tape and tygon tubing. The coverslip and

glass slide were cleaned with plasma cleaning for 4 minutes and

then the flow cell was constructed as shown in fig. 16(A). Two

tygon tubes serving as an input and output were inserted into the

holes on the glass slide and sealed with epoxy. A reaction chamber

was created by cutting a channel on the double sided tape, which

glues the coverslip and glass slide together. Making the end of the

channel round and as close to the holes of the glass slide as possible

is important to avoid generating bubbles. The flow cell was then

heated for about 20 seconds to seal securely.

For DNA tether assembly, the flow chamber was first incubated

with 20 mg/mg polyclonal anti-digoxigenin (Roche) in PBS buffer

for about 25 minutes, and then rinsed with 400 ml wash buffer (TPB

buffer with no casein) followed by 400 ml of TPB buffer. 250 ml of

labeled DNA in TPB buffer with about 2 pM concentration was

flushed into the chamber and incubated for around 1 hour. After

washing with 750 mL TPB buffer to remove any unbound DNA, a

10 pM solution of beads were introduced into the chamber and

incubated for 20 minutes. Finally, unbound microspheres were

removed by flushing the chamber with 1 mL TPB buffer. For

looping experiments, 0.5 mL,1 mL LRB buffer (10 mM Tris-Hcl,

pH 7.4, 200 mM KCl, 0.1 mM EDTA, 0.2 mM DTT, 5% DMSO

and 0.1% biotin-free casein) containing the desired concentration of

Lac repressor (a kind gift from Kathleen Matthews’ lab) was then

flushed into the chamber and incubated about 15 minutes before

observation. Although we were able to measure the overall

concentration of Lac repressor used in the experiments, the more

important quantity is the concentration of active repressor which we

were unable to successfully measure other than through the looping

assay itself. Each flow cell preparation would typically allow to

acquire data on ten tethers.

Data Acquisition and Processing
The motion of the bead is recorded through a Differential

Interference Contrast (DIC) microscope at 30 frames per second.

The position of the bead is tracked in the x2y plane using a cross-

correlation method [89] and recorded as raw data for further

analysis. Such raw positional data are subject to a slow drift due to

vibrations of the experimental apparatus. A drift correction is then

applied using a high pass first-order Butterworth filter at cutoff

frequency 0.1 Hz [24]. From the filtered data, R2 tð Þ is then

calculated as x tð Þ2zy tð Þ2 and a running average
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SR2 tð ÞT

p
is

obtained using a Gaussian filter at cutoff frequency 0.033 Hz

[24,90], which corresponds to the standard deviations of the filter’s

impulse response time of 4 s. The traces shown in this paper are all

obtained in this way.

Supporting Information

Supporting Information S1 Supporting Information S1

Found at: doi:10.1371/journal.pone.0005621.s001 (10.68 MB

PDF)

Figure 16. Illustration of TPM sample preparation. (A) Sketch of the flow cell. (B) The scheme for making DNA tethers.
doi:10.1371/journal.pone.0005621.g016
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Movie S1

Found at: doi:10.1371/journal.pone.0005621.s002 (3.61 MB

MPG)
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