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A matter of time: Using dynamics and theory to
uncover mechanisms of transcriptional bursting
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Abstract
Eukaryotic transcription generally occurs in bursts of activity
lasting minutes to hours; however, state-of-the-art measure-
ments have revealed that many of the molecular processes
that underlie bursting, such as transcription factor binding to
DNA, unfold on timescales of seconds. This temporal discon-
nect lies at the heart of a broader challenge in physical biology
of predicting transcriptional outcomes and cellular decision-
making from the dynamics of underlying molecular processes.
Here, we review how new dynamical information about the
processes underlying transcriptional control can be combined
with theoretical models that predict not only averaged tran-
scriptional dynamics, but also their variability, to formulate
testable hypotheses about the molecular mechanisms under-
lying transcriptional bursting and control.
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A disconnect between transcriptional
bursting and its underlying molecular
processes
Over the past two decades, new technologies have
revealed that transcription is a fundamentally discon-

tinuous process characterized by transient bursts of
transcriptional activity interspersed with periods of
quiescence. Although electron microscopy provided
early hints of bursty transcription [1], the advent of
single-molecule fluorescence in situ hybridization
(smFISH) [2,3], was key to establishing its central role
in transcription. The single-cell distributions of nascent
RNA and cytoplasmic mRNA molecules obtained using
this technology provided compelling, if indirect, evi-
dence for the existence and ubiquity of gene expression
bursts, and indicated that their dynamics were subject

to regulation by transcription factors [4,5]. These fixed-
tissue inferences have been confirmed with new in vivo
RNA fluorescence labeling technologies such as the
MS2/MCP [6] and PP7/PCP systems [7], which directly
reveal stochastic bursts of transcriptional activity in
living cells in culture and within animals (Figure 1AeC)
[8e11].

What is the role of transcriptional bursting in cellular
decision-making? One possibility is that bursty gene
expression is intrinsically beneficial, helping (for

instance) to coordinate gene expression or to facilitate
cell-fate decision-making [12]. Alternatively, bursting
may not itself be functional but might instead be a
consequence of key underlying transcriptional pro-
cesses, such as proofreading transcription factor identity
[13,14].

Bursting and its regulation are intimately tied to the
molecular mechanisms that underlie transcriptional
regulation as a whole. In this article, we argue that, to
make progress toward predicting transcriptional out-

comes from underlying molecular processes, we can start
with the narrower question of how the burst dynamics
emerge from the kinetics of molecular transactions at
the gene locus. To illustrate the importance and chal-
lenge of taking kinetics into account, we highlight two
interrelated molecular puzzles that arise from new
measurements of the dynamics of key transcriptional
processes in vivo.
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Figure 1

Current Opinion in Cell Biology

Separation of timescales between transcriptional bursting and its underlying molecular processes. (a,b,c) Transcriptional bursting in (a) an
embryo of the fruit fly Drosophila melanogaster, (b) the nematode Caenorhabditis elegans, and (c) human cells. (d) In these and other organisms,
bursting dynamics (average period of ON and OFF) span a wide range of timescales from a few minutes to tens of hours. (e) Timescales of the molecular
processes behind transcription range from fast seconds-long transcription factor binding to slower histone modifications, which may unfold across multiple
hours or days. A detailed summary of measurements leading to these numbers, including references, is provided in Appendix A. (a, adapted from
Ref. [16]; b, adapted from Ref. [17]; c, adapted from Ref. [18]).
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Applying a theoretical lens to transcriptional dynamics in vivo Lammers et al. 149
First, as illustrated in Figure 1D and reviewed in detail
in Appendix Table A.1, despite qualitatively similar
bursty traces from different organisms, bursts unfold
across markedly distinct timescales ranging from several
minutes [15,16], to tens of minutes [17,18], all the way
to multiple hours [19]. Is this wide range of bursting
timescales across organisms reflective of distinct mo-
lecular mechanisms or is it the result of a common set of

highly malleable molecular processes?

Second, recent live imaging experiments have revealed a
significant temporal disconnect between transcription
factor binding events, which generally last for seconds,
and the transcriptional bursts that these events control,
which may last from a few minutes to multiple hours.

The majority of the molecular processes underlying
transcriptional control are highly transient (Figure 1E),
with timescales ranging from milliseconds to seconds

(see Appendix Table A.2 and accompanying text for a
detailed tabulation and discussion of these findings).

In this article, we seek to address this second puzzle by
surveying key theoretical and experimental advances
that, together, should shed light on the molecular origins
of transcriptional bursting and transcriptional regula-
tion. We leverage this framework to examine two kinds
of molecular-level models that explain how slow burst
dynamics could arise from fast molecular processes.
Finally, we present concrete experimental strategies
Figure 2

(a) (c)

(d

(b)

The two-state model of transcriptional bursting. (a) A two-state model of tra
(b) Mapping the bursting parameters kon, koff, and r to burst duration, separati
increase in the average rate of transcription initiation. (d) In the two-state mo
increasing burst duration, increasing burst amplitude, or any combination the
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based on measuring variability in the timing of bursts
that can be used to discern between molecular models
of transcriptional bursting.

Overall, we seek to illustrate how iterative discourse
between theory and experiment sharpens our molecular
understanding of transcriptional bursting by reformu-
lating cartoon models as concrete mathematical state-

ments. Throughout this article, we focus on illustrative
recent experimental and theoretical efforts; we there-
fore do not attempt to provide a comprehensive review
of the current literature (see Ref. [20e25] for excellent
reviews).
The two-state model: a simple quantitative
framework for bursting dynamics
To elucidate the disconnect between molecular time-
scales and transcriptional bursting, we invoke a simple
and widely used model of bursting dynamics: the two-
state model of promoter switching. While the molecu-
lar reality of bursting is likely more complex than the
two-state model suggests [26e28], there is value in
examining where this simple model breaks down. This
model posits that the promoter can exist in two states: a

transcriptionally active ON state and a quiescent OFF
state (Figure 2A). The promoter stochastically switches
between these states with rates kon and koff and loads
new RNA polymerase II (RNAP) molecules at a rate r
when in the ON state [22,29e31]. Figure 2B shows a
hypothetical activity trace for a gene undergoing bursty
Current Opinion in Cell Biology

)

nscriptional bursting by a promoter switching between ON and OFF states.
on, and amplitude, respectively. (c) The action of an activator results in an
del, this upregulation can be realized by decreasing burst separation,
reof.
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150 Differentiation and disease (2020)
expression, where a burst corresponds to a period of
time during which the promoter is in the ON state. The
average burst duration, amplitude, and separation are
given by 1/koff, r, and 1/kon, respectively.

Because the instantaneous transcription initiation rate
during a burst is r and zero otherwise, the average initi-
ation rate is equal to r times the fraction of time the

promoter spends in this ON state pon,

hinitiation ratei ¼ r pon; (1)

where brackets indicate time-averaging. As shown in

Appendix B, in steady state, pon can be expressed as a

function of the transition rates kon and koff:

pon ¼ kon
kon þ koff

: (2)

Plugging this solution into Equation (1) results in the

average rate of mRNA production as a function of the
bursting parameters given by.

〈initiation rate〉 ¼ r|{z}
transcription rate

in ON state

kon
kon þ koff|fflfflfflfflfflffl{zfflfflfflfflfflffl}
probability of

ON state

:

(3)

Equation (3) shows that, within the two-state model,
transcription factors can influence the mean transcrip-
tion rate by modulating any one of the three burst pa-
rameters (or a combination thereof). For example,
consider an activator that can increase the mean tran-
scription rate (Figure 2C) by decreasing koff, increasing
kon or r, or any combination thereof (Figure 2D). Both
live-imaging measurements and smFISH have revealed
that the vast majority of transcription factors predomi-

nantly modulate burst separation by tuning kon
[5,11,15,16,32e35]. There are also examples of the
control of burst amplitude and duration, however
[17,33,36].

Although experiments have identified which bursting
parameters are under regulatory control, the question of
how this regulation is realized at the molecular level
remains largely open (with a handful of notable excep-
tions in bacteria [37], yeast [65], and mammalian cell
culture [66]). This is because the two-state model is a

phenomenological model: we can use it to quantify burst
dynamics without making any statements about the
molecular identity of the burst parameters. Nonethe-
less, by putting hard numbers to bursting and identi-
fying which parameter(s) are subject to regulation, this
framework constitutes a useful quantitative tool to
Current Opinion in Cell Biology 2020, 67:147–157
formulate and test hypotheses about the molecular
mechanisms underlying transcriptional control.

For instance, consider the observation that many acti-
vators modulate burst separation. A simple way to
explain this fact is to posit that transitions between the
ON and OFF states reflect the binding and unbinding of
individual factors to regulatory DNA. Here, koff would be

the activator DNA-unbinding rate and kon would be a
function of activator concentration [A],

konð½A�Þ ¼ ½A�kb0; (4)

where kb0 is the rate constant for activator binding.

A recent study in yeast lent credence to this picture,
finding that activator affinity (ku) might indeed play a
role in dictating burst duration [65]. However, for most
genes and organisms surveyed so far, the two-state
model indicates that transcription factor unbinding
alone cannot set the timescale for bursting: if koff were
an activator unbinding rate, then it would be on the
order of 1 s�1 (Figure 1D and E, box 7). However,
measurements of burst duration reveal that koff must be
orders of magnitude smaller (( 0.01s�1, Figure 1D).

Thus, the two-state model lends a quantitative edge to
the disconnect in Figure 1, reaffirming that transcrip-
tional bursting is unlikely to be solely determined by the
binding kinetics of the transcription factors that regu-
late it. We must therefore extend our simple two-state
framework to incorporate molecular mechanisms that
allow rapid transcription factor binding and transcrip-
tional bursts that are orders of magnitude slower.
Bridging the timescale gap: kinetic traps
and rate-limiting steps
Recent works have considered kinetic models of tran-
scription that describe transition dynamics between
distinct microscopic transcription factor binding con-
figurations. These models make it possible to investi-
gate how molecular interactions facilitate important

behaviors such as combinatorial regulatory logic, sensi-
tivity to changes in transcription factor concentrations,
the specificity of interactions between transcription
factors and their targets, and transcriptional noise
reduction [13,14,38e41,67].

We illustrate how these kinetic models can shed light on
the disconnect between the timescales of transcription
factor binding and bursting using the activation of the
hunchback minimal enhancer by Bicoid in the early fruit
fly embryo as a case study [34,38,41e44]. Recent in vivo
single-molecule studies have revealed that Bicoid spe-
cifically binds DNA in a highly transient fashion (w
1 � 2 s) [45,46], suggesting that Bicoid binding cannot
dictate the initiation and termination of hunchback tran-
scriptional bursts, which happen over minutes [34]. We
www.sciencedirect.com
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Figure 3
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(a) (b)

(c)

(e)

(g)
(h)

(f)

(d)

Using theoretical models to understand the origin of ON/OFF bursting dynamic. (a) Model with three activator binding sites. The transition rates
between states with i and j activators are given by ki,j. (b) The model in (a) can be simplified to an effective four-state chain model in which each state
corresponds to a certain number of bound molecules and the transcription rate is proportional to the number of bound activators. (c) Independent activator
binding model with effective binding and unbinding rates plotted above and below, respectively. Shading indicates the fraction of time that the system
spends in each state. (d) Stochastic simulations indicate that rapid activator binding alone drives fast fluctuations about a single transcription rate. (e)
Cooperative binding model in which already-bound activators enhance the binding rate of further molecules. (f) Simulation reveals that cooperativity can
cause the system to exhibit bimodal rates of transcription and slow fluctuations between effective ON and OFF states. (g) Rate-limiting step model in
which several molecular steps can connect a regime where binding is favored (ON) and a realization where binding is disfavored (OFF). (h) Simulations
demonstrate that rate-limiting steps can lead to bimodal transcriptional activity reminiscent of transcriptional bursting. Simulation results were down-
sampled to a resolution of 0.5 s to ensure plot clarity in d, f, and h. Scripts used to generate plots in d, f, and h are available on Github [68]. (Parameters: c,
d, kb = ku = 0.5s−1; e, f, kb = 0.004s−1, ku = 0.5s−1; and u = 6.7; G,H, ku

on ¼ ku
off ¼ 0:5 s�1, kb

off ¼ 0:01 s�1, kb
on ¼ 21 s�1, Moff = 1, Mon = 2, k1

off ¼
0:0023, k1

on ¼ k2
on ¼ 0:0046 s�1.)
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seek molecular models that recapitulate two key aspects
of bursting: (1) the emergence of effective ON and OFF
transcriptional states and (2) “slow” (>1 min) fluctua-
tions between these states. We sketch out the mathe-
matical basis of these efforts and review key results
below; more detailed calculations can be found in
Appendix C.

Following [38], we consider a simple activation model
featuring an enhancer with identical activator binding
sites. While the full model for the hunchback minimal
enhancer consists of six binding sites, we first use a
simpler version with three binding sites to introduce key
features of our binding model before transitioning to the
more realistic six binding sites version when discussing
our results. We capture the dynamics of activator bind-
ing and unbinding at the enhancer by accounting for the
transitions between all possible binding configurations
(Figure 3A). Our assumption of identical activator

binding sites leads to two simplifications: (1) the same
rate, ki,j governs the switching from any configuration
with i activators bound to any configuration with j bound
and (2) all binding configurations with the same number
n of activators bound have the same rate of transcription,
rn = r0 n, which we posit to be proportional to the
number of bound activators. As a result we need not
track specific binding configurations and may condense
the full molecular representation in Figure 3A into a
simpler four-state chain-like model with one state for
each possible value of n (Figure 3B).

Transitions up and down the chain in Figure 3B are
governed by the effective binding and unbinding rates
kþ(n) and k�(n). To calculate these rates from the
microscopic transition rates ki,j, consider, for example,
that there are three possible ways of transitioning from
the 0 state to the 1 state, each with rate k0,1. Thus, the
effective transition rate between states 0 and 1 is given
by 3k0,1. More generally, in the effective model, activator
binding rates are

kþðnÞ ¼ ðN � nÞkn;nþ1; (5)

where n indicates the current number of bound activators

and N is the total number of binding sites. Similarly, acti-

vator unbinding rates are given by

k�ðnÞ ¼ nkn;n�1: (6)

These transition rates allow us to generalize to the more
realistic enhancer with six binding sites.

We first examine a system in which activator molecules
bind and unbind independently from each other

(Figure 3C). There are only two unique microscopic
rates in this system: activator molecules bind at a rate
Current Opinion in Cell Biology 2020, 67:147–157
ki;iþ1 ¼ kb ¼ kb0½A�, with [A] being the activator con-
centration and kb0 the binding rate constant, and unbind
at a rate ki,i�1 = ku. We fix the unbinding rate ku= 0.5 s�1

to ensure consistency with recent experimental mea-
surements of Bicoid in Ref. [45,46]. For simplicity, we
also set kb = 0.5 s�1 (see Appendix C.2.3 for details).

To gain insight into the model’s transcriptional dy-

namics, we use stochastic simulations based on the
Gillespie Algorithm [47]; however a variety of alternative
analytic and numerical approaches exist [40,41,44]. Our
simulations reveal that independent binding leads to a
unimodal output behavior in which the transcription rate
fluctuates rapidly about a single average (Figure 3D).
This result is robust to our choices of kb or ku, as well as
the number of binding sites in the enhancer (Appendix
C.2.2). The observed lack of slow, bimodal fluctuations
leads us to conclude that the independent binding
model fails to recapitulate transcriptional bursting.

One way to extend the independent binding model is to
allow for cooperative protein-protein interactions be-
tween activator molecules. Specifically, we consider a
model where bound activator molecules [69] act to
catalyze the binding of additional activators. Here, the
activator binding rate is increased by a factor u for every
activator already bound, leading to

ki;iþ1 ¼ kbui: (7)

Because we assume that activator unbinding still occurs
independently, the effective unbinding rates remain
unchanged (Equation (6)).

Stochastic simulations of the cooperative binding model
in Figure 3F reveal that the output transcription rate
now takes on an all-or-nothing character, fluctuating
between high and low values that act as effective ON
and OFF states. Further, our simulation indicates that
these emergent fluctuations are quite slow (0.13 tran-
sitions/min for the system shown), despite fast activator
binding kinetics. Both of these phenomena result from
large imbalances between kþ(n) and k�(n) that act as
“kinetic traps.”

Consider the case with five bound activators. If
kþ(5) [ k�(5), then the enhancer is much more likely
to bind one more activator molecule and move to state
six than to lose an activator and drop to state four. For
instance, if kþ(5)/k�(5) = 23 (Figure 3F), then the
system will on average oscillate back and forth between
states five and six 23 times before it finally passes to
state four. While it is possible to generate this kind of
trap without cooperativity at one end of the chain or the
other by tuning kb, cooperative interactions are needed
to simultaneously achieve traps at both ends.
www.sciencedirect.com
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While we focused on binding-mediated cooperativity
here, we note that all results presented above hold
equally well for the unbinding-mediated case where
cooperative interactions between bound molecules sta-
bilize binding by reducing ki,i-1 while maintaining ki,iþ1

unchanged. As discussed in Appendix C.3.4, our analysis
of this unbinding-mediated cooperativity scenario
makes the intriguing additional prediction that rapid

(w1 s) activator dwell times inferred from in vivo ex-
periments could mask the existence of rare long-lived
(�10 s) binding events that, despite their infrequency,
play a key role in driving slow transcriptional burst dy-
namics. Finally, it is important to note that the phe-
nomenon of emergent slow fluctuations is not limited to
activator binding: cooperative interactions in fast
Figure 4

(a)

(c)

Using first-passage time distributions to discriminate between models o
those in Figure 3d, f, and g (purple) is fit to a two-state model (black) and the
times for the rate-limiting step model as a function of the number of rate-limiting
an exponential distribution, but distributions break from this behavior when mor
contrast, first-passage times for the cooperative binding model follow an expo
passage time for various parameters choices of the cooperative binding (blue)
values considered in (b)). Distributions with CV = 1, such as the exponential
CV < 1, fall in the region below this line. Scripts use to generate plots in a, b, c,
= 0.01 s−1, ku

on = 21 s−1,Moff = 1, k1
off = 0.0023 s−1, k i

on =Mon 0.0023 s−1; C, kb =
= 0.5 s−1, kb

off = 0.01 s−1, kb
on = 21 s−1,Moff = 1, toff 2 [1.6, 10.9] min, k1

off = 1/to
0.5 s−1; and u 2 [4.5, 7.4]).

www.sciencedirect.com
molecular reactions elsewhere in the transcriptional
cycle, such as in the dynamics of pre-initiation complex
assembly, could, in principle, also induce slow
fluctuations.

Inspired by theMWCmodel of protein allostery [44,50],
a second way to bridge the timescale gap between
activator binding and transcriptional bursting is to posit

two distinct system configurations: an ON configuration
where binding is favored (kb [ ku) and an OFF
configuration that is less conducive to binding (kb ≪ ku).
From any of the seven binding states, this system can
transition from OFF to ON by traversingMon slow steps,
each with rate kion≪ku, where i is the step number
(Figure 3G). Similarly, transitions from ON to OFF are
Current Opinion in Cell Biology

(d)

(b)

f transcriptional bursting. (a) The outcome of stochastic simulations like
first-passage times out of the OFF state are measured. (b) First-passage
steps Mon calculated using stochastic simulations. A single step results in

e steps are added, yielding increasingly peaked gamma distributions. (c) In
nential distribution. (d) Standard deviation as a function of mean first-
and the rate-limiting step models (red, with color shading indicating the Mon

distribution, fall on the line of slope one while gamma distributions, with
and d are available on GitHub [68]. (Parameters: B, ku

on = ku
off = 0.5 s−1, kb

off
0.004 s−1. ku = 0.5 s−1, and u = 6.7; D (rate-limiting-step model), ku

on = ku
off

ff s
−1, ki

on =Mon/toff s
−1; D (cooperativity model), kb 2 [0.01, 0.003] s−1, ku =
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mediated by Moff steps with rates given by kioff. Sto-
chastic simulations indicate that this system yields
bimodal transcription that fluctuates between high and
low activity regimes on timescales set by the rate-
limiting molecular steps (Figure 3H). Thus, as long as
these steps induce a sufficiently large shift in activator
binding (kb), the rate-limiting step model reconciles
rapid activator binding with transcriptional bursting.

Figure 1B suggests candidates for these slow molecular
steps. For example, the ON state in Figure 3G could
correspond to an open chromatin state that favors
binding while the OFF state could indicate that a
nucleosome attenuates binding such that
Mon = Moff = 1. Our model also allows multiple distinct
rate-limiting steps. For instance, chromatin opening
could require multiple histone modifications (Mon � 2,
Moff= 1), or chromatin opening may need to be followed
by enhancer-promoter co-localization to achieve a high

rate of transcription (Mon = 2, Moff = 1).

Although they are not the only possible models, the
cooperativity and rate-limiting step scenarios discussed
above represent two distinct frameworks for thinking
about how slow processes like bursting can coincide
with, and even arise from, rapid processes like activator
binding. The next challenge in identifying the molec-
ular processes that drive transcriptional bursting is to
establish whether these models make experimentally
distinguishable predictions.
Using bursting dynamics to probe different
models of transcription
While we cannot yet directly observe the microscopic
reactions responsible for bursting in real time, these
processes leave signatures in transcriptional dynamics

that may distinguish molecular realizations of bursting
such as those of our cooperative binding (Figure 3E) and
rate-limiting step (Figure 3G) models. Inspired by
Ref. [27,51e53], we examine whether the distribution
of observed burst separation times (Figure 4A) distin-
guishes between these two models. In keeping with
literature convention, we refer to these separation times
as first-passage times from OFF to ON.

The variability in reactivation times provides clues into
the number of hidden steps in a molecular pathway. For

instance, suppose that bursts are separated by an
average time toff = 1/kon, as defined in the two-state
model in Figure 2A and B. If there is only a single
rate-limiting molecular step in the reactivation pathway
(Mon = 1 in Figure 3G), then the first-passage times will
follow an exponential distribution (Figure 4B) such that
the variability, defined as the standard deviation (soff),
will simply be equal to the mean (toff). Now, consider
the case where two distinct molecular steps, each taking
an average toff/2, connect the OFF and ON states
Current Opinion in Cell Biology 2020, 67:147–157
(Mon = 2). To calculate the variability in the time to
complete both steps and reactivate, we need to add the
variability of each step in quadrature:

soff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
toff

2

2

þ toff

2

2
r

¼ toffffiffiffi
2

p : (8)

More generally, in the simple case in which each step
has the same rate, given an average first-passage time of

toff, the variability in the distribution of measured first-
passage times will decrease as the number of rate-
limiting steps, Mon, increases following

soff ðMonÞ ¼ toffffiffiffiffiffiffiffiffi
Mon

p : (9)

As predicted by Equation (9), increasing the rate-
limiting step number reduces the width of the distri-
bution for the rate-limiting step model obtained from
stochastic simulations, shifting passage times from an
exponential distribution when Mon = 1 to increasingly
peaked gamma distributions when Mon > 1 (Figure 4B).

On the basis of these results, since the fluctuations
between high- and low-activity regimes reflect transi-
tions through many individual binding states in the
cooperative binding model (Figure 3E), we might also
expect this model to exhibit nonexponential first pas-
sage times. Instead, the first-passage times are expo-
nentially distributed (Figure 4C). This result is
consistent with earlier theoretical work that examined a
chain model similar to ours and found that sufficiently
large reverse rates (ku in our case) cause first-passage

time distributions to exhibit approximately exponen-
tial behavior [54].

The coefficient of variation (CV = soff/toff) provides a
succinct way to summarize the shape of passage time
distributions for a wide range of model realizations.
Figure 4D plots soff against toff for each of the model
architectures considered in Figure 4B and C for a range
of different toff values. Points representing distributions
with CV = 1 will fall on the line with slope one and
points for distributions with CV< 1 will fall below it. We

see that both the cooperative binding model and the
single rate-limiting step model have CV values of
approximately one for a wide range of toff values,
consistent with exponential behavior. Conversely, all
models with multiple rate-limiting steps have slopes
that are significantly less than one.

Thus, by moving beyond experimentally measuring
average first-passage time for a given gene and exam-
ining its distribution, it is possible to rule out certain
molecular mechanisms. For example, a nonexponential
www.sciencedirect.com
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distribution would be evidence against the cooperative
binding and single rate-limiting step models (see
Appendix C.1 and Appendix C.4 for details about sto-
chastic simulations and first-passage time calculations).
While these conclusions are specific to the models
considered here, the general approach of invoking the
distributions rather than means and using stochastic
simulations to derive expectations for different models

can be employed to discriminate between molecular
hypotheses in a wide variety of contexts. Indeed, the
examination of distributions has been revolutionary
throughout biology by making it possible to, for
example, reveal the nature of mutations [55], uncover
mechanisms of control of transcriptional initiation [56]
and elongation [57,58], measure translational dynamics
[59], and even count molecules [60].

Note that, while appropriate for qualitatively estimating
the order of magnitude of bursting timescales, raw

fluorescence measurements from MS2 and PP7 experi-
ments such as those in Figure 1AeC do not directly
report on the promoter state. Rather, the signal from
these experiments is a convolution of the promoter state
and the dwell time of each nascent RNA molecule on
the gene body [16]. As a result, inference techniques
like those developed in Refs. [16,26] are often required
to infer underlying burst parameters and promoter
states that can be used to estimate first-passage time
distributions. Other techniques, such as measuring the
short-lived luminescent signal from reporters [27], have

also successfully estimated first-passage times.

The first-passage time analyses discussed here are just
one of an expansive set of approaches to determining the
best model to describe experimental data. For instance,
direct fits of models to experimental time traces could
be used to identify the most appropriate model (see, e.g.
Refs. [26,61]). A discussion of this and other approaches
falls beyond the scope of this work, but we direct the
reader to several excellent introductions to elements of
this field [61e64].
Conclusions
The rapid development of live-imaging technologies has
opened unprecedented windows into in vivo transcrip-
tional dynamics and the kinetics of the underlying mo-
lecular processes. We increasingly see that transcription

is complex, emergent, anddabove alldhighly dynamic,
but experiments alone still fail to reveal how individual
molecular players come together to realize processes
that span a wide range of temporal scales, such as
transcriptional bursting.

Here we have argued that theoretical models can help
bridge this crucial disconnect between single-molecule
dynamics and emergent transcriptional dynamics. By
committing to mathematical formulations rather than
www.sciencedirect.com
qualitative cartoon models, theoretical models make
concrete quantitative predictions that can be used to
generate and test hypotheses about the molecular un-
derpinnings of transcriptional control. We have also
shown how, although different models of biological
phenomena might be indistinguishable in their averaged
behavior, these same models often make discernible
predictions at the level of the distribution of such

behaviors.

Moving forward, it will be critical to continue developing
models that are explicit about the kinetics of their
constituent molecular pieces, as well as statistical
methods for connecting these models to in vivo mea-
surements in an iterative dialogue between theory and
experiment. In particular, robust model selection
frameworks are needed to navigate the enormous space
of possible molecular models for transcriptional control.
Such theoretical advancements will be key if we are to

synthesize the remarkable experimental findings from
recent years into a truly mechanistic understanding of
how transcriptional control emerges from the joint
action of its molecular components.
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