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Gene regulation is central to cellular function. Yet, de-1

spite decades of work, we lack quantitative models that2

can predict how transcriptional control emerges from3

molecular interactions at the gene locus. Thermody-4

namic models of transcription, which assume that gene5

circuits operate at equilibrium, have previously been em-6

ployed with considerable success in the context of bac-7

terial systems. However, the presence of ATP-dependent8

processes within the eukaryotic transcriptional cycle sug-9

gests that equilibrium models may be insufficient to cap-10

ture how eukaryotic gene circuits sense and respond to11

input transcription factor concentrations. Here, we em-12

ploy simple kinetic models of transcription to investigate13

how energy dissipation within the transcriptional cycle14

impacts the rate at which genes transmit information and15

drive cellular decisions. We find that biologically plausi-16

ble levels of energy input can lead to significant gains17

in how rapidly gene loci transmit information, but dis-18

cover that the regulatory mechanisms underlying these19

gains change depending on the level of interference from20

non-cognate activator binding. When interference is low,21

information is maximized by harnessing energy to push22

the sensitivity of the transcriptional response to input23

transcription factors beyond its equilibrium limits. Con-24

versely, when interference is high, conditions favor genes25

that harness energy to increase transcriptional specificity26

by proofreading activator identity. Our analysis further re-27

veals that equilibrium gene regulatory mechanisms break28

down as transcriptional interference increases, suggest-29

ing that energy dissipation may be indispensable in sys-30

tems where non-cognate factor interference is sufficiently31

large.32
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Introduction36

Throughout biology, systems must make accurate de-37

cisions under time constraints using noisy molecular38

machinery. Eukaryotic gene regulation exemplifies this39

challenge: genes must read out input concentrations of40

transcription factor proteins and respond by producing41

appropriate levels of gene product (mRNA and eventu-42

ally protein) in order to drive downstream cellular deci-43

sions. Interestingly, the gene activity underlying cellu-44

lar decision-making is often subject to large amounts45

of noise. Indeed, experiments across a wide range46

of organisms have revealed that eukaryotic transcrip-47

tion is highly stochastic, occurring in episodic bursts 48

(Bothma et al., 2014; Tantale et al., 2016; Nicolas et al., 49

2017; Lionnet and Wu, 2021)—periods of activity in- 50

terspersed with periods of transcriptional silence—that 51

unfold over timescales ranging from minutes to hours 52

(Lammers et al., 2020). Because of this stochasticity, 53

the transcription rate is a noisy reflection of transcrip- 54

tion factor concentration. Over time, the accumulation 55

of gene products tends to average out this noise, but bi- 56

ological processes must operate under time constraints: 57

cells in developing fruit fly embryos have only minutes 58

to determine their developmental fates (et al. Alberts 59

B, Johnson A, Lewis J, 2002; Desponds et al., 2020), 60

antigen recognition in T-cells unfolds over a single day 61

(Obst, 2015), and cells in adult tissues are constrained 62

by mRNA half-lives that range from minutes to days 63

(Pérez-Ortín et al., 2013). 64

A key question, therefore, is how the molecular ar- 65

chitecture of gene loci—the number and identity of bio- 66

chemical steps in the transcriptional cycle and the reac- 67

tion rates connecting these steps—dictates the amount 68

of time needed for bursty gene expression to drive ac- 69

curate cellular decisions. In particular, while it is widely 70

accepted that processes within the eukaryotic transcrip- 71

tional cycle consume biochemical energy (Coulon et al., 72

2013; Wong and Gunawardena, 2020), we do not yet 73

know what non-equilibrium should “look like” in the con- 74

text of transcriptional systems. Indeed, it remains chal- 75

lenging not only to predict unambiguous signatures of 76

energy expenditure that can be detected experimen- 77

tally (Hammar et al., 2014; Park et al., 2019; Eck et al., 78

2020), but also to establish how energy consumption 79

can be harnessed to improve gene regulatory perfor- 80

mance in the first place (Zoller et al., 2021). 81

Here, we use concepts from information theory and 82

statistical physics as a lens to investigate how energy 83

dissipation impacts the timescale on which gene cir- 84

cuits can drive cellular decisions. We consider a sim- 85

ple binary choice scenario wherein a cell must decide, 86

as rapidly as possible, whether it is subjected to a high 87

(c1) or low (c0) concentration of a transcriptional activa- 88

tor based on the transcriptional output of a gene locus. 89

The basis for this decision is the gene’s input-output 90

function (Figure 1A and B), which emerges from micro- 91

scopic interactions between input activator molecules 92

and their target gene loci (Figure 1C) that induce dif- 93

ferences in the output dynamics of transcriptional burst- 94
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ing (Figure 1D) for high and low activator concentra-95

tions. In turn, these differences in burst dynamics drive96

different rates of mRNA accumulation (Figure 1E). Be-97

cause each ON/OFF fluctuation is stochastic, the result-98

ing gene expression levels are noisy, and the cell must99

wait some time T before it is possible to accurately dis-100

tinguish between c1 and c0. Our central question in this101

work is whether energy dissipation within the molecular102

processes driving transcription allows gene loci to de-103

crease the decision time, T , and, if so, how this perfor-104

mance gain manifests in terms of measurable features105

of the transcriptional input-output function.106

There are multiple ways in which energy dissipation107

could alter the input-output behavior of a gene locus to108

improve cellular decision-making. As illustrated in Fig-109

ure 1A and B, non-equilibrium processes could increase110

sensitivity to differences in input transcription factor111

concentration (“sharpness”) or suppress transcriptional112

noise (“precision”). Since our model assumes that, in113

addition to the concentration of the cognate activator, C,114

the gene locus is subject to some level of non-cognate115

factors, W , energy dissipation could also buffer against116

interference from off-target activation (“specificity”).117

Recent works have begun to uncover a complex118

space of tradeoffs among these three aspects of tran-119

scriptional performance both at and away from ther-120

modynamic equilibrium. A recent study found that121

systems operating at thermodynamic equilibrium suf-122

fer from strict tradeoffs between transcriptional speci-123

ficity and transcriptional precision, but this tradeoff can124

be overcome by gene circuits that spend energy to125

enhance specificity through a scheme reminiscent of126

classical kinetic proofreading (Shelansky and Boeger,127

2020; Ninio, 1975; Hopfield, 1974). Likewise, a sepa-128

rate study demonstrated that energy dissipation can en-129

hance transcriptional sharpness (Estrada et al., 2016).130

Interestingly, while energy can increase sharpness and131

specificity separately, another study found that non-132

equilibrium levels of specificity come at the cost of133

sub-optimal sharpness (Grah et al., 2020). The au-134

thors also found that energy dissipation tends to de-135

crease transcriptional precision, although this conclu-136

sion likely hinges on the study’s modeling assumptions137

(Grah et al., 2020). Despite this progress, it remains138

unclear how these non-equilibrium gains and tradeoffs139

ultimately impact how effectively gene circuits can har-140

ness differences in transcription factor concentrations to141

drive cellular decisions.142

In this work, we identify a key quantity, the rate of143

information transmission from input transcription factor144

concentrations to output transcription rates as the quan-145

titative link between energy-dependent changes in the146

transcriptional input-output function (Figure 1B) and the147

speed at which gene loci drive accurate biological de-148

cisions (Figure 1E) (Siggia and Vergassola, 2013; De-149

sponds et al., 2020). We use this rate as a lens to150

examine the interplay between energy dissipation and151

cellular decision-making. We consider model gene cir-152

Figure 1. Three regulatory features shaping transcriptional information
transmission. (A) Gene regulatory input-output function illustrating the basic
biological problem considered in this work. Here, a cell must distinguish be-
tween two activator concentrations, c0 and c1, based on the transcriptional
output of a gene locus (purple curve). (B) We examine how three regulatory
features of the transcriptional input-output function—sharpness, precision, and
specificity—combine to dictate the rate at which the transcriptional output drives
biological decisions. (C) Four-state MWC-like model (Phillips and Orme, 2020)
of transcription used as the foundation of our investigations. Here, a single ac-
tivator (green square) may bind to a specific site at the gene locus, and mRNA
production occurs when the gene locus switches to its active (ON) conformation.
A hypothetical energy input is depicted along the rate from state 3 to state 0. In
practice, our framework permits non-equilibrium driving to occur along any of the
eight transition rates in the model. (D) Simulated burst dynamics for one realiza-
tion of the model shown in (C). Activator binding drives different burst dynamics
at loci exposed to high and low activator concentrations. The burst cycle time
is defined as the average time required to complete one ON → OFF → ON cy-
cle and sets the timescale over which biological decisions unfold. (E) Illustrative
simulation results for accumulated mRNA levels driven by c1 and c0. Solid lines
show trajectories for a single locus, and shaded regions indicate the standard
deviation of levels taken across 100 simulated trajectories. The vertical dashed
line indicates the “decision time,” when the expected mRNA levels driven by c1
and c0 are sufficiently different to permit an accurate decision about the input
activator concentration.

cuits with varying numbers of activator binding sites. We 153

also examine models with different numbers of molecu- 154

lar steps in the activation pathway, since transcriptional 155

activation is also thought to require multiple molecular 156

steps beyond activator binding itself, such as the local- 157

ization of key transcription factors to the gene locus (No- 158

gales et al., 2017). 159

Lammers et al. | | 2

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.01.498451doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.01.498451
http://creativecommons.org/licenses/by-nc/4.0/


A A simple model for probing the interplay between energy and information in transcription

We demonstrate that energy dissipation increases160

the rate at which genes can drive cellular decisions for161

all models considered. Moreover, the presence of multi-162

ple activation steps enables gene loci to more effectively163

harness energy to increase information transmission. At164

the level of the transcriptional input-output function (Fig-165

ure 1A), while energy input can drive increases in all166

three regulatory features considered (sharpness, preci-167

sion, and specificity; Figure 1B), genes cannot realize168

these non-equilibrium gains simultaneously. In partic-169

ular, we show that the upper limit of information trans-170

mission is defined by a shifting tradeoff between sharp-171

ness and specificity. When the relative concentration of172

wrong-to-right activator species is small (e.g., in the fruit173

fly embryo), non-equilibrium gene circuits that maximize174

sharpness drive the fastest decisions. However, when175

the ratio of non-cognate to cognate activator concentra-176

tions is larger than the intrinsic difference in their binding177

affinities (e.g., in mammalian cells), gene circuits must178

instead prioritize transcriptional specificity.179

In closing, we identify hallmarks of non-equilibrium180

gene regulation that may be amenable to experimen-181

tal detection. We use our model to illustrate how sim-182

ple point mutations in activator binding sites can lead183

to robust signatures of non-equilibrium regulatory pro-184

cesses. Additionally, our findings emphasize the impor-185

tance of using theoretical models that account for non-186

cognate factor binding when interpreting experimental187

measurements of gene expression. Altogether, this188

work provides a rigorous foundation for interrogating the189

role of energy dissipation in eukaryotic gene circuit reg-190

ulation.191

Results192

A. A simple model for probing the interplay be-193

tween energy and information in transcription194

We sought to establish gene circuit models that cap-195

ture two essential characteristics of eukaryotic tran-196

scription. First, gene regulation hinges upon interac-197

tions between specific and general transcription factors.198

Although salient regulatory information tends to reside199

exclusively in a few specific transcription factors tar-200

geted to binding sites within enhancers (Vincent et al.,201

2016), these proteins are not sufficient to give rise to202

transcription. Instead, transcription and transcriptional203

control depend on interactions between specific regu-204

latory factors and other key molecular players at the205

gene locus, such as mediators (Grah et al., 2020; Malik206

and Roeder, 2016; Rybakova et al., 2015; Kagey et al.,207

2010), RNA polymerase (Tantale et al., 2016), nucleo-208

somes (Shelansky and Boeger, 2020; Mirny, 2010), and209

various sub-units of the pre-initiation complex (Nogales210

et al., 2017). While these factors do not themselves211

carry biological information, they constitute key molec-212

ular steps within the transcriptional cycle. This multi-213

plicity of molecular players implies that gene loci may214

exist in multiple distinct molecular states corresponding215

to different binding configurations of specific and gen- 216

eral molecules (e.g., (Biddle et al., 2019)). Moreover, 217

some of these processes—e.g., nucleosome displace- 218

ment (Zhou et al., 2016), pre-initiation complex assem- 219

bly (Taatjes, 2017), and RNA polymerase initiation (Yan 220

and Gralla, 1997)—entail the dissipation of biochemical 221

energy, opening the door to non-equilibrium behaviors. 222

Second, it has recently become apparent that eu- 223

karyotic transcription is characterized by stochastic, 224

episodic bursts of activity interspersed with periods of 225

transcriptional silence (Bothma et al., 2014; Fukaya 226

et al., 2016; Little et al., 2013; Zoller et al., 2018; Tantale 227

et al., 2016; Lammers et al., 2020). Since the concen- 228

tration of specific transcription factors can regulate burst 229

dynamics (Lammers et al., 2020; Zoller et al., 2018; Xu 230

et al., 2015), a simple model would suggest that tran- 231

scriptional bursts originate from the binding and unbind- 232

ing of specific transcription factors. Although this may 233

be the case in some yeast genes (Donovan et al., 2019), 234

recent in vivo measurements in higher eukaryotes have 235

revealed that activators and repressors typically bind 236

DNA for seconds, rather than minutes or hours (Lam- 237

mers et al., 2020; Lionnet and Wu, 2021). This tempo- 238

ral disconnect between bursting and transcription factor 239

binding suggests a model in which transcriptional burst 240

cycles—corresponding to OFF → ON → OFF fluctua- 241

tions in the locus conformation (Figure 1D)—are not de- 242

termined by transcription factor binding alone, but entail 243

additional molecular reactions that are decoupled from 244

the timescale of activator binding. 245

Together, these observations support a Monod– 246

Wyman–Changeux (MWC)-like framework (Phillips and 247

Orme, 2020; Grah et al., 2020; Shelansky and Boeger, 248

2020; Mirny, 2010) for modeling transcription wherein 249

specific transcription factors act as effector molecules, 250

conditioning the frequency with which the gene locus 251

fluctuates between active and inactive transcriptional 252

conformations. The simplest model that meets this de- 253

scription is one where a transcriptional activator binds to 254

a single binding site at the gene locus, and where a sec- 255

ond molecular reaction dictates fluctuations between 256

two conformations: an inactive (OFF) state where no 257

mRNA is produced and a transcriptionally active (ON) 258

state where mRNA is produced at rate r0. 259

If we neglect the binding of non-cognate transcrip- 260

tion factors, this leads to the model shown in Figure 1C. 261

This model contains four basal reaction rates: the tran- 262

scription factor binding and unbinding rates (kb and ku) 263

and the locus activation and deactivation rates (ka and 264

ki). We leave the molecular identity of this locus acti- 265

vation step unspecified, but in principle, it may be any 266

of the elements of the general transcriptional machin- 267

ery mentioned above. In addition to these basal rates, 268

the η terms in Figure 1C capture interactions between 269

the transcription factor and activation step. Here, the 270

first subscript indicates which molecular reaction the η 271

term modifies (binding or unbinding; activation or inacti- 272

vation), and the second subscript indicates the molecule 273
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C Energy dissipation increases the rate of information transmission

performing the modification (bound activator “b” or acti-274

vated molecular step “a”). For instance, ηab encodes275

the degree to which the rate of locus activation is mod-276

ified by having a transcription factor bound at the locus277

(ηab > 1 corresponds to an activating transcription fac-278

tor). Lastly, the average rate of mRNA production in this279

model is simply equal to r = r0(π2 +π3), where πi is the280

steady-state probability of finding the system in state i.281

B. Calculating energy dissipation rates and deci-282

sion times283

At equilibrium, all state transitions in our model must284

obey the law of microscopic reversibility. Energy dissi-285

pation along one or more of the microscopic transitions286

shown in Figure 1C lifts this strict equilibrium constraint287

and opens the door to novel forms of non-equilibrium288

gene regulatory logic. For the model shown in Fig-289

ure 1C, the energy dissipated per unit time (Φ) can be290

expressed as291

Φ = J ln ηabηua
ηibηba

, (1)292

where the η terms are defined in Figure 1C and the293

net cycle flux, J , encodes the degree to which micro-294

scopic transitions in the system are biased in the clock-295

wise (J > 0) or counterclockwise (J < 0) direction (Hill,296

1989). See Appendix A.5 for further details. Φ is a297

strictly positive quantity with units of kBT per unit time298

that indicates how “near” or “far” a system is from ther-299

modynamic equilibrium (Hill, 1989; Lang et al., 2014).300

For ease of comparison across different realizations of301

our model gene circuit, we express Φ in units of kBT per302

burst cycle (“energy per burst”).303

Our central aim is to understand how energy dis-304

sipation impacts the rate at which gene loci transmit305

information and drive cellular decisions. For simplic-306

ity, we assume that c0 and c1 are constant over time.307

We also stipulate that the difference between these308

concentrations (δc) is relatively small, such that δc =309

c1 − c0 = 0.1c∗, where c∗ is the midpoint concentra-310

tion c∗ = (c1 + c0)/2. This value of δc is equivalent, for311

example, to concentration differences for the activator312

Bicoid between adjacent nuclei in early fruit fly devel-313

opment (Gregor et al., 2007). Figure 1E shows trends314

indicating the predicted integrated transcriptional output315

of a gene locus when it is exposed to high or low ac-316

tivator concentrations. Intuitively, it should be easier to317

distinguish between these two scenarios when (i) the318

difference between average transcript production rates319

(slope of the lines in Figure 1E) is large or (ii) the noise320

(shaded regions) in the accumulated output is small.321

IR codifies this intuition, providing a quantitative mea-322

sure of a gene’s ability to read out and respond to dif-323

ferent input activator concentrations. Formally, IR is de-324

fined as the rate of change in the Kullback–Leibler di-325

vergence (Cover and Thomas, 2006) between our two326

hypotheses (C = c0 and C = c1) given the expected327

transcriptional output of our model gene circuit. If we328

take the noise in the transcriptional output to be ap-329

proximately Gaussian (see Appendix B), IR can be ex- 330

pressed as 331

IR = 1
2

(δc

c∗

)2

︸ ︷︷ ︸
input

× s2p2︸ ︷︷ ︸
output

, (2) 332

where IR is strictly positive and has units of information 333

per unit time and s and p are the sharpness and pre- 334

cision of the transcriptional response, respectively, as 335

defined in Figure 1B. See Appendix C for a full deriva- 336

tion of this expression. We note that the native units of 337

Equation 2 are natural log units (“nats”). For simplicity, 338

we give all informational quantities in the more familiar 339

“bits,” such that IR has units of bits per burst cycle (“bits 340

per burst”). Additionally, the precision term, p, pertains 341

solely to noise from intrinsic fluctuations between micro- 342

scopic states at the gene locus and does not account for 343

Poisson noise resulting from mRNA synthesis. In gen- 344

eral, this noise is expected to be small relative to the 345

noise from locus fluctuations for the parameter regimes 346

considered (see Appendix D for details). 347

Equation 2 contains two terms: an input compo- 348

nent that encodes the size of the activator concentra- 349

tion gradient and an output component that depends 350

on the sharpness and precision of the transcriptional 351

input-output function (Figure 1A and B). This expres- 352

sion provides quantitative support for the intuitions out- 353

lined above. IR can be increased both by increasing the 354

difference between the transcription rates driven by c1 355

and c0 (i.e., increasing the sharpness) and by decreas- 356

ing the noise level (i.e., increasing precision). Moreover, 357

since both s and p can be calculated analytically from 358

the microscopic reaction rates in our gene circuit (see 359

Appendix A), Equation 2 allows us to calculate and com- 360

pare information rates for gene circuits with different mi- 361

croscopic reaction rates. 362

The IR, in turn, dictates how rapidly cells can distin- 363

guish between the two activator concentrations, c0 and 364

c1, based on the accumulated transcriptional output of 365

a gene circuit. Previous works (Siggia and Vergassola, 366

2013; Desponds et al., 2020) have established that the 367

theoretical lower limit for the time required to distinguish 368

between c0 and c1 is given by 369

T = ln
(1−ε

ε

)1−2ε

IR
, (3) 370

where ε is the probability of being wrong, i.e., choos- 371

ing c1 when the true value is c0 (or vice versa) (see 372

Appendix E and (Desponds et al., 2020) for details). 373

We note the error-tolerance ε in Equation 3 is extrinsic 374

to the gene circuit model and depends on the nature 375

of the downstream cellular processes. Unless other- 376

wise noted, we follow (Desponds et al., 2020) and set 377

ε = 0.32, equivalent to an error level of “1 sigma.” 378

C. Energy dissipation increases the rate of informa- 379

tion transmission 380

Utilizing our framework, we investigated whether in- 381

creasing the energy dissipated by our model gene cir- 382

cuit, Φ, increases the rate at which this circuit drives 383
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C Energy dissipation increases the rate of information transmission

cellular decisions between c0 and c1. We expanded384

methods employed in (Estrada et al., 2016; Eck et al.,385

2020) to develop an algorithm capable of systematically386

exploring how different transition rates dictate gene cir-387

cuit features. This algorithm can determine the maxi-388

mum IR achievable by different realizations of our gene389

circuit as a function of energy dissipation. See Appen-390

dices F and G for details regarding its implementation391

and validation.392

Figure 2A shows the relation between IR and Φ re-393

sulting from our numerical analysis. Here, each circle394

represents IR and Φ values for a single realization of our395

gene circuit (Figure 1C), as defined by its complement396

of transition rate values. Near equilibrium, our analy-397

sis reveals that gene circuits can transmit information398

no faster than 0.035 bits per burst (far left-hand side of399

Figure 2A). According to Equation 3, this means that400

the best equilibrium gene circuits require at least 110401

burst cycles to drive a decision between concentrations402

c1 and c0 with an error probability of 32% when these403

concentrations differ by 10% (Figure 2B). In the de-404

veloping fruit fly embryo (D. melanogaster), where the405

burst timescale (τb) is approximately 2 minutes (Lam-406

mers et al., 2020), this translates to a decision time407

of 3.7 hours, far too long to meet the time constraints408

imposed by early nuclear cleavage cycles (8–60 min-409

utes (et al. Alberts B, Johnson A, Lewis J, 2002)). Our410

equilibrium gene circuit would require even longer times411

in adult nematode (C. elegans) and mouse (M. muscu-412

lus) cells, where τb is much higher, with measurements413

ranging from 61 to 105 minutes (T ≥ 112 hours, (Lee414

et al., 2019)) and 30 minutes to multiple hours (T ≥ 55415

hours, (Lammers et al., 2020)), respectively. In each416

case, these timescales likely exceed decision time lim-417

its imposed by mRNA decay or cellular division times,418

which set upper limits on the time over which gene out-419

put can be averaged (horizontal lines in Figure 2B; see420

Appendix H for further details).421

Our analysis indicates that energy dissipation opens422

the door to improved information transmission, leading423

to a fourfold increase in the upper IR limit from 0.0035424

to 0.014 bits per burst cycle (Figure 2A). Moreover, this425

performance gain is realized at biologically plausible426

levels of energy consumption: IR reaches its maximum427

non-equilibrium value at Φ ≈ 20 kBT per cycle, which is428

approximately equivalent to the hydrolysis of one to two429

ATP molecules (Milo and Phillips, 2015). This corre-430

sponds to an energy-dependent decrease in decision431

time from 110 to 29 burst cycles (red shaded region432

in Figure 2B). This reduction meets the upper decision433

limit for mouse cells (Figure 2B). Yet there remains an434

absolute speed limit that no amount of energy dissipa-435

tion can overcome, as shown by the empty space below436

the red non-equilibrium boundary in Figure 2B.437

How can gene circuits do better? Real transcriptional438

systems are typically far more complex than the simple439

four-state model in Figure 1C; gene enhancers typically440

feature multiple transcription factor binding sites (Vin-441

cent et al., 2016), and transcriptional activation depends 442

on the combined action of multiple molecular compo- 443

nents at the gene locus (Lammers et al., 2020). Thus, to 444

overcome this speed limit, we must examine the impact 445

of tuning two molecular “knobs”: the number of specific 446

activator binding sites in our model (NB) and the num- 447

ber of molecular steps required to achieve productive 448

transcription (NA). For simplicity, we focus on systems 449

in which all binding sites are identical and assume iden- 450

tical kinetics for all molecular transitions between locus 451

conformations. While restrictive, this simple approach 452

gives rise to rich, biologically salient behaviors. While 453

we explore the effects of varying NB and NA separately, 454

these mechanisms are mutually compatible and may act 455

jointly in real biological systems. See Appendix I for de- 456

tails regarding the implementation of these higher-order 457

models. 458

Adding binding sites improves information-energy trade- 459

offs. We first examined the performance of gene circuit 460

models with multiple binding sites. In these models (as 461

with the four-state model described above), activator 462

binding does not directly dictate transitions into and out 463

of transcriptionally active molecular states, but instead 464

increases or decreases the likelihood of these transi- 465

tions. Models with multiple binding sites also permit co- 466

operative interactions between activator molecules, en- 467

coded by ηub terms (see Appendix I and Figure A9A). 468

With these assumptions, we employed our parameter 469

sweep algorithm to explore tradeoffs between the rate of 470

energy dissipation (Φ) and the IR for systems with 1–5 471

activator binding sites. In all cases, we held the number 472

of activation steps constant at NA = 1 (as in Figure 1C). 473

As illustrated in Figure 2C, adding activator binding 474

sites shifts the IR vs. Φ tradeoff boundary from Fig- 475

ure 2A upwards, allowing for higher information trans- 476

mission rates for a given energy dissipation rate. This 477

leads to significant IR gains, even in gene circuits op- 478

erating near the equilibrium limit (vertical dashed line 479

in Figure 2C), with the upper equilibrium limit increas- 480

ing by approximately a factor of 25 from 0.0035 bits 481

per burst cycle for NB = 1 to 0.090 bits per cycle for 482

NB = 5. As a result, equilibrium gene circuits with 5 483

binding sites need as little as 5 burst cycles to distin- 484

guish between c1 and c0, easily satisfying the decision 485

time constraints of the biological systems shown in Fig- 486

ure 2B (Figure S1A). More generally, the lower decision 487

time limit scales as the inverse of the number of binding 488

sites squared (T ∼ N−2
B , see Figure S1A). 489

Adding molecular activation steps allows gene circuits to 490

harness higher rates of energy dissipation. Next, we ex- 491

panded the four-state model by changing the number of 492

activation steps (1 ≤ NA ≤ 4) while holding the number 493

of binding sites fixed at NB = 1 (top panel of Figure 2D). 494

To illustrate this model, let us first consider the baseline 495

case, where NA = 1. Here, locus activation depends on 496

the state of a single molecular component (e.g., medi- 497

ator), which can be disengaged (i.e., the locus is OFF) 498
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D Increases in non-equilibrium sharpness improve information transmission

or engaged (i.e., the locus is ON). Now, consider model499

in which locus activation also depends on the state of500

a second molecular component (e.g. PIC assembly)501

that can, likewise, be either engaged or disengaged. If502

we stipulate that both components must be engaged to503

achieve RNA polymerase initiation, then two molecular504

activation steps are required to reach the ON state and505

NA = 2. We use the same logic to extend the model506

to the NA = 3 and NA = 4 cases to capture the impact507

of the additional molecular components necessary for508

transcription. See Appendix I and Figure A9B for de-509

tails.510

We conducted parameter sweeps to examine the511

interplay between energy dissipation and information512

transmission for these systems. As with adding bind-513

ing sites, the addition of activation steps leads to in-514

creased rates of information transmission. Unlike in-515

creasing NB, however, these IR gains do not come for516

free. Instead, the addition of activation steps extends517

the Φ-IR boundary into higher-energy regimes, allowing518

non-equilibrium gene circuits to achieve larger gains in519

IR at the expense of increased energy dissipation rates520

(Figure 2D).521

This increased IR gain means that systems with mul-522

tiple activation steps can drive decisions between c1523

and c0 more rapidly than the simple four-state gene cir-524

cuit. For example, non-equilibrium gene circuits with525

four activation steps can drive decisions nearly four526

times as rapidly as systems with a single step (8 vs. 29527

burst cycles; see Figure S1B). This 8-burst-cycle limit528

approaches what can be achieved by an equilibrium529

gene circuit with 5 activator binding sites (5 burst cycles;530

compare Figure S1A and B), suggesting a similarity be-531

tween adding activator binding sites at equilibrium and532

adding activation steps out of equilibrium. However, this533

parity has an energetic cost: to approach the perfor-534

mance of the five-binding-site model, the one-binding-535

site system with five conformations must dissipate at536

least 180 kBT per burst.537

D. Increases in non-equilibrium sharpness improve538

information transmission539

According to Equation 2, the energy-dependent in-540

creases in IR uncovered in Figure 2 must result from in-541

creased sharpness, increased precision, or some com-542

bination thereof. Thus, to uncover how energy reshapes543

the transcriptional input-output function to increase IR,544

we used our numerical sweep algorithm to examine the545

space of achievable sharpness and precision values for546

our baseline four-state model (Figure 1C) both at and547

away from thermodynamic equilibrium. One challenge548

in comparing sharpness and precision levels across dif-549

ferent gene circuits is that the upper bounds on both550

s and p depend on the fraction of time, πa, the sys-551

tem spends in the transcriptionally active conformation,552

which changes as the transition rates vary between dif-553

ferent realizations of our gene circuit. Thus, for ease554

of comparison across different model realizations, we555

give all results in terms of normalized sharpness and 556

precision measures: S = s/b and P = pb, where b = 557

πa(1 − πa) is the binomial variance in the occupancy of 558

the transcriptionally active conformation. These metrics 559

have intuitive interpretations: the S value of a particular 560

gene circuit’s input-output function gives the Hill coeffi- 561

cient of an equivalently sharp Hill function, and P is in- 562

versely proportional to the level of intrinsic noise in the 563

transcriptional output. See Appendix J for details. 564

Figure 3A shows the results of our analysis, with each 565

circle representing the S and P values for a single gene 566

circuit realization. For systems operating at equilibrium 567

(blue dots in Figure 3A), we find that both S and P are 568

bounded by “Hopfield barriers” (dashed lines) (Hopfield, 569

1974; Estrada et al., 2016) with values of 1 and 1/
√

2, 570

respectively. These bounds place strict limits on infor- 571

mation transmission at equilibrium and have a straight- 572

forward interpretation: they are precisely equal to the 573

sharpness and precision of a simple two-state gene cir- 574

cuit with a single activator binding site and no molecu- 575

lar activation step, where the ON rate is concentration- 576

dependent (kon ∝ [c], see Appendix K for details). 577

Energy dissipation permits gene circuits to overcome 578

these equilibrium performance bounds, increasing S 579

by up to a factor of 2 and P by up to a factor of 580√
2 with respect to their equilibrium limits (Figure 3A). 581

Yet, while energy can improve sharpness and preci- 582

sion individually, the absence of realizable gene circuits 583

in the upper-right-hand corner of Figure 3A indicates 584

that genes cannot maximize both simultaneously. This 585

tradeoff places inexorable limits on the degree to which 586

energy can boost IR and—as illustrated in Figure 3B— 587

arises because maximally sharp and maximally precise 588

gene circuits require distinct and incompatible underly- 589

ing molecular architectures (see Appendix L for details). 590

Because sharpness and precision cannot be maxi- 591

mized simultaneously, gene circuits that dissipate en- 592

ergy must “choose” which aspect to maximize. From 593

the perspective of IR maximization, the choice is clear: 594

Figure 3A shows the location of 100 gene circuits within 595

1% of the maximum of 0.014 bits per cycle (Figure 2A) 596

in S − P phase space (gray circles). Thus, the most in- 597

formative gene circuits maximize transcriptional sharp- 598

ness (S = 2) at the cost of retaining equilibrium preci- 599

sion levels (P = 1/
√

2), which makes sense given that 600

non-equilibrium systems can boost S by up to a factor of 601

2 while P is limited to a maximum gain of
√

2. As with the 602

equilibrium case, these S and P values have an intuitive 603

interpretation: they are simply equal to the expected 604

sharpness and precision of a two-state system, one in 605

which both the ON and OFF rates are concentration- 606

dependent (see Appendix M). Thus, although spend- 607

ing energy to overcome the constraints of detailed bal- 608

ance opens up a vast new space of possible regulatory 609

schemes, maximally informative non-equilibrium gene 610

circuits exhibit an emergent simplicity, converging upon 611

architectures in which their many molecular degrees of 612

freedom collapse into a few effective parameters that 613
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E Energy dissipation is required for rapid cellular decisions at high non-cognate factor concentrations

Figure 2. Energy dissipation increases the information transmission rate in gene circuits. (A) Information rate (IR from Equation 2) as a function of energy
dissipation rate (Φ from Equation 1) for a parameter sweep exploring all possible model realizations. Modest energy dissipation rates can lead to a significant increase
in the maximum amount of information that can be transmitted per burst cycle. (B) The amount of time needed to distinguish between c0 and c1 as a function of the
probability of deciding incorrectly for equilibrium and non-equilibrium gene circuits. The decision time is given in terms of the number of transcriptional burst cycles
required for a decision to be made. Note that the x-axis is arranged in order of decreasing error probability (i.e., increasing accuracy) from left to right. Horizontal lines
indicate approximate upper bounds on decision times (in burst cycles) for different biological systems. (C) Parameter sweep results for achievable IR and Φ values
for gene circuits with 1–5 activator binding sites. Achievable regimes for each molecular architecture are indicated as color-coded shaded regions. (D) Sweep results
illustrating achievable IR vs. Φ regimes for gene circuits featuring 2–5 locus conformations. (For all parameter sweep results in A-D, transition rate and interaction term
magnitudes, k and η, were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time. ηab and ηib were further constrained
such that ηab ≥ 1 and ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene locus.)

define system behavior.614

Non-equilibrium gains in sharpness drive IR increases615

in more complex regulatory architectures. To assess the616

generality of our results, we used our parameter sweep617

algorithm to examine equilibrium and non-equilibrium618

tradeoffs between sharpness and precision for more619

complex gene circuits with 2–5 activator binding sites620

and 2–4 molecular activation steps. In all cases, energy621

dissipation increases the upper limits of S and P, and as622

with our simple four-state model, these non-equilibrium623

performance gains cannot be realized simultaneously624

(Figure S2A and B). For all models considered, the625

gains in IR uncovered in Figure 2 are maximized by626

spending energy to increase sharpness, rather than627

precision (see Appendix N for further details). For the628

case of multiple activator binding sites (NB > 1), the NB-629

dependent increases in IR shown in Figure 2C arise be-630

cause increasing the number of binding sites increases631

the upper sharpness limit both at and away from equilib-632

rium (Figure S2A-C and Appendix N; (Grah et al., 2020;633

Estrada et al., 2016)).634

More surprisingly, we find that increasing the num-635

ber of molecular conformations (NA) while holding the636

number of activator binding sites can increase transcrip-637

tional sharpness in systems operating out of equilib-638

rium. Figure 3C shows the range of achievable S val-639

ues for non-equilibrium systems as a function of NA.640

The upper S limit scales linearly with NA, such that641

Sneq ≤ NA + 1. This linear scaling is identical to the642

effect of adding activator binding sites at equilibrium,643

where Seq ≤ NB (Figure S2C), providing intuition for why 644

systems with multiple molecular steps can drive faster 645

decisions: with respect to transcriptional sharpness, the 646

regulation of multiple activation steps by a single bind- 647

ing site in a non-equilibrium gene circuit is functionally 648

equivalent to the effect of having multiple binding sites 649

at equilibrium (Figure 3D). 650

E. Energy dissipation is required for rapid cellular 651

decisions at high non-cognate factor concentra- 652

tions 653

In real biological settings, cells do not contain only a 654

single species of transcription factor. Therefore, to drive 655

timely biological decisions, a gene circuit must not only 656

sense and respond to its cognate transcription factor, 657

but also efficiently filter out “irrelevant” signals from non- 658

cognate factors. This process is inherently challeng- 659

ing in eukaryotes, where short DNA-binding footprints 660

lead to modest energetic differences between specific 661

(correct) and non-specific (incorrect) transcription fac- 662

tor binding events on the order of 4.6 kBT (Maerkl and 663

Quake, 2007), meaning that non-cognate transcription 664

factors unbind from gene loci approximately 100-fold 665

faster than cognate factors (α = kw
u /ku ≈ 100). 666

To understand whether this 100-fold difference in 667

binding kinetics is sufficient to drive decisions in real bio- 668

logical systems, we examined a stripped-down scenario 669

in which cognate and non-cognate activators must com- 670

pete to bind a single binding site (Figure 4A). We can 671

quantify the severity of non-cognate factor interference 672

by dividing the fraction of time the site is bound by a cog- 673
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E Energy dissipation is required for rapid cellular decisions at high non-cognate factor concentrations

Figure 3. Increased transcriptional sharpness drives increased information transmission away from equilibrium. (A) Scatter plot of parameter sweep results
showing the normalized sharpness and precision of 3,000 simulated gene circuits with and without equilibrium constraints. Energy expenditure overcomes Hopfield-
like barriers, doubling the upper sharpness limit and increasing the precision limit by a factor of

√
2. The absence of gene circuits in the upper right quadrant indicates

that no circuits can simultaneously maximize sharpness and precision. Calculations indicate that IR-maximizing systems (gray circles) spend energy to maximize
non-equilibrium sharpness while maintaining precision at the maximum equilibrium level. (B) Illustrative input-output functions for a maximally informative equilibrium
gene circuit (blue) from the parameter sweeps shown in (A) and maximally sharp and precise non-equilibrium gene circuits (green and red, respectively). The shaded
region indicates predicted noise levels in gene expression patterns after 25 bursting cycles. Cartoons below illustrate molecular motifs for maximally precise and sharp
non-equilibrium gene circuits. (C) Plot of achievable non-equilibrium sharpness levels for models with 2–5 locus conformations and one activator binding site. Each
circle represents a single gene circuit model. Normalized sharpness is bounded by the number of locus conformations. (D) Cartoon illustrating functional equivalence
between three binding sites at equilibrium and two activation steps out of equilibrium. The plot shows input-output functions for maximally sharp realizations of each
case, demonstrating the equivalent sharpness levels driven by the two strategies. (For parameter sweep results in A and C, transition rate and interaction term
magnitudes, k and η, were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time. ηab and ηib were further constrained
such that ηab ≥ 1 and ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene locus.)

nate factor (πc) by the total fraction of time it is bound by674

either the cognate or non-cognate species (πc +πw). If675

we assume equal basal binding rates (kb) for cognate676

and non-cognate species, then the fraction of time the677

locus spends bound by a cognate transcription factor is678

given by679

pc = πc

πc +πw
= f

f + w
c

, (4)680

where we introduce a new quantity, the transcriptional681

specificity (f ), defined as the (average) ratio of the682

probability of having cognate and non-cognate factors683

bound, normalized by the concentration, namely684

f = w

c

πc

πw
. (5)685

We note that Equation 5, which considers competition686

between two activator species to bind and activate a687

single gene, is distinct from and complements speci-688

ficity definitions employed in previous works, which ex-689

amine the problem for a single activator species that 690

regulates a cognate and a non-cognate locus (Shelan- 691

sky and Boeger, 2020; Grah et al., 2020) (see Appendix 692

O.1 for details). 693

From Equation 4, we see that f sets the scale for the 694

severity of non-cognate factor interference. At equilib- 695

rium, f is equal to the affinity factor α (see Appendix 696

O.2), such that cognate factor binding dominates when 697

w/c < α and non-cognate factors dominate when w/c 698

exceeds α. For concreteness, we set α = 100 through- 699

out the remainder of this work. Where do actual bio- 700

logical systems fall? A recent study pursuing synthetic 701

enhancer design in the early fly embryo cited 47 per- 702

tinent regulatory factors that were controlled to avoid 703

off-target binding (Vincent et al., 2016), leading to an 704

estimate of w/c = 47 (see also (Estrada et al., 2016)). 705

Inserting this value into Equation 4, we predict that the 706

cognate factor will be bound approximately 2/3 of the 707

time in the fly embryo. At the other end of the spectrum, 708
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E Energy dissipation is required for rapid cellular decisions at high non-cognate factor concentrations

we can use the genomic abundance of transcription fac-709

tor proteins to estimate upper bounds on w/c values710

for adult nematode and mouse cells, yielding estimates711

of w/c ≤ 698 and w/c ≤ 1,426, respectively (Charoen-712

sawan et al., 2010). In this case, Equation 4 predicts713

that cognate binding accounts for only a small fraction714

of total binding interactions—as little as 1/8 in worms715

and 1/15 in mice—suggesting that equilibrium affinity716

differences alone may be insufficient in these cases.717

To examine how these high interference levels impact718

the timescale of biological decisions and to determine719

whether energy dissipation can improve upon this equi-720

librium baseline, we must extend our gene circuit model721

to incorporate interference from non-cognate activator722

binding.723

To do this, we draw inspiration from (Cepeda-724

Humerez et al., 2015), adding a second “wrong” acti-725

vation cycle to our original four-state model (Figure 1C),726

wherein the binding of a non-cognate factor to the gene727

locus can also induce transitions to the active confor-728

mation. This leads to the six-state model shown in Fig-729

ure 4B, where, for simplicity, we have grouped all non-730

cognate activators into a single concentration term: W .731

Here, states 5 and 4 are identical to states 1 and 2,732

except that a non-cognate activator species (blue cir-733

cle) is bound rather than the cognate activator (green734

square). For notational convenience, we write the un-735

binding rates of the non-cognate activator kw
u as the un-736

binding rate of the cognate factor ku multiplied by an737

affinity factor α = kw
u /ku, with α = 100.738

We employed parameter sweeps to examine the up-739

per limits on information transmission as a function740

of the ratio of wrong-to-right activator concentrations741

(w/c). We held the cognate factor concentration at742

C = c∗, such that W was the only variable concentra-743

tion parameter. Figure 4C presents the range of achiev-744

able information rates as a function of the relative wrong745

factor concentration. Our results reveal that the rate746

of information transmission at equilibrium drops precip-747

itously once w/c exceeds α(blue circles in Figure 4C).748

Away from equilibrium, the upper information limit like-749

wise decreases with w/c; however, we find that non-750

equilibrium gene circuits are significantly more robust to751

high non-cognate factor concentrations than equilibrium752

systems. The relative IR gain from energy dissipation753

increases from a factor of 4 when w/c ≈ 1 to a factor754

of 1,000 when w/c = 105 (Figure 4C, inset). This shift755

in information gain suggests that a qualitative change756

occurs in how energy is used once w/c > α (vertical757

dashed line) (see Section F).758

We next used Equation 3 to calculate the amount759

of time required for a cell to decide between concen-760

trations c0 and c1 of the cognate activator species for761

different values of w/c, starting with gene circuits con-762

strained to operate at equilibrium. As in Figure 2B, we763

compared our model’s performance to the decision time764

limits for different biological systems, this time with each765

organism placed appropriately along the w/c axis. In766

all organisms considered, gene circuits generally have 767

a few tens of burst cycles over which to transmit infor- 768

mation, with no organism exceeding 100 bursts (black 769

error bars in Figure 4D). This decision time limit is sig- 770

nificantly shorter than can be achieved by our simple 771

six-state model with one binding site and one activation 772

step at equilibrium, even in the presence of negligible 773

amounts of non-cognate transcription factor (w/c = 1, 774

purple shaded region corresponding to NB = 1 in Fig- 775

ure 4D). 776

Next, we investigated the effect of having equilibrium 777

gene circuits with multiple sites. Figure 4D indicates 778

that equilibrium gene circuits with three or more ac- 779

tivator binding sites (red, blue, and gray regions) are 780

sufficient to drive timely decisions in “low-interference” 781

systems such as the early fruit fly embryo. However, 782

we again observe a precipitous decline in performance 783

once w/c > α. Indeed, the best equilibrium model 784

(NB = 5) can drive decisions in no fewer than 1,100 burst 785

cycles—the equivalent of at least 550 hours (3 weeks) 786

for mouse cells—when w/c ≈ 1,400 (the upper limit for 787

mice). This finding is over an order of magnitude too 788

slow for the mouse system’s decision time limit of 86 789

burst cycles (Figure 4D). Moreover, our analysis sug- 790

gests that at least 17 activator binding sites are needed 791

at equilibrium (see Figure S3A). Such a number is con- 792

ceivable for eukaryotic enhancers, but this analysis em- 793

phasizes that equilibrium systems—even those with bi- 794

ologically salient numbers of binding sites—struggle to 795

achieve realistic decision times in the presence of sig- 796

nificant non-cognate factor interference. 797

How do non-equilibrium gene circuits fare? The 798

dashed gray line in Figure 4D indicates the lower de- 799

cision time limit for non-equilibrium gene circuits with 800

five binding sites and one activation step. We ob- 801

serve a substantial improvement relative to the equilib- 802

rium case; however performance nonetheless suffers at 803

large values of w/c, falling short of the decision time 804

limit for the mouse system (209 vs. 86 burst cycles). 805

We used our parameter sweep algorithm to examine 806

the impact of increasing the number of molecular ac- 807

tivation steps (NA > 1) in non-equilibrium gene circuits 808

with a single activator binding site. This revealed sub- 809

stantial improvements, particularly at large w/c values. 810

Whereas the NA = 1 system required at least 1,500 811

burst cycles when w/c = 1,400, gene circuits with two 812

activation steps can drive decisions between c0 and c1 813

in as little as 104 bursts (Figure 4E), a full order of 814

magnitude over equilibrium genes with five binding sites 815

and twice that of non-equilibrium gene circuits with five 816

binding sites and a single activation step (Figure 4D). 817

Adding a third step further improves this bound to 83 818

burst cycles, below the 86-burst limit for the mouse sys- 819

tem. Moreover, this NA = 3 system exhibits remarkable 820

robustness to non-cognate factor interference, sustain- 821

ing the same level of performance up to w/c ≈ 104 (Fig- 822

ure 4E). 823

These results suggest that, in biological contexts 824
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F Non-cognate factor concentration defines performance tradeoffs between sharpness and specificity

where the ratio of wrong-to-right activator concentra-825

tions exceeds the intrinsic binding affinity difference826

(α), energy dissipation increasingly becomes a neces-827

sary precondition for driving cellular decisions within828

biologically salient timescales. Moreover, the pres-829

ence of multiple molecular activation steps greatly am-830

plifies non-equilibrium performance gains in these high-831

interference regimes. Yet Figure 4E also reveals that832

one-binding-site systems have a performance limit. To833

further improve, non-equilibrium gene circuits likely re-834

quire multiple molecular steps (NA ≥ 2) and multiple ac-835

tivator binding sites (NB ≥ 2).836

F. Non-cognate factor concentration defines perfor-837

mance tradeoffs between sharpness and speci-838

ficity839

Next, we investigated how much sharpness and pre-840

cision each contribute to the IR gain depicted in the841

panel inset of Figure 4C. Figure 5A shows the relative842

non-equilibrium gains in S and P (S/Seq and P/Peq)843

as a function of w/c for information-maximizing real-844

izations of the six-state gene circuit model shown in845

Figure 4B. The plot reveals that IR-maximizing gene846

circuits consistently utilize energy to drive sharpness847

above its equilibrium limit (S/Seq>1), while precision is848

maintained at or below its equilibrium limit (P/Peq ≲ 1).849

Moreover, the degree to which non-equilibrium gene cir-850

cuits amplify S increases dramatically as w/c increases,851

from a factor of 2 when w/c ≈ 1 to a factor of 100 when852

w/c ≈ 104 (Figure 5A). Thus, the key to understanding853

how energy increases IR at large w/c values lies in un-854

derstanding transcriptional sharpness.855

The upper non-equilibrium limit on S can be ex-856

pressed as a function of the specificity (f ), such that857

858

S ≤ f
w
c +f︸ ︷︷ ︸

specificity
factor (pc)

× S0︸︷︷︸
intrinsic

sharpness

, (6)859

where the observed sharpness (S) bound breaks natu-860

rally into two pieces: the specific bound fraction, pc (de-861

fined in Equation 4), and the intrinsic sharpness (S0),862

defined as a gene circuit’s normalized sharpness ab-863

sent non-cognate factor binding (i.e., w = 0).864

To probe the interplay between intrinsic sharpness865

and specificity, we employed parameter sweeps for the866

six-state system in Figure 4B. At equilibrium, this anal-867

ysis indicated that intrinsic sharpness is constrained868

such that S0 ≤ 1 (consistent with Figure 3A) and con-869

firmed that specificity is fixed at α. Indeed, we find that870

feq = α applies for all gene circuits operating at equi-871

librium irrespective of the number of binding sites or ac-872

tivation steps, placing strict limits on information trans-873

mission at equilibrium when w/c is large (see Appendix874

O.3).875

Away from equilibrium, systems can overcome these876

constraints, achieving up to a two-fold increase in S0877

and increasing specificity by up to an additional factor878

of α to reach an upper limit of α2 (Figure 5B). The ob- 879

served 100-fold increase in f is comparable to the gain 880

in the observed sharpness (S) in Figure 5A, suggesting 881

that the sharpness gain at high w/c arises from non- 882

equilibrium increases in specificity. Why not spend en- 883

ergy to simultaneously increase intrinsic sharpness by 884

two-fold and specificity by 100-fold to achieve S/Seq = 885

2×α = 200? The simple answer is that non-equilibrium 886

gains in intrinsic sharpness and specificity cannot be 887

realized simultaneously. Instead, our analysis reveals 888

a steep tradeoff between specificity and intrinsic sharp- 889

ness away from equilibrium, with the maximum value of 890

S0 = 2 only realizable when specificity is at its equilib- 891

rium level (f = α) and vice versa (Figure 5B). We find 892

that the bound describing this tradeoff (black dashed 893

line in Figure 5B) follows a simple analytic form, allow- 894

ing us to express S as a function of the specificity, f , 895

such that 896

S ≤ f
w
c +f︸ ︷︷ ︸

specificity
factor (pc)

×
(α2 +αf −2f

αf −f

)
︸ ︷︷ ︸

intrinsic
sharpness (S0)

, (7) 897

where we assume that α ≤ f ≤ α2. See Appendix 898

P for a derivation of Equation 7. As with the non- 899

equilibrium tradeoffs between sharpness and precision, 900

this incompatibility stems from the fact that sharpness 901

and specificity require distinct and incompatible under- 902

lying molecular architectures. Although we focused on 903

the simple model shown in Figure 4B, we find similar 904

non-equilibrium tradeoffs between f and S0 for more 905

complex molecular architectures (Figure S4B). Thus, 906

we conclude that these specificity gains come at the 907

cost of diminished intrinsic sharpness. 908

The inexorable tradeoff between the intrinsic sharp- 909

ness S0 and specificity f illustrated in Figure 5B means 910

that gene loci must “choose” between allocating energy 911

to maximize intrinsic sharpness and allocating energy 912

to maximize specificity. To examine how the concen- 913

tration of non-cognate factors shapes this tradeoff, we 914

took IR-maximizing non-equilibrium gene circuits span- 915

ning the relevant range of w/c values for systems with 916

1–4 activation steps and calculated S0 and f . Figure 5C 917

illustrates the relative non-equilibrium gains in intrinsic 918

sharpness and specificity, respectively, for these circuits 919

as a function of w/c. 920

Figure 5C reveals that the relative non-cognate factor 921

concentration, w/c, defines a shifting optimality land- 922

scape. At low non-cognate factor concentrations, maxi- 923

mally informative gene circuits spend energy exclusively 924

to maximize intrinsic sharpness (S0/NB > 1 for all sys- 925

tems on the left-hand side of Figure 5C) at the cost 926

of equilibrium specificity levels (f/α = 1). Thus, our 927

model predicts that at low levels of non-cognate fac- 928

tor interference—as would be experienced, for instance, 929

in developing fruit fly embryos—non-equilibrium mech- 930

anisms are not required to buffer against non-cognate 931

factor interference, and allocating energy to maximize 932
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G Predicting experimental signatures of non-equilibrium processes in transcriptional regulation

Figure 4. Energy dissipation is key to driving cellular decisions in the presence of non-cognate factor interference. (A) Cognate factor occupancy at a single
binding site as a function of relative non-cognate factor concentration. (B) Incorporating non-cognate activator binding leads to a six-state model that features both a
right and a wrong activation pathway. (C) Numerical results for the maximum achievable information rate for equilibrium (blue circles) and non-equilibrium (red circles)
gene circuits with one activator binding site and one activation step (illustrated in (B)) as a function of the relative concentration of non-cognate activators w/c. The
blue dashed line indicates the upper IR bound at equilibrium. The red line indicates the predicted non-equilibrium IR bound assuming quadratic scaling with w/c (see
main text). The vertical dashed line indicates where the non-cognate factor concentration (w) equals the cognate factor concentration multiplied by the affinity factor
(αc). Note how the optimal non-equilibrium systems begin to exceed the predicted bound beyond this point. The inset panel shows the non-equilibrium performance
gain as a function of w/c. (D) Shaded regions indicate parameter sweep results for the range of achievable decision times for equilibrium gene circuits with 1–5
activator binding sites as a function of w/c. The dashed gray line indicates the lower bound for decision times driven by non-equilibrium gene circuits with five binding
sites and one activation step. See Figure S3B for corresponding information rate ranges. (E) Decision times for non-equilibrium gene circuits with 1–4 activation steps.
See Figure S3C for corresponding information rate ranges. (All results assume α = kw

u /ku = 100. All decision time quantities assume ε = 0.32. For parameter
sweep results in C-E, transition rate and interaction term magnitudes, k and η, were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is
the burst cycle time. ηab and ηib were further constrained such that ηab ≥ 1 and ηib ≤ 1, consistent with our assumption that the transcription factor activates the
gene locus.)

intrinsic sharpness constitutes the optimal regulatory933

strategy. However, once w/c surpasses the affinity934

factor α, IR maximization starts to disfavor sharpness935

(see decreasing S0 near w/c = 102 in Figure 5C) and936

increasingly depends on enhancing specificity to non-937

equilibrium levels. Moreover, the presence of multiple938

activation steps dramatically increases the upper limit939

for non-equilibrium specificity, such that fneq ≤ αNA+1
940

(Figure S4B). Together, these results indicate that the941

optimal molecular strategy for transmitting information942

is not fixed, but changes according to a scale set by943

the relative amount of non-cognate factor interference,944

w/c, and the kinetic binding differences between cog-945

nate and non-cognate factors, α.946

G. Predicting experimental signatures of non-947

equilibrium processes in transcriptional regula-948

tion949

So far, we have demonstrated that energy dissipation950

can, in principle, increase the rate of information trans-951

mission in gene circuits. However, determining whether952

gene circuits mediating cellular decision making actu-953

ally leverage energy dissipation to do so remains, to a 954

large degree, an open challenge. Thus, we examined 955

how simple experiments can identify signatures of non- 956

equilibrium performance in real biological systems. For 957

simplicity, we focused on the simple gene circuit in Fig- 958

ure 4B with one binding site and one molecular activa- 959

tion step, illustrating a broadly applicable set of exper- 960

imental and analytical approaches that can be used to 961

assess whether energy is harnessed to enhance tran- 962

scriptional performance in real biological systems. 963

Recent works have shown that strict equilibrium lim- 964

its on transcriptional sharpness can be calculated if the 965

number of activator binding sites is known, suggest- 966

ing that sharpness might serve as an accessible signa- 967

ture of non-equilibrium regulatory mechanisms (Estrada 968

et al., 2016; Park et al., 2019). However, these studies 969

did not consider off-target activation from non-cognate 970

activator species. What happens when we account for 971

the impact of such non-cognate factor binding? Equa- 972

tion 7 predicts that the upper S limit should decrease as 973

w/c increases (blue and red dashed lines in Figure 6A), 974

as confirmed by numerical parameter sweeps of S vs. 975
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G Predicting experimental signatures of non-equilibrium processes in transcriptional regulation

Figure 5. A shifting optimality landscape for information transmission. (A) Non-equilibrium gains in sharpness and precision as a function of w/c for six-state
(NB = 1,NA = 1; Figure 4B) gene circuits found to drive maximum information rates. IR−maximizing gene circuits are drawn from optimal systems uncovered in the
parameter sweeps from Figure 4E. Values above 1 indicate that the system is dissipating energy to enhance performance. The black line indicates a “break-even”
point where the non-equilibrium value is equal to the equilibrium maximum. See Figure S4A for results for systems with NA > 2. (B) Tradeoffs between intrinsic
sharpness (S0) and specificity (f ) for equilibrium and non-equilibrium networks (blue and red circles, respectively). Note that equilibrium gene circuits have no
horizontal dispersion because all are constrained to have f = α. The black dashed line indicates the bound predicted by Equation 7. (C) Non-equilibrium gains in
intrinsic sharpness and specificity for IR-maximizing gene circuits as a function of w/c. Values above 1 indicate that the system is dissipating energy to enhance
sharpness or specificity. Note that the left and right axes have different scales. (α was set to 100 for all plots shown. For all parameter sweep results in A-C, transition
rate and interaction term magnitudes, k and η, were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time. ηab and ηib

were further constrained such that ηab ≥ 1 and ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene locus.)

w/c (blue and red circles). Thus, the upper sharpness976

limit is not absolute, but instead depends on the con-977

centration of non-cognate factors in the cellular environ-978

ment. This w dependence must be considered to accu-979

rately interpret experimental measurements.980

For instance, consider the case where w/c = 103
981

(black dashed vertical line in Figure 6A), a plausible982

value for mammalian systems (Friedlander et al., 2016;983

Cepeda-Humerez et al., 2015; Charoensawan et al.,984

2010). Our model predicts that the maximum achievable985

S for non-equilibrium gene circuits is 0.91, far exceed-986

ing the true equilibrium sharpness limit of 0.09 when987

accounting for the effects of non-cognate factor interfer-988

ence (blue dashed line in Figure 6A). However, S = 0.91989

falls below the “naive” equilibrium bound of S = 1 that990

one would predict if w were not accounted for (see blue991

bound on far-left-hand side of Figure 6A, see also Fig-992

ure S5A). Thus, failing to account for non-cognate factor993

interference could mask strong non-equilibrium signa-994

tures, highlighting the importance of incorporating reg-995

ulatory cross-talk into transcription models. However,996

accurately measuring w/c may be challenging in many997

experimental settings, since w comprises the aggregate998

activity of all non-cognate activator species.999

In light of this challenge, we propose a complemen-1000

tary experimental approach to search for signatures of1001

non-equilibrium gene regulation that is more robust to1002

uncertainty regarding the precise value of w/c. As il-1003

lustrated in Figure 6B, this method involves measur-1004

ing changes in gene expression at C = c∗ that result1005

from point mutations to the activator binding site, which1006

thereby lead to a higher unbinding rate, kmut
u , for cog-1007

nate activators (kmut
u /ku > 1). Whereas w/c may be1008

difficult to estimate in many biological contexts, robust1009

algorithms can predict changes in binding energies from1010

the DNA sequence of transcription factor binding sites1011

(Le et al., 2018), allowing for accurate predictions of1012

how much a particular mutation will perturb the relative1013

binding kinetics of a specific activator species. We em- 1014

ploy two metrics to quantify the resulting change in gene 1015

expression: fold changes in the mRNA production rate 1016

(rmut/r) and in the normalized sharpness (Smut/S), 1017

each defined as the quantity corresponding to the mu- 1018

tated binding site divided by its corresponding wild-type 1019

value (Figure 6B). 1020

To illustrate the method, we used our model to pre- 1021

dict outcomes for the case where the wild-type gene cir- 1022

cuit is expressing at half its maximum rate (r = 0.5r0). 1023

Overall, we find that IR-optimized non-equilibrium gene 1024

circuits are highly sensitive to changes in cognate ac- 1025

tivator specificity and that this sensitivity can be used 1026

to probe for non-equilibrium behavior. At low w/c lev- 1027

els (w/c ≲ 103), mutated non-equilibrium circuits ex- 1028

hibit larger shifts in their transcription rate than can 1029

be achieved at equilibrium (Figure S5B). Meanwhile, 1030

when w/c > 103, IR-optimized non-equilibrium systems 1031

experience a substantially larger sharpness decrease 1032

than even maximally sensitive equilibrium circuits (Fig- 1033

ure S5C). Consequently, when combined, Smut/S and 1034

rmut/r define a perturbation response space in which 1035

non-equilibrium gene circuits that transmit information 1036

at optimal (or near-optimal) levels are completely dis- 1037

joint from equilibrium systems. This is illustrated in 1038

Figure 6C, which plots our model’s predictions for the 1039

sharpness fold change (Smut/S) vs. rmut/r for three 1040

binding site perturbation strengths for equilibrium and 1041

non-equilibrium gene circuits (squares and circles, re- 1042

spectively). Despite the wide range of perturbation 1043

strengths and non-cognate factor concentrations exam- 1044

ined, optimal non-equilibrium systems never cross the 1045

equilibrium boundary (dashed line). Thus, by measur- 1046

ing Smut/S and rmut/r, we can obtain clear-cut signa- 1047

tures on non-equilibrium regulation, even when w/c is 1048

unknown. 1049
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G Predicting experimental signatures of non-equilibrium processes in transcriptional regulation

Figure 6. Experimental signatures of non-equilibrium processes in transcriptional regulation. (A) Observed sharpness as a function of w/c for equilibrium
(blue circles) and non-equilibrium (red) gene circuits. The black dashed line indicates the point where w/c = 103. (B) Illustration of proposed binding site perturbation
experiments. Reducing site specificity is predicted to reduce both the observed sharpness, S, and the mRNA production rate, r. The strongest possible perturbation
would entail a conversion from cognate specificity (ku) to non-cognate specificity (αku). (C) Phase-space plot of predicted sharpness shift (normalized by ku/kmut

u )
versus rate shift for equilibrium (squares) and non-equilibrium (circles) gene circuits at three binding site perturbation strengths. Note that we normalize the sharpness
fold change by ku/kmut

u , which allows us to plot results for different mutation strengths on the same y-axis. Shading indicates the w/c value (darker shades corre-
spond to higher values). Additionally, the circle size indicates the w/c magnitude for non-equilibrium circuits. We see that, regardless of non-cognate concentration
and perturbation strength, non-equilibrium systems do not cross the equilibrium boundary (dashed line). Results assume the initial transcription rate of the wild-type
gene is at half-maximum (r = 0.5r0). (For all parameter sweep results in A and C, transition rate and interaction term magnitudes, k and η, were constrained such
that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time. ηab and ηib were further constrained such that ηab ≥ 1 and ηib ≤ 1, consistent
with our assumption that the transcription factor activates the gene locus.)

Discussion1050

Gene regulation is central to cellular function. Yet, de-1051

spite decades of biochemical and genetic studies that1052

have established a reasonably complete “parts list” of1053

the molecular components driving eukaryotic transcrip-1054

tion (Kornberg, 2007), and despite recent advances in1055

our ability to track how these pieces assemble in space1056

(Nogales et al., 2017) and time (Lammers et al., 2020;1057

Coulon et al., 2013; Lenstra et al., 2016), we nonethe-1058

less lack quantitative models that can predict how tran-1059

scriptional control emerges from molecular interactions1060

at the gene locus. Thermodynamic models of transcrip-1061

tion, which assume that gene circuits operate at equi-1062

librium, have been employed with considerable success1063

to predict transcriptional control in the context of bac-1064

teria (Phillips et al., 2019). However, the presence of1065

ATP-dependent processes—such as chromatin remod-1066

eling (Zhou et al., 2016), pre-initiation complex assem-1067

bly (Taatjes, 2017), and Pol II initiation (Yan and Gralla,1068

1997)—within the eukaryotic transcriptional cycle sug-1069

gests that equilibrium models may be insufficient to cap-1070

ture how eukaryotic gene circuits sense and respond1071

to input transcription factor concentrations. Thus, there1072

is an urgent need for theoretical frameworks that can1073

probe how non-equilibrium mechanisms reshape the1074

transcriptional input-output function and, ultimately, re-1075

define the limits of transcriptional control.1076

Here, we employed simple kinetic models of tran-1077

scription to investigate how energy dissipation within1078

the transcriptional cycle impacts the rate at which a1079

gene circuit drives cellular decisions. We found that1080

biologically plausible rates of energy dissipation can1081

drive significant gains in the information transmission1082

rate and discovered that the regulatory mechanisms un-1083

derlying these non-equilibrium gains change from in-1084

creased sharpness to increased specificity depending1085

on the level of interference in the cellular environment1086

from non-cognate factor binding. 1087

Performance tradeoffs dictate limits of information trans- 1088

mission away from equilibrium. This work has estab- 1089

lished that, although energy dissipation can increase 1090

transcriptional sharpness, precision, and specificity indi- 1091

vidually, these gains cannot be realized simultaneously. 1092

For negligible non-cognate factor binding, we showed 1093

that IR is dictated by a tradeoff between sharpness 1094

(S) and precision (P). Although previous works have 1095

established that energy expenditure can boost sharp- 1096

ness (Estrada et al., 2016; Park et al., 2019) and, to 1097

a lesser extent, suppress transcriptional noise (Rieckh 1098

and Tkačik, 2014). As a result of this tradeoff, gene 1099

circuits must “choose” whether to spend energy to en- 1100

hance sharpness or precision. For all models consid- 1101

ered, we discovered that the information rate was max- 1102

imized by systems that boosted transcriptional sharp- 1103

ness (not precision) above its equilibrium limit (Fig- 1104

ure 3A, Figure S2A and B). 1105

Similarly, our analysis revealed that non-equilibrium 1106

gains in specificity and sharpness cannot occur simul- 1107

taneously (Figure 5B and Figure S4B). This incompati- 1108

bility arises from the fact that intrinsically sharp systems 1109

are tuned to amplify concentration-dependent activator 1110

binding rates, whereas specific systems amplify differ- 1111

ences in unbinding rates between cognate and non- 1112

cognate activator species. Our model predicts that w/c 1113

defines a shifting optimality landscape, wherein non- 1114

equilibrium gene circuits that maximize intrinsic sharp- 1115

ness drive the fastest decisions when w/c ≤ α, but 1116

the optimal strategy begins to shift from increasing 1117

sharpness to activator proofreading when w/c > α (Fig- 1118

ure 5C). A recent study reported the potential for this 1119

kind of context-dependent shift from sharp to specific 1120

gene circuits (Grah et al., 2020), although sharpness 1121

was only investigated at its equilibrium limit. Here, we 1122

provide quantitative predictions for how IR-maximizing 1123
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G Predicting experimental signatures of non-equilibrium processes in transcriptional regulation

gene circuits navigate this sharpness-specificity trade-1124

off far from equilibrium.1125

Activation steps amplify non-equilibrium performance1126

gains. Another key finding of this work is that the1127

presence of multiple activation steps, wherein multiple1128

molecular components must engage to achieve tran-1129

scription, can amplify non-equilibrium gains in transcrip-1130

tional sharpness (Figure 3C). Our result is evocative1131

of a recent study (Biddle et al., 2020) demonstrating1132

that systems with multiple conformational degrees of1133

freedom can achieve sharper, more flexible transcrip-1134

tional input-output functions, although these systems1135

still adhere to the fundamental equilibrium limitation that1136

sharpness cannot exceed the number of activator bind-1137

ing sites (S ≤ NB). Thus, our findings further empha-1138

size potential benefits of the conformational complexity1139

of the eukaryotic gene cycle.1140

Consistent with previous results in the kinetic proof-1141

reading literature (Murugan et al., 2012), we also found1142

that gene circuits with multiple activation steps can real-1143

ize dramatic increases in transcriptional specificity when1144

driven out of equilibrium (f ), such that f ≤ αNA+1 (Fig-1145

ure S4B). This result extends the findings of a recent1146

work examining transcriptional specificity in systems1147

with up to two activation steps (Shelansky and Boeger,1148

2020). Yet there exists an important asymmetry be-1149

tween sharpness and specificity: whereas the addition1150

of activator binding sites can increase the sharpness S1151

at equilibrium, energy dissipation constitutes the only1152

route (short of altering activator binding sequences) for1153

increasing specificity f above the intrinsic affinity factor1154

α. Thus, for large w/c, energy dissipation overcomes a1155

fundamental limitation of eukaryotic gene circuits—the1156

lack of binding specificity—that no equilibrium mecha-1157

nism can address.1158

Equilibrium regulatory schemes may be sufficient in1159

many real biological systems. While activator proofread-1160

ing may be critical when w/c is large, our analysis sug-1161

gests that it is unlikely to constitute a universal con-1162

straint on gene regulatory architectures. Indeed, even1163

relatively simple equilibrium architectures with 3–5 bind-1164

ing sites should suffice to drive timely cellular deci-1165

sions in “low-interference” systems such as the fruit fly1166

embryo (Figure 4D). Moreover, while simple estimates1167

based on genomic transcription factor abundances sug-1168

gest that many eukaryotic systems can exceed the1169

w/c = α interference limit, these estimates likely rep-1170

resent upper bounds on w/c, since different cell types1171

selectively express distinct subsets of transcription fac-1172

tors (Choudhury and Ramsey, 2016; Lee et al., 2012;1173

Henry et al., 2012). In addition, we note that the relative1174

size of the concentration difference between c1 and c01175

(δc/c) plays a key role in dictating the information trans-1176

mission rate (Equation 2) and varies across different bi-1177

ological contexts. Thus, it would be interesting to use1178

the quantitative tools presented in this work to enumer-1179

ate the space of viable equilibrium and non-equilibrium1180

gene circuit architectures for specific biological systems 1181

in which the relative magnitudes of w/c and δc/c are 1182

well established. 1183

Different frameworks for examining the impact of 1184

non-cognate factor binding. In considering the impact of 1185

non-cognate factor binding, we drew inspiration from 1186

a previous study examining competition between cog- 1187

nate and non-cognate transcription factors to bind and 1188

activate a single gene locus (Cepeda-Humerez et al., 1189

2015). This formulation of the problem is distinct from 1190

the approach taken in two recent works, which ad- 1191

dressed the problem of specificity from the perspec- 1192

tive of a single activator species that interacts with two 1193

different gene loci: a cognate (with specific binding 1194

sites) and a non-cognate locus (without specific bind- 1195

ing sites) (Shelansky and Boeger, 2020; Grah et al., 1196

2020). While both approaches have proven fruitful, we 1197

favor the “single-locus” approach, since it captures the 1198

effects of competitive binding between different species, 1199

which are an unavoidable reality of crowded cellular en- 1200

vironments. 1201

Moreover, this shift in perspectives has meaningful 1202

consequences for our understanding of how off-target 1203

binding impacts gene regulation. A previous study 1204

found that the equilibrium limit of f = α could only be 1205

achieved at the cost of high levels of transcriptional 1206

noise (Shelansky and Boeger, 2020). Yet, we find that 1207

this tradeoff evaporates once competitive binding be- 1208

tween cognate and non-cognate factors is considered, 1209

since f is fixed at α in this case (Figure 5B). The upper 1210

limits of transcriptional sharpness also decrease as w/c 1211

increases (Equation 7 and Figure 6A). Previous studies 1212

have reported transcriptional sharpness as a key po- 1213

tential indicator of non-equilibrium optimization (Estrada 1214

et al., 2016; Park et al., 2019). Our analysis reaffirms 1215

this idea but, crucially, reveals that one must consider 1216

the relative concentration of non-cognate factors (w/c) 1217

to accurately assess whether a particular system is per- 1218

forming above the equilibrium limit (Figure 6A and B). 1219

For instance, a sharpness of 0.9 falls below the equi- 1220

librium limit for the six-state gene circuit shown in Fig- 1221

ure 4B when w/c ≈ 1, but is an order of magnitude 1222

above the limit when w/c ≈ 103 (Figure 6A). 1223

Future directions. While we have considered gene loci 1224

with varying numbers of specific activator binding sites, 1225

real enhancers also contain significant stretches of 1226

“neutral” DNA with no binding sites, as well as weak 1227

activator sites that fall below typical thresholds used 1228

to identify specific sites (Vincent et al., 2016; Shahein 1229

et al., 2021). This focus on specific sites is widespread 1230

in theoretical studies of transcription (Estrada et al., 1231

2016; Park et al., 2019; Cepeda-Humerez et al., 2015; 1232

Lammers et al., 2020), despite the well-established im- 1233

portance of weak binding sites in the context of certain 1234

genes (Shahein et al., 2021; Crocker et al., 2015; Far- 1235

ley et al., 2015). Moreover, recent efforts on synthetic 1236

enhancer reconstitution have pointed to the importance 1237
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G Predicting experimental signatures of non-equilibrium processes in transcriptional regulation

of supposedly neutral stretches of regulatory DNA (Vin-1238

cent et al., 2016), and it seems theoretically plausible1239

that these stretches, where cognate and non-cognate1240

activator species bind with equal affinity, could have im-1241

portant effects on the input-output function in systems1242

when w/c > α. We propose that the kinetic models uti-1243

lized herein could readily be extended to feature some1244

combination of specific and neutral sites. More ambi-1245

tiously, the field would benefit from the introduction of1246

continuous, rather than discrete, theoretical models that1247

admit non-equilibrium phenomena while accounting for1248

the reality that transcription factors interact with a con-1249

tinuum of sites along enhancer DNA.1250

Ultimately, the key to unraveling the molecular mech-1251

anisms by which genes sense and respond to transcrip-1252

tion factor concentrations lies in the coupling of theo-1253

retical models with careful experimental measurements.1254

To this end, we advocate for the expanded use of theo-1255

retically tractable synthetic enhancer systems in which1256

the number and identity of binding sites are well es-1257

tablished and intervening DNA sequences are carefully1258

engineered to minimize binding specificity (e.g., using1259

SiteOut (Estrada et al., 2016)). Several recent stud-1260

ies constitute promising initial steps in this direction1261

(Reimer et al., 2021; Park et al., 2019; Vincent et al.,1262

2016; Kim et al., 2021). Additionally, synthetic transcrip-1263

tion factor systems, which can act orthogonally to en-1264

dogenous regulatory networks, represent an intriguing1265

experimental platform for investigating questions relat-1266

ing to transcriptional specificity (Kabadi and Gersbach,1267

2014; Crocker and Stern, 2013). Lastly, statistical meth-1268

ods that infer how transcription factor concentrations1269

impact the kinetics of the transcriptional cycle (Zoller1270

et al., 2018; Lammers et al., 2020; Corrigan et al., 2016;1271

Bowles et al., 2022) hold promise for connecting macro-1272

scopic experimental measurements to theoretical mod-1273

els of the microscopic processes driving transcription.1274

Looking ahead, holistic research efforts that integrate1275

cutting-edge experiments, statistical methods, and the-1276

ory will be key to bridging the as yet yawning gap be-1277

tween enhancer sequence and gene regulatory func-1278

tion.1279
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G Predicting experimental signatures of non-equilibrium processes in transcriptional regulation

Supplementary Figures1298

Fig. S1. Decision times for different gene circuit architectures. (A) Parameter sweep results for equilibrium gene circuits with different numbers of activator
binding sites. Black dashed line indicates lower limit of the decision time and is a function of the form ⟨T⟩ = kN−2

B , where k is a proportionality constant. (B) Plot
of range of achievable decision times for non-equilibrium gene circuits with a single activator binding site (NB = 1) as a function of the number of activation steps,
NA. The dashed line indicates the lower decision time bound, and is a function of the form ⟨T⟩ = kN−1

A . (All results shown assume an error probability of 32%. For
parameter sweep results in A and B, transition rate and interaction term magnitudes, k and η, were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105,
where τb is the burst cycle time. ηab and ηib were further constrained such that ηab ≥ 1 and ηib ≤ 1, consistent with our assumption that the transcription factor
activates the gene locus.)

Fig. S2. Tradeoffs between sharpness and precision persist for more complex gene regulatory architectures. (A) Non-equilibrium gains in sharpness and
precision for gene circuits with different numbers of activator binding sites (NB) and one activation step. Shaded regions indicate achievable regimes for each system,
as determined by no fewer than 10,000 unique simulated gene circuits. (B) Non-equilibrium gains in sharpness and precision for gene circuits with different numbers
of activation steps (NA) and one activator binding site. (C) Scatter plots indicate sharpness levels for equilibrium gene circuits as a function of the number of binding
sites. Bounding line is for a function of the form S = NB. (For parameter sweep results in A-C, transition rate and interaction term magnitudes, k and η, were
constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time. ηab and ηib were further constrained such that ηab ≥ 1 and
ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene locus.)

Fig. S3. Supplemental analyses for the dependence of IR with non-cognate transcription factor interference. (A) Parameter sweep results showing the range
of achievable information rates as a function of w/c for equilibrium gene circuits with 1-5 activator binding sites and one molecular activation step. (B) Sweep results
for non-equilibrium gene circuits with 1-4 activation steps and a single activator binding site. (C) Extrapolation of minimum decision times for equilibrium gene circuits
as a function of number of activator binding sites based on numerical results for circuits with 1-5 binding sites. Analysis indicates that at least 17 sites would be required
to achieve plausible decision ties in the context of the mouse system. (For parameter sweep results in B and C, transition rate and interaction term magnitudes, k and
η, were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time. ηab and ηib were further constrained such that ηab ≥ 1
and ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene locus.)
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G Predicting experimental signatures of non-equilibrium processes in transcriptional regulation

Fig. S4. Supplemental results for main text Figure 5. (A) Non-equilibrium sharpness and precision gains for IR-maximizing gene circuits with 1-4 activation steps.
(B) Range of achievable specificity values for non-equilibrium gene circuits with with 1-4 activation steps. (Transition rate and interaction term magnitudes, k and η,
were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time. ηab and ηib were further constrained such that ηab ≥ 1
and ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene locus.)

Fig. S5. Experimental signature of energy expenditure. (A) Predicted induction curves for 50 near-optimal non-equilibrium gene circuits when w = 103c∗, as
well as the actual induction curves for the sharpest achievable equilibrium curve (solid blue line) and the (incorrect) limit when that would be predicted if w was not
accounted for (dashed line). Note that red curves fall above the true equilibrium limit but below the naive limit. (B) Predicted shift in the production rate resulting from a
binding site perturbation that doubles the unbinding rate (kmut

u /ku = 2)—equivalent to a energetic difference of 0.7 kBT—for equilibrium gene circuits (blue squares)
and IR-maximizing non-equilibrium circuits (red circles). Note that non-equilibrium circuits are far more sensitive than equilibrium circuits when w/c < 104. The shift
becomes negligible at higher values, thus providing a clear signature of energy dissipation. (C) Predicted sharpness shift upon perturbing the activator binding site.
The non-equilibrium shift becomes markedly larger than equilibrium limit when w/c > 103. (For parameter sweep results in B and C, transition rate and interaction
term magnitudes, k and η, were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time. ηab and ηib were further
constrained such that ηab ≥ 1 and ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene locus.)
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A Analytic expressions for key gene circuit characteristics

Appendices1299

A. Analytic expressions for key gene circuit characteristics1300

This section lays out analytic expressions for key quantities that play a central role in the investigations undertaken1301

over the course of the main text. We do not repeat derivations for expressions that are treated separately elsewhere1302

in these Appendices, and avoid re-deriving expressions from scratch, unless they are novel to this work.1303

A.1. The transition rate matrix and activity vector. Consider a gene circuit g that has K different microscopic states.1304

We assume that microscopic transitions between the molecular states that make up g are Markovian, such that our1305

system can be modeled as a continuous time Markov chain (CTMC). It follows that the steady-state behavior of g is1306

fully determined by two quantities: the transition rate matrix, Q and the state activity vector, a.1307

Q is a K × K matrix with off-diagonal elements that encode the rates with which the system switches between1308

microscopic rates. For instance, qmn—the element in the mth row and nth column of Q—gives the transition rate1309

going from state n to state m. The diagonal elements of Q are negative, and are scaled such that each column of Q1310

sums to 0. The activity vector a is a binary vector of length K that contains a “1” for each state that is transcriptionally1311

active, and a “0” for inactive states. We assume that both Q and a are fixed in time.1312

A.2. State probabilities, transcription rate, and transcriptional noise. A first step to calculating virtually all gene circuit1313

characteristics of interest is to obtain the steady-state vector, π, which is a vector of length K that gives the steady1314

state probability of finding the gene circuit of any one of the K microscopic states. We can obtain π by finding the1315

right eigenvector (vR) of Q with an eigenvalue of 0,1316

QvR = 0, (8)1317

and imposing the additional constraint that the elements of π sum to 1, such that1318

π = vR∑K
i=1 vi

. (9)1319

With this the steady state probability vector in hand, we can calculate the average transcription rate by taking the1320

dot product of a and π:1321

r = r0

K∑
i=0

aiπi︸ ︷︷ ︸
fraction of

time active (πa)

, (10)1322

where we define the quantity indicated by the underbrace as the average fraction of time, πa, that the system spends1323

in the active state. Throughout the course of this work, we assume that r0 is held fixed, such that the transcriptional1324

activator may only impact transcription by modulating microscopic transition rates in Q to alter π. Further, since1325

we take Poisson noise from mRNA synthesis to be negligible (see Appendix D), the absolute magnitude of r0 is1326

unimportant, and we set it to 1 for simplicity.1327

Next, we turn to obtaining an expression for the variance (noise) in gene expression. From Whitt 1992 (Whitt,1328

1992), we have that1329

σ2 = 2
K∑

i=1

K∑
j=1

aiπizijaj , (11)1330

where zij is the element from ith row and jth column of what is known as the fundamental matrix, Z of our transition1331

rate matrix, Q. Z is a K × K matrix that plays an integral role in the calculation of many key behaviors of a Markov1332

chain. Once again drawing from Whitt, we can calculate Z using the formula1333

Z = (Π−Q)−1 −Π, (12)1334

where Π is a K ×K matrix with each row equal to π.1335

A.3. Using the fundamental matrix to calculate first passage times. First passage times provide a useful conceptual1336

tool for connecting microscopic fluctuations, which often are unobservable, with emergent dynamical behaviors,1337

such as transcriptional bursting. The fundamental matrix provides an invaluable tool for doing this in the context of1338

arbitrarily complex transcriptional systems. Once again, we start with an expression from Whitt 1992 (Whitt, 1992)1339

that relates off-diagonal elements of Z to first passage times between microscopic states:1340

zji = πi[ETei −ETij ], i ̸= j. (13)1341
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A Analytic expressions for key gene circuit characteristics

Here, ETij is the mean expected first passage time from state j to state i and ETei the first passage time to state i 1342

at equilibrium, defined as 1343

ETei = πi

K∑
j=1

πjETij . (14) 1344

Now, from (Whitt, 1992) we also have that the diagonal elements of Z can be expressed as 1345

zii = πiETei. (15) 1346

We can now combine Equations 13 and 15 to solve for the first passage time from state i to state j: 1347

ETij = zii −zji

πi
. (16) 1348

A.4. Calculating the burst cycle time. First passage times are intimately related to a quantity of central importance 1349

throughout the text: the burst cycle time, τb, defined as the average time required for a system to complete one 1350

ON→OFF→ON cycle (Figure 1D). This is trivial in the case of a simple two state system with a single OFF and ON 1351

state and rates kon and koff (Figure A11). In this case, the burst cycle time is simply 1352

τb = kon +koff
konkoff

. (17) 1353

The calculation becomes less trivial for systems with larger numbers of states, however. Fortunately, the concepts 1354

outlined above provide us with the tools necessary to derive a generic expression for τb that applies to systems of 1355

arbitrary complexity. 1356

The essence of the procedure lies in calculating effective off and on rates (k∗
off and k∗

on) from Q using first passage 1357

times. We go through this procedure in detail for k∗
on and note that the same approach applies for k∗

off . The activity 1358

vector a partitions our system into M OFF states and N ON states. To calculate k∗
on, the first step is to estimate 1359

the expected amount of time it will take for the system to reach an ON state (any ON state) from each OFF state. 1360

We can do this by defining a new transition rate matrix, QOFF, that has dimensions M +1×M +1. The off-diagonal 1361

elements of the first M rows an M columns of QOFF are simply equal to the microscopic rates from Q that lead from 1362

one of the M OFF states to another OFF state. Together, these molecular states constitute a single coarse-grained 1363

OFF state. 1364

The final row and column, however, are different and contain total fluxes into and out of all ON states from each 1365

OFF state. An element in the final row of QOFF is given by 1366

qOFF
m+1,i =

K∑
j=1

ajqji, (18) 1367

where aj is the jth element of the activity vector, qij is a microscopic rate from the original transition rate matrix, and 1368

we assume the state i is in the set of OFF states. Thus, we see that each element of the last row of QOFF gives 1369

the total flux from all OFF state into the ON conformation. The elements of the final column have a complementary 1370

definition: 1371

qOFF
i,m+1 =

K∑
j=1

ajqij . (19) 1372

With our condensed transition rate matrix thus defined, we can use Equations 8 and 9 to calculate πOFF and 1373

Equation 12 to calculate ZOFF. Then, we can use Equation 16 to obtain a vector etON of length M , where each 1374

element i is defined as the expected first passage time from OFF state i back into any of the ON states. Specifically, 1375

we have that each element, i, is given by 1376

etON
i =

zOFF
m+1,m+1 −zOFF

i,m+1
πm+1

. (20) 1377

Thus, we have obtained a vector, etON, of expected mean first passage times out of each OFF state into the set of 1378

N active transcriptional states. But how do we weight the different passage times in this vector to arrive at an overall 1379

average expectation for the amount of time required for the system to turn back ON following a transition into an OFF 1380

state? It’s tempting here to use the stead-state probabilities of each OFF state given by π, but this is actually not 1381

correct. 1382
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A Analytic expressions for key gene circuit characteristics

Instead, the key is to recognize that each OFF state should be weighted by the rate at which ON states switch into1383

it. In other words, we weight OFF states by the probability that they are the initial state the system reaches upon1384

switching out of the ON conformation; the gateway into the OFF states. Mathematically, we encode these weights1385

using the flux vector fOFF, which has M elements, each defined as1386

fOFF
i =

K∑
j=1

ajqijπj , (21)1387

where aj is the jth element of the activity vector a (1 for ON states and 0 otherwise), qij is the transition rate from1388

state j to state i, and πj is the steady-state probability of state j.1389

Finally, we combine this expression with Equation 20 to obtain an expression for the average reactivation time as1390

a flux-weighted average of the first passage times out of each OFF state:1391

ETOFF→ON = 1
k∗

on
=

∑M
i=1 fietON

i∑M
i=1 fi

. (22)1392

As noted above, the calculations for k∗
off follow precisely the same logic, with the roles of the OFF and ON states1393

switched. After this is done, the total burst cycle time, τb, is simply1394

τb = ETOFF→ON +ETON→OFF. (23)1395

Equation 22 is useful because it allows us to relate the (potentially quite complex) microscopic dynamics of a1396

transcriptional system to emergent bursting timescales observed in live imaging experiments (Lammers et al., 2020).1397

To our knowledge, this is the first time that take this flux-weighted first passage time approach is applied to the1398

modeling of burst dynamics. We hope that the expressions provided here will prove useful to others seeking to1399

pursue similar projects in the future.1400

Finally, a useful feature implied by Equation 22 and Equation 23 is that the absolute size of τb scales inversely1401

with the microscopic rates in Q, such that we can decrease τb by some scaling factor λ by simply multiplying Q by1402

λ. We use this trick to renormalize all time-dependent metrics calculated over the course of our parameter sweeps1403

to have units of burst cycle time. This is done by calculating τb for each new model realization we generate, and then1404

multiplying its transition rate matrix by this quantity to generate a normalized rate matrix, namely1405

Q∗ = τbQ. (24)1406

The adjusted matrix, Q∗, is then used to calculate all relevant gene circuit characteristics.1407

A.5. A generic expression for the rate of energy dissipation. Equation 1 gives an expression for the rate of energy1408

dissipation (also termed entropy production), Φ, in the context of the four-state model shown in Figure 1C. This is1409

a special case of a more general formula for Φ that applies to arbitrary molecular architectures. From (Lang et al.,1410

2014; Lebowitz and Spohn, 1999), we have1411

Φ =
K∑

i=i

K∑
j ̸=i

πiqji ln
(qji

qij

)
. (25)1412

We use Equation 25 to calculate all energy dissipation rates given throughout the main text. In the case of the simple1413

four-state system shown in Figure 1B, we have from (Lang et al., 2014) that Equation 25 simplifies to1414

Φ = J ln kbηabkaηuakuki
kbkaηbakuηibki

, (26)1415

which further simplifies to1416

Φ = J ln ηabηua

ηbaηib
. (27)1417

Here J is the net cycle flux, a quantity with units of inverse time which encodes the rate at which the system1418

completes extra cycles in the clockwise (J > 0) or counterclockwise (J < 0) directions. Mathematically, J is given1419

by1420

J = J+ −J−, (28)1421

where J+ gives the average rate at which the system completes one full cycle in the clockwise direction (i.e., setting1422

out from state 0 to state 1, reaches state 0 from state 4), and J− is defined analogously. In terms of microscopic1423

quantities, for any system with a single loop we can define J as1424

J = pikji −pjkij , (29)1425

where kji denotes the transition rate from state i to state j and Jij corresponds to the net transition flux between1426

the two states.1427
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B Gaussian noise approximation

B. Gaussian noise approximation 1428

Throughout this work, we make the simplifying assumption that the intrinsic noise in accumulated mRNA levels 1429

due to transcriptional bursting is approximately Gaussian. In this section, we use stochastic simulations to put this 1430

assumption to the quantitative test. The Markov chain central limit theorem states that the distribution of a quantity 1431

that is a function of a Markov chain (such as the transcription rate, r), will become approximately Gaussian as the 1432

number of iterations becomes large (Geyer, 2011). 1433

The question, then, is whether can expect the accumulated transcriptional output to approach this limiting Gaus- 1434

sian distribution within timescales that are relevant to the decision times discussed in this work. To determine this, 1435

we used stochastic simulations (Gillespie, 1977) to track the distribution of the accumulated output of 500 random 1436

realizations of the four-state system shown in Figure 1C for 5,000 burst cycles. Each realization had a unique set 1437

of transition rates and, correspondingly, a unique average rate of transcription, r = πar0, where πa indicates the 1438

fraction of time the system spends in a transcriptionally active molecular state and r0 is the rate of transcript initiation 1439

when active. For each model realization, we ran 100 stochastic simulations. We used these simulations to track the 1440

distribution of the apparent average transcription rate for each model realization as function of accumulation time. 1441

Figure A1A shows the apparent mean rate across 100 simulations for a single illustrative gene circuit realization. In- 1442

set histograms indicate distribution of apparent transcription rates at different time points. As expected, we see that 1443

the apparent rates are initially highly dispersed; however, even after 25 burst cycles, we see that p(r) has become a 1444

much narrower, roughly symmetrical distribution that appears approximately Gaussian. 1445

To systematically assess the rate of convergence to normality, we utilized the simple One-sample Kolmogrov- 1446

Smirnov test (“kstest”, (Massey, 1951)), which tests the null hypothesis that a vector of transcription outputs from 1447

realization i at time t, ri(t), is drawn from a normal distribution. The test returns a p value corresponding to the 1448

probability of observing ri(t) if the transcriptional output were truly Gaussian. In standard implementations p ≲ 0.05 1449

is taken to constitute strong evidence that the output is not Gaussian. Thus, to assess convergence to normality, we 1450

tracked this p value over time for each of the 500 gene circuit realizations. 1451

Figure A1B shows the average kstest p-values across 10 different sets of gene circuits, grouped by their average 1452

rate of transcription. In all cases, we see that noise profiles rapidly converge towards normality, such that all systems 1453

cross the (relatively conservative) threshold of p = 0.1 within 5 burst cycles (dashed line in Figure A1B). Gene circuits 1454

near the tail ends of the induction curve (r ≤ 0.1 and r ≥ 0.9) take the longest to converge, which is likely because it 1455

takes longer for distributions near the boundaries to become symmetric about their mean; yet even these converge 1456

rapidly. 1457

The fastest decisions discussed in the main text (Figure 4D and E), and most decision times considered are 1458

significantly longer than the time for Gaussian convergence revealed by Figure A1B). Thus, we conclude that the 1459

Gaussian noise approximation invoked throughout this work is justified. 1460

Fig. A1. Testing the validity of the Gaussian noise approximation. (A) Illustrative plot showing average transcription rate as a function of the averaging time across
100 stochastic simulations of one illustrative realization of the four-state model gene circuit. Inset histograms show distribution of apparent rates at three different time
points. We see that, as the accumulation time increases, the distributions get tighter and appear more Gaussian in shape. (B) Plot showing p-values of one-sample
Kolmograv-Smirnov test. Different colors indicate average trends for systems with different average transcription rates. We see that systems near the low and high
ends of the induction curve converge to Guassian form most slowly, but even these cross the p = 0.1 line within a handful of burst cycles. Error bars indicate bootstrap
estimates of standard error calculated for each group. (For stocahstic simulations shown in A and B, transition rate and interaction term magnitudes, k and η, were
constrained such that 10−2 ≤ kτb ≤ 102 and 10−2 ≤ η ≤ 102, where τb is the burst cycle time. ηab and ηib were further constrained such that ηab ≥ 1 and
ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene locus.)
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C Deriving the rate of information transmission for a gene locus

C. Deriving the rate of information transmission for a gene locus1461

Motivated by (Siggia and Vergassola, 2013), we define the rate of information transmission as the time derivative1462

of the expected Kullback-Leibler (KL) divergence between the two hypotheses (C = c0 and C = c1), given some1463

accumulated mRNA level m, such that1464

IR = d

dt

〈
DKL

[
p(c1|m)||p(c0|m)

]〉
, (30)1465

where P(c0|m) and P(c1|m) indicate (respectively) the conditional likelihood that the true value of C is c0 and c11466

given the observed output m, and where the angled brackets indicate that we are dealing with the expected value1467

of DKL across many replicates. We refer readers to information theory reference materials for a formal definition1468

of DKL (see, e.g., (Cover and Thomas, 2006)); however, at an intuitive level it can be regarded as measuring how1469

different two probability distributions are from one another. Thus, with Equation 30, we define the rate of information1470

production as the rate at which the two possibilities (c1 or c0?) become distinguishable from one another given the1471

observed “evidence” (m).1472

We can write out the expected KL divergence from Equation 30 more explicitly as the weighted sum of log proba-1473

bility ratios:1474

IR = d

dt

(
p0

〈
ln p(c0|m)

p(c1|m)

〉
0

+p1
〈

ln p(c1|m)
p(c0|m)

〉
1

)
, (31)1475

where ⟨...⟩i indicates the expectation taken assuming the true value of C to be ci and where p0 and p1 indicate the1476

priors on the true value of C, taken to be equal moving forward (p1 = p0 = 1/2). This formulation provides intuition1477

for the sense in which IR is the information rate: as the conditional probabilities of the observed output given the1478

true (numerators) and false (denominators) hypotheses about C diverge in favor of the true hypothesis, the log ratio1479

terms will become large and positive. Thus a positive derivative corresponds to positive information production.1480

However, here we must recall that our focus here is to understand how the molecular architecture of gene loci1481

impacts the transcriptional response and, ultimately, IR. Thus we wish to work in terms of p(m|c)—the conditional1482

distribution of observed mRNA outputs given some input—rather than p(c|m). To do this, we make use of Bayes’1483

Theorem. We have:1484

p(c0|m)
p(c1|m)

p(m)
p(m) = p(m|c0)

p(m|c1)
p(c0)
p(c1) . (32)1485

This expression becomes an equality if we assumed equal prior probabilities for our two hypotheses (p(c0) = p(c1)):1486

1487

p(c0|m)
p(c1|m) = p(m|c0)

p(m|c1) . (33)1488

Thus, we can use Equation 33 to rewrite Equation 31 as:1489

IR = d

dt

1
2

(〈
ln p(m|c0)

p(m|c1)

〉
0

+
〈

ln p(m|c1)
p(m|c0)

〉
1

)
. (34)1490

We can think of the conditional probabilities, p(m|ci), in Equation 34 as representing the full stochastic transcriptional1491

response to some input activator concentration ci. When these are approximately Gaussian (a condition discussed1492

above in Appendix B), it becomes a straightforward exercise to solve for the expected log ratios in Equation 34. We1493

will solve for the case when C = c1 in full. The c0 case proceeds in precisely the same fashion. To start, we have1494 〈
ln p(m|c1)

p(m|c0)

〉
1

=
∫ ∞

0
p(m|c1) lnp(m|c1)dg −

∫ ∞

0
p(m|c1) lnp(m|c0)dg. (35)1495

Recall that m = rt is Gaussian with probability density function:1496

p(m|ci) = e
−

(
m−m(ci)
2σ2(ci)

)2

√
2πσ2(ci)

. (36)1497

Plugging Equation 36 in for lnp(m|c1) yields1498 〈
ln p(m|c1)

p(m|c0)

〉
1

= −1
2 ln

(
2πσ2

m(c1)
)

− 1
2 −

∫ ∞

0
p(m|c1)

[
− 1

2 ln
(
2πσ2

m(c0)
)

− 1
2

(m(c0)−g

σm(c0)

)2]
dm, (37)1499

Where we’ve recognized that the first integral will simply yield the standard expression for the entropy of a Gaussian1500

random variable. Pulling constant factors out of the second integral leads to1501 〈
ln p(m|c1)

p(m|c0)

〉
1

= −1
2 ln

(
2πσ2

m(c1)
)

− 1
2 + 1

2 ln
(
2πσ2

m(c0)
)

+ 1
2σ2

m(c0)

∫ ∞

0
p(m|c1)

[
m2(c0)−2mm(c0)+m2]

dm.

(38)1502
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D Poisson noise from mRNA synthesis is negligible relative to noise from bursting

Simplifying and recognizing that ⟨m2⟩1 = m2(c1)+σ2
m(c1) leads to: 1503〈

ln p(m|c1)
p(m|c0)

〉
1

= 1
2 ln σ2

m(c1)
σ2

m(c0) − 1
2 + 1

2σ2
m(c0)

[
m2(c0)−2m(c0)m(c1)+σ2

m(c1)2 +m2(c1)2
]
. (39) 1504

Finally, we recall that m = rt and σ2
m = σ2t, obtaining 1505

〈
ln p(m|c1)

p(m|c0)

〉
1

= 1
2

[
ln σ2

r(c0)
σ2

r(c1) + t

(
r(c1)− r(c0)

)2

σ2
r(c0) + σ2

r(c1)
σ2

r(c0) −1
]
. (40) 1506

Performing the same procedure for the case where c = c0 yields: 1507

〈
ln p(m|c0)

p(m|c1)

〉
0

= 1
2

[
ln σ2

r(c1)
σ2

r(c0) + t

(
r(c0)− r(c1)

)2

σ2
r(c1) + σ2

r(c0)
σ2

r(c1) −1
]
. (41) 1508

Plugging Equation 40 and Equation 41 into Equation 34 and taking the derivative with respect to time yields 1509

IR = 1
4

(
r(c1)− r(c0)

)2(
σ(c1)2 +σ(c0)2)

σ(c0)2σ(c1)2 . (42) 1510

Next, if we assume that the difference between c0 and c1 is small (as stipulated in the main text), then σ(c0) ≈ 1511

σ(c1) ≈ σ2(c∗) and r(c1)− r(c0) ≈ δcdr/dc, leading to 1512

IR = 1
2

(
δc

dr

dc

)2 1
σ(c∗)2 . (43) 1513

Finally, we invoke the definitions of sharpness and precision given in Figure 1B, which leads to Equation 2 from the 1514

main text: 1515

IR = 1
2

(δc

c∗

)2
s2p2. (44) 1516

D. Poisson noise from mRNA synthesis is negligible relative to noise from bursting 1517

In this section, we provide support for the claim, made in Main Text Section B, that Poisson noise due to mRNA 1518

synthesis is negligible relative to noise from transcriptional bursting. We take as our starting point Equation 68 from 1519

Appendix J, 1520

P = πa(1−πa)
σ

, (45) 1521

which relates the normalized precision, P, to the bursting noise, σ, and the fraction of time a gene circuit spends 1522

in transcriptionally active states, πa. From Figure 3A, we see that P ≤ 1 for the four-state gene circuit shown in 1523

Figure 1C when the system is out of equilibrium, which, from Equation 45, implies that 1524

σ2 ≥ π2
a(1−πa)2 (46) 1525

for the 4 state system. 1526

Thus, Equation 47 gives a lower bound for the intrinsic variance in gene expression that arises due to transcrip- 1527

tional burst fluctuations at the gene locus. To see how to relate this to noise from mRNA synthesis, we need to take 1528

two more steps. First, we must recall that we are working in units of the burst cycle time, τb. Second, we must further 1529

recall that we set the actual rate of mRNA synthesis, r0, equal to 1 throughout the main text. We must do away with 1530

these simplifications in order to relate σ2 to synthesis noise. Accounting for these simplifications, the full expression 1531

for the noise floor, in “real” time units and accounting for the true rate of mRNA synthesis is 1532

σ2
burst ≥ τbr2

0π2
a(1−πa)2. (47) 1533

Now, if we assume mRNA synthesis to be a Poisson process (following, e.g., (Shelansky and Boeger, 2020)), we 1534

have that this component of the variance is simply equal to 1535

σ2
Poisson = r0πa. (48) 1536

The key thing to notice about Equation 48 is that mRNA synthesis noise is independent of the bursting timescale 1537

τb. Thus, as τb increases, σ2
burst will increase in magnitude relative to σ2

Poisson. Figure A2A and B illustrate this fact, 1538

showing predicted bursting and mRNA synthesis variance components, respectively, as a function of the bursting 1539

time scale τb and the activity level (πa). All calculations assume an mRNA synthesis rate of 20 mRNA per minute, 1540
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E The Sequential Probability Ratio Test

a rate based off of estimates from the fruit fly (Lammers et al., 2020) and that is consistent with measurements1541

from other systems (Tantale et al., 2016). From Figure A2A, we see that σ2
burst peaks at πa = 0.5 and increases1542

dramatically as we move rightward along the x-axis and the burst cycle time increases. We emphasize that this1543

represents a lower bound for maximally precise non-equilibrium gene circuits; most systems (including IR-optimized1544

systems) will lie above this bound. In contrast Figure A2B shows that noise from mRNA synthesis scales linearly1545

with πa, and is constant in τb.1546

Fig. A2. Determining the contribution from mRNA synthesis noise. (A) Heatmap showing lower bound of bursting component of variance for the non-equilibrium
four-state model shown in Figure 1C as a function of the fraction of time spent in the active state (πa) and the burst cycle time (τb). (B) Heatmap showing predicted
variance component arising from mRNA synthesis. (C) Predicted relative contribution of mRNA synthesis noise to total intrinsic noise levels in gene expression. Note
that contribution is only significant for rapidly bursting systems near the saturation point. (All calculations assume an mRNA synthesis rate of 20 per minute, in keeping
with estimates from (Lammers et al., 2020).)

The total gene expression noise level is given by1547

σ2
tot = σ2

Poisson +σ2
burst. (49)1548

We can use this expression to calculate a lower bound on the relative contribution of mRNA synthesis noise to the1549

overall intrinsic variance in gene expression. Figure A2C shows the results of this calculation. We see that, with the1550

exception of rapidly bursting systems near the saturation (πa ≈ 1), the contribution from Poisson noise due to mRNA1551

synthesis is negligible. Thus, we conclude that noise from transcriptional bursting constitutes the dominant source1552

of gene expression noise for the vast majority of the parameter regimes relevant for the investigations in this paper,1553

and that our decision to neglect Poisson noise from mRNA synthesis is reasonable.1554

E. The Sequential Probability Ratio Test1555

Over half a century ago, Wald conceived of the Sequential Probability Ratio Test (SPRT) as a solution to the problem1556

of making accurate decisions between two hypotheses, H1 and H0 in “real time” as relevant data is accruing (Wald,1557

1945). Shortly thereafter, it was established that SPRT represents the optimal approach to sequential decision1558

problems involving binary decisions (Wald and Wolfowitz, 1948), meaning that it requires the fewest observations to1559

achieve a desired level of accuracy. In this framework, a downstream receiver (in our case, downstream genes or1560

other cellular processes) tracks the accrual of some signal (mRNA, and eventually protein) over time and compares1561

how likely this accrued signal is under the two hypotheses to be distinguished (e.g., high or low activator concentra-1562

tion). In this work, we use the optimal nature of SPRT to set lower bounds on decision times that could be achieved1563

given the transcriptional output of model gene loci. The essence of the test lies in tracking the relative likelihoods of1564

our two hypotheses (C = c1 and C = c0) over time as more and more transcriptional output, m, accrues:1565

P0
P1

= P (c0|m)
P (c1|m) (50)1566

Figure A3A shows a stochastic simulation of how this ratio evolves over time for the output of a single model gene1567

circuit. Although the true concentration in this case is c0, we see that the two hypotheses are essentially indistin-1568

guishable early on. This is because the range of possible outputs given high and low activator concentrations overlap1569

significantly early on (leftmost panel of Figure A3B). However, as more and more time passes, the expected outputs1570

(m) given the two possible inputs (c1 and c0) start to separate. We see that the ratio in their likelihoods diverges1571

more and more in favor of c0 (P0/P1 >> 1), corresponding to a higher and higher degree of certainty that c0 is the1572

correct choice.1573

This divergence, however, is non-monotonic and noisy, which reflects the stochastic nature of protein production1574

at a single gene locus. It has been shown that the noisy divergence of the log of the probability ratio (which we will1575

call L ) can modeled as a 1-D diffusive process with average drift IR (Siggia and Vergassola, 2013) given by1576

IR = d

dt
⟨L ⟩. (51)1577
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F Implementation of parameter sweep algorithm

In this framework, a “decision” is made when L crosses a so-called “decision boundary” (horizontal dashed lines 1578

in Figure A3A). Siggia et al showed that the Gaussian diffusion approximation could be used to obtain an analytic 1579

expression for the expected time needed to make a decision. From Equation 15 in the supplement of (Siggia and 1580

Vergassola, 2013), we have that: 1581

⟨T ⟩ = K

2V sinh V K
D

[
e

V K
D +e− V K

D −2
]
, (52) 1582

where V is the same as IR from above (and in the main text), D encodes the diffusivity of decision process (essen- 1583

tially, how large the fluctuations are about its mean drift trajectory), and K is related to the log of the error tolerance 1584

parameter ε, such that 1585

K = log
(1−ε

ε

)
. (53) 1586

We note that Equation 52 assumes equal priors regarding the likelihood of c1 and c0, and also assumes equal error 1587

tolerances for choosing incorrectly in either case (Desponds et al., 2020). 1588

If we take the accumulated transcriptional output of our gene circuit, m = rt, to be approximately Gaussian (see 1589

Appendix B), then it can be shown that D has the form: 1590

D = (m0 −m1)2(σ6
0 +σ6

1)
4σ4

0σ4
1

, (54) 1591

where mi and σi give the mean and variance in the accumulated transcriptional output, given that C = ci. From 1592

Equation 42 in Appendix C, we also have that 1593

V = IR = (m0 −m1)2(σ2
0 +σ2

1)
4σ2

0σ2
1

. (55) 1594

In a different context (exponential distributions, rather than Gaussian), Desponds and colleagues (Desponds et al., 1595

2020) demonstrated that D ≈ V when the difference between hypothesis—δc/c∗ in our case—is small. From Equa- 1596

tions 54 and 55, we see that this also holds for the Gaussian case: when c1 and c0 are sufficiently close, σ1 and σ0 1597

will be approximately equal, such that: 1598

D ≈ V ≈ (m0 −m1)2

2σ2 . (56) 1599

As demonstrated by (Desponds et al., 2020), when D ≈ V , Equation 52 simplifies dramatically, yielding 1600

⟨T ⟩ = log
(1−ε

ε

)1−2ε

IR
, (57) 1601

which is Equation 3 from the main text. For correctness, we use the full expression (Equation 52) to calculate all de- 1602

cision time quantities shown in the main text. However, since Equation 57 holds quite well for the 10% concentration 1603

difference considered here, we give the simpler expression in the main text to aid the reader’s intuition. 1604

F. Implementation of parameter sweep algorithm 1605

In this section, we describe the parameter sweep algorithm employed throughout this work to enumerate the perfor- 1606

mance bounds of gene circuit models. We note that this approach is based off of an algorithm previously employed 1607

by Eck & Liu et al. (Eck et al., 2020) to explore the behavior of non-equilibrium models of transcription (see also, 1608

(Estrada et al., 2016)). Figure A4A illustrates the key steps in this numerical procedure. First, an initial set of gene 1609

circuit realizations (typically comprised of 1,000 variants) is generated by sampling random values for each transition 1610

rate in the system. We then calculate the performance metrics of interest (S and P for the example in Figure A4A) 1611

for each gene circuit realization. This defines an initial set of points (Figure A4A, Panel i) that collectively span some 1612

region in 2D parameter space with area a1. 1613

Next (Panel ii), we subdivide parameter space into N different bins along the X and Y axes, with N dictated by the 1614

total number of points (10 ≤ N ≤ 50). We subsequently calculate the maximum and minimum point in each X and 1615

Y slice (Panel iii). Finally, we randomly select candidate gene circuit models from these boundary points and apply 1616

small perturbations to each transition rate to generate a new set of random variants (iv). In general, these variants 1617

will lie close to the original model in 2D parameter space and, thus, close to the current outer boundary of parameter 1618

space. The key to the algorithm’s success is that some of these variants will lie beyond the current boundary (blue 1619

points in Figure A4A, Panel iv). This has the effect of extending the boundary outward, leading to an increase in the 1620

surface area spanned by our sample points (panel iv). As a result, cycling through steps ii-iv amounts to a stochastic 1621

edge-finding algorithm that will iteratively expand the boundary spanned by sample points outward in 2D parameter 1622

space until some analytic boundary is reached. 1623
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F Implementation of parameter sweep algorithm

Fig. A3. The Sequential Probability Ratio Test. (A) Panels show stochastic trajectory of the relative probabilities of c0 and c1 over time, given the observed output
of some gene circuit (illustrated in Figure 1E). (B) Panels illustrating expected distributions of transcriptional outputs, m, for each concentration at different time points
normalized by the total time over which the gene circuit has been active, t. Note how the distributions narrow and separate as time progresses.

The panels in Figure A4B show snapshots of the sweep algorithm’s progress exploring sharpness vs. precision1624

parameter space for non-equilibrium realizations of the four-state gene circuit (Figure 1C). Figure A4C shows the1625

total area spanned by the sample points for this run as a function of sweep iteration. By eye it appears that most of1626

salient parameter space has been explored by step 10 of the algorithm, but we are quite strict with our convergence1627

criteria. We will only terminate a sweep at step t if (at − at−2)/at−2 ≤ 0.001 and (at−1 − at−3)/at−3 ≤ 0.001. In1628

this case, this convergence criterion is met following step 25, leading to the final set of sample points shown in1629

Figure A4D. In general, we run all sweeps until the above criterion is met or some pre-specified maximum number of1630

iterations (usually 50) is reached.1631

F.1. Numeric vs. symbolic metric calculations. The algorithm outlined in Figure A4A is predicated upon the ability to1632

rapidly calculate performance metric quantities (e.g., S and IR) given a set of transition rate magnitudes. Wherever1633

possible, we use symbolic expressions to perform these calculations; however, this is only feasible for the simple four1634

and six state systems depicted in Figure 1C and Figure 4B. For more complex models, it is infeasible to perform the1635

symbolic operations required to obtain closed-form symbolic expressions. As a results, we use numerical calculations1636

to arrive at performance metrics for all higher-order models.1637

F.2. Enforcing equilibrium constraints. In this work, we make frequent use of comparisons between equilibrium and1638

non-equilibrium gene circuits in order to elucidate how energy expenditure alters gene-regulatory performance. A1639

key step in performing parameter sweeps for equilibrium gene circuits is ensuring that transition rates adhere to the1640

constraints imposed by detailed balance. For the simple four state model shown in Figure 1C, this process boils1641

down to ensuring that the product of the four transition rates moving in a clockwise direction about the square is1642

equal to the product of the four counterclockwise rates. As shown in Appendix A.5, this amounts to enforcing the1643

constraint that1644

λ = ηabηua

ηbaηib
= 1, (58)1645

where the η factors on the top and bottom of the left-hand-side expression correspond to regulatory interaction terms1646

that modify transition rates in the clockwise and counterclockwise directions, respectively, and where λ is the flux1647

factor that captures the relative magnitudes of clockwise and counterclockwise transitions.1648

To enforce this constraint during the course of a parameter sweep, we add a step to the process outlined above.1649

New gene circuit realizations are generated as before, but now, following its generation, we calculate the initial1650

flux factor, λ0 for each new realization using Equation 58. In general this quantity will not equal one for the new1651

realizations (λ∗ ̸= 1). To fix this, we then multiply ηba and ηib each by a factor of λ
1
2 , which leads to a modified1652
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G Testing the convergence characteristics of the parameter sweep algorithm

Fig. A4. A simple stochastic edge-finding algorithm for numerical parameter sweeps. (A) Schematic illustrating key steps in our parameter sweep approach
(see text for details). This panel has been adapted with permission from (Eck et al., 2020). (B) Sequence of snapshots showing progress of sweep algorithm across a
single run for the case of normalized sharpness (S) versus normalized precision (P). Circle color indicates the sweep step on which it was generated. (C) Plot showing
2D surface area spanned by sample points over time. (E) Plot showing final set of sample points obtained by the sweep algorithm.

system that adheres to the constraint laid out in Equation 58. Next, we check the modified terms to ensure that they 1653

adhere to magnitude constraints (typically 10−5/τb ≥ ηi 10−5/τb) and pass all qualifying rates along to the next step 1654

in the sweep iteration (step ii in Figure A4A). Finally, we note that, although we have focused on the simple four state 1655

system, our assumption that all binding and activation reactions are identical (see Appendix I) ensures that the exact 1656

same approach holds for all higher-order models (NA > 1 or NB > 1) considered in this work. 1657

G. Testing the convergence characteristics of the parameter sweep algorithm 1658

Here, we discuss results from a series of tests designed to assess the convergence of our sweep algorithm for key 1659

scenarios examined in the main text. This task is the most straight-forward when the algorithm is employed for “two- 1660

boundary” sweeps, such as S vs. P (Figure 3A) and S0 vs f (Figure 5B), where both parameters examined adhere 1661

to finite performance bounds and, thus, where the 2D region of accessible parameter space has a finite area. In 1662

this case, our general approach will be to assess whether independent runs of the algorithm (i) converge prior to the 1663

50 run limit and (ii) reach a consistent final estimate for the area of 2D space that is attainable for different model 1664

architectures. The task becomes more complicated for “one-boundary” sweeps, such as IR vs. Φ (Figure 2A, C, 1665

and D) and IR vs. w/c, where only a single parameter (IR in each case) has a finite upper bound and the other (Φ 1666

and w/c) is limited only by bounds imposed externally as a part of sweep specification. We will begin by assessing 1667

convergence for the simpler two-sided case, and will turn thereafter to examining one-sided cases. 1668

G.1. Sharpness vs. Precision sweeps. Figure 3A and Figure S2A and B show results for parameter sweeps examining 1669

tradeoffs between normalized sharpness (S) and normalized precision (P) for systems with 1-5 binding sites and 1-4 1670

activation steps. We note that Figure 3C and Figure S2C also derive from these parameter sweep results. Across 1671

the board, we find that nearly all independent runs of the sweep algorithm converge according to the definition laid 1672

out above (Figure A5A and B). Moreover, for simpler architectures, we find that all independent sweep runs converge 1673

to essentially the same total area. For instance, Figure A5B shows normalized area as a function of sweep step for 1674

500 non-equilibrium realizations of the baseline four-state model, indicating that all runs terminate near the global 1675

maximum found across all runs (dashed line). We take this as strong evidence that the algorithm is consistently 1676

exploring the full extend of 2D parameter space. 1677
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G Testing the convergence characteristics of the parameter sweep algorithm

Fig. A5. Convergence results for S vs. P parameter sweeps. (A-B) Plots showing fraction of parameter sweeps that met convergence criteria for multi-binding
site and multi-activation step models, respectively. Squares indicate results for equilibrium models and circles indicate non-equilibrium models. (C-D) Plots of area vs.
sweep step for different model architectures. Note that the area corresponding to the first (iteration=1) is not recorded by the algorithm, and so has been estimated
in each case via linear interpolation. Staggered starts apparent for NB = 5 and NA = 5 models indicate cases where model initialization were aborted one or more
times due to an insufficient number of gene circuits meeting quality control criteria. (E-F) Fraction of parameter sweeps having a final area within 95% of the global
maximum for multi-binding site and multi-step models, respectively. (All results were calculated using 500 independent runs of the sweep algorithm for each model
architecture. Transition rate and interaction term magnitudes (k and η) were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst
cycle time. ηab and ηib were further constrained such that ηab ≥ 1 and ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene
locus.)

As might be expected, the task of exhaustively exploring parameter space becomes more difficult as models1678

become more complex. Note the larger spread in outcomes for the non-equilibrium five binding site (NB = 5) and 41679

activation steps (NA = 4) models in Figure A5C and D, respectively. Nonetheless, we find that a significant number of1680

sweeps converge to a consistent maximum area, even for the most complex models considered. Figure A5E and F1681

give the total fraction of sweeps having a final area within 95% of the global maximum as a function of binding1682

site number and activation step number, respectively. First, we see that 100% of sweeps for equilibrium models1683

uniformly meet this standard for all model architectures considered (squares in Figure A5E and F). Second, our1684

analysis indicates that, even for the extrema (NB = 5 and NA = 5), 13% and 36% of total runs, respectively (67 and1685

179 sweeps), still achieve final areas comparable to the global maximum, suggesting that the algorithm still does an1686

adequate job of exploring parameter space in these cases.1687
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G Testing the convergence characteristics of the parameter sweep algorithm

Fig. A6. Convergence results for IR vs. Φ parameter sweeps. (A) Scatter plot comparing maximum information rate estimated from S vs. P and from IR vs. Φ
sweeps. (B-C) Scatter plots comparing results for the upper IR bound at different points along the curves shown in Figure 2C and D from two independent rounds of
parameter sweeps comprising 200 and 500 separate runs, respectively. Points reflect IR maxima for Φ values ranging from 0.1kBT to 5000kBT. (Transition rate and
interaction term magnitudes (k and η) were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time. ηab and ηib were
further constrained such that ηab ≥ 1 and ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene locus.)

G.2. Information vs. energy sweeps. Next, we turn to the one-sided sweeps. First, let’s consider the IR vs. Φ sweep 1688

results shown in Figure 2A, C, and D. Because Φ has no natural barrier in parameter space, the convergence metrics 1689

considered above do not provide reliable indicators of model convergence. Instead, we make use of the fact that the 1690

IR vs. Φ and the S vs. P parameter sweeps should function (either directly or indirectly) to uncover the maximum 1691

achievable non-equilibrium information rate for each model architecture. Thus, as a basic test of sweep performance, 1692

we checked for the consistency between IR estimates derived from these different sweep modalities. As illustrated 1693

in Figure A6A, we find excellent agreement between the maximum IR values derived from the S vs. P (x-axis) and 1694

IR vs. Φ (y-axis) parameter sweeps for all model architectures considered. This provides one indication the IR vs. Φ 1695

sweeps are fully exploring the relevant parameter space. 1696

As a second check, we compared the IR vs. Φ bounds derived for two separate rounds of parameter sweeps 1697

(“round a” and “round b”) comprised of 200 and 500 independent parameter sweeps, respectively. We reasoned 1698

that, if our algorithm is accurately recovering the true IR vs. Φ bound for each model architecture, this bound (i) 1699

should be replicable across different parameter sweep rounds and (ii) should be insensitive to the precise number of 1700

sweep runs per round. For each model architecture, we calculated the maximum IR value returned by sweep rounds 1701

a and b for 30 different rates of energy dissipation ranging from 0.1kBT (close to equilibrium) to 5000kBT (upper limit 1702

of x axis in Figure 2D). Figure A6B and C show the results of this exercise for multi-binding site and multi-activation 1703

step models, respectively, indicating excellent agreement between different sweep round for all model architectures. 1704

This demonstrates that our information vs. energy bounds are highly replicable across different rounds of sweeps. 1705

The consistency across round comprised of significantly different numbers of runs provides further evidence that we 1706

are conducting a sufficient number of independent sweeps (≥ 200) per run. Taken together, these results and the 1707

results from the preceding paragraph provide strong evidence that our algorithm is robustly recovering accurate IR 1708

vs. Φ bounds for all models considered. 1709

G.3. Information vs. w/c sweeps. Finally, we turn to the parameter sweep results for information (and, correspondingly, 1710

decision time) as a function of wrong-to-right activator concentration (w/c) shown in Figure 4C-E. We note that the 1711

results shown in Figure 5A and C are also derived from these sweeps. Like Φ, w/c has no intrinsic boundary 1712

in parameter space and, thus, swept area provides a poor indication of convergence. Fortunately, in addition to 1713

treating w/c as a sweep parameter, we can also conduct 2D parameter sweeps where w/c is set at a constant 1714

value (e.g., w/c = 1000 in Figure S4B). Thus we cross-validate the IR vs. w/c bounds returned by the sweeps from 1715

Figure 4 by conducting separate sweeps of IR vs. r (the mean transcription rate) at different w/c values (illustrated 1716

in Figure A7A). These sweeps do converge, with an average of 80% of runs reaching 93% of the global maximum. 1717

Figure A7B and C show the results of this comparison for three different values of w/c: 10, 102, and 103. We focus 1718

on the architectures depicted in Figure 4, namely equilibrium systems with 1-5 binding sites (and one activation step) 1719

and non-equilibrium systems with 1-4 activation steps (and one binding site). We also test convergence for the non- 1720

equilibrium gene circuit with 5 binding sites and 1 activation step shown as a dashed line in Figure 4D. In most cases, 1721

we find good agreement between the two methods, suggesting that the IR vs. w/c sweeps are generally returning 1722

accurate estimates for the IR vs. w/c bound. We do note a couple of exceptions, however. First, we see that that IR 1723

vs. w/c sweeps appear to underestimate the upper IR bound to a significant degree for the non-equilibrium model 1724

with 4 activation steps when w/c = 10 (circle in upper right-hand corner of Figure A7C). This indicates that the IR 1725

vs. w/c sweep is performing sub-optimally in this case. However, since this deviation occurs in the extreme low 1726

interference regime and our focus in Section E lies on model performance at higher w/c levels (w/c ≳ 100), where 1727

our sweep algorithm performs reliably, it does not impact any conclusions drawn throughout the course of the main 1728
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H Estimating decision time ranges for different biological systems

Fig. A7. Convergence results for IR vs. w/c parameter sweeps. (A) Illustrative scatter plot showing IR vs. r sweep results for the three binding site model at
equilibrium for three different values of w/c. (B-C) Scatter plots comparing parameter sweep results for the upper IR bound at three different w/c levels (10, 102,
and 103) derived from IR vs. r sweeps (x-axis) and IR vs. w/c sweeps (y-axis) for equilibrium multi-binding site and non-equilibrium multi-activation step models,
respectively. Circles, triangles, and squares indicate w/c values of 10, 102, and 103, respectively. Hollow markers in (B) indicate non-equilibrium systems. All other
results in (B) are for equilibrium gene circuits (in keeping with Figure 4D). All results in (C) correspond to non-equilibrium gene circuits (in keeping with Figure 4E).
(Transition rate and interaction term magnitudes (k and η) were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time.
ηab and ηib were further constrained such that ηab ≥ 1 and ηib ≤ 1, consistent with our assumption that the transcription factor activates the gene locus.)

Fig. A8. Convergence results for f vs. r parameter sweeps. (A) Plot showing fraction of runs converged as a function of the number of activation steps. All 50 runs
converged for each of the four gene circuit models considered. (B) Plot showing area spanned in parameter space as a function of iteration number for all 50 runs for
the NA = 1 and NA = 4 models. The delayed rise for NA = 4 models reflects the fact that repeated initializations were required to find a sufficient number of gene
circuit realizations that adhered magnitude and quality control constraints. (C) Fraction of total runs for each model time that reached a final area greater than or equal
to the 95% of the global maximum across all runs. (w/c was set to 103 for all runs. Transition rate and interaction term magnitudes (k and η) were constrained such
that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105, where τb is the burst cycle time. ηab and ηib were further constrained such that ηab ≥ 1 and ηib ≤ 1, consistent
with our assumption that the transcription factor activates the gene locus.)

text. We note that the IR vs w/c sweeps similarly underestimate the IR bound non-equilibrium realizations of the1729

5 binding site model when w/c = 10 (hollow gray circle in upper right-hand corner of Figure A7B). In this case,1730

however, even the IR vs. r parameter sweeps do not converge reliably, with only 3-4% of sweeps reaching 95% of1731

the global maximum. Thus, we are unable to assess the full extent to which the IR vs w/c is sub-optimal in this case.1732

Once again, though, this claims in the main text rely only on the IR bound when w/c is large (w/c ≳ 103); a regime1733

in which we find that the sweeps perform reliably (hollow gray square in Figure A7B). Thus, we conclude that the IR1734

vs. w/c sweeps provide a viable basis for the investigations undertaken in this study.1735

G.4. Specificity vs. NA results. We claim in the main text that, out of equilibrium, the specificity is bounded by the1736

number of activation steps, such that f ≤ αNA+1. Here α is the affinity factor (set to 100) that reflects intrinsic differ-1737

ences in the binding kinetics between cognate and non-cognate factors (α = kw
u /ku). Figure S4B shows parameter1738

sweep results in support of this claim. These results are derived from 2D f vs. r sweeps. Figure A8 shows conver-1739

gence statistics for these runs for non-equilibrium systems with 1 to 4 activation steps and 1 binding site. We find1740

that all 50 sweep runs met their convergence criteria for each run (Figure A8A) and, further, that no fewer than 76%1741

of runs converged to a 2D area that was within 95% of the global maximum. This indicates that these parameter1742

sweep results converge reliably to consistent overall values for specificity and a function of transcription rate and,1743

thus, that they provide a sound basis for assessing the maximum achievable non-equilibrium specificity as a function1744

of NA.1745

H. Estimating decision time ranges for different biological systems1746

Caenorhabditis elegans decision time estimation. A recent study by Lee and colleagues (Lee et al., 2019) used live1747

imaging to examine Notch-dependent burst dynamics in the sygl-1 gene in the germ line of young adult nematodes.1748

Their results indicate that the gene exhibits burst cycle times ranging from 60.5 minutes up to 105.3 minutes (see1749
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I Higher-order molecular models

Figure 2 E and F in (Lee et al., 2019)). Meanwhile, a review article indicated potential values for the cell cycle time 1750

for adult germ-line cells in C. elegans as ranging from 16 to 24 hours (Hubbard, 2007). A separate study examining 1751

nonsense-mediated mRNA decay in C. elegans reported a half life of approximately 6 hours for the rpl-7A gene 1752

(Figure 4k in (Son et al., 2017)). If we take the cell cycle time as the upper time limit for cellular decision-making, this 1753

leads to an estimate of 1440/60.5 = 23.8 burst cycles. 1754

Mus musculus decision time estimation. Burst cycle time estimates were taken from Table A.1 in Appendix A of 1755

(Lammers et al., 2020), which indicates times ranging from 30 minutes to a “few hours”. mRNA half life estimates 1756

were taken from Table 1 of (Pérez-Ortín et al., 2013), which indicates a range of 30 minutes to 30 hours for mouse 1757

cells. To estimate the effective decision time corresponding to an mRNA half-life of 30 hours (1,800 minutes), we 1758

recognize that, once mRNA levels have reached a steady state, they will reflect (in effect) a weighted average of the 1759

preceding transcriptional activity, where weights moving backward in time contribute 1760

w(t) = e
− t

τmRNA , (59) 1761

where t indicates temporal distance from the present and τmRNA is the exponential time constant, given by τmRNA = 1762

t 1
2
/ ln(2). Integrating Equation 59, we find that τmRNA time steps are effectively present in steady-state mRNA levels. 1763

Taking 30 minutes as the lower bound for bursting timescales, this yields an upper bound of (1800/ log2)/30 = 86.6 1764

burst cycles. We note that this estimate is not materially different from the 60 cycle estimate that would be obtained 1765

by simply dividing 1,800 by 30. 1766

Drosophila melanogaster decision time estimation. We take the duration of nuclear cycle 14, which follows the thir- 1767

teenth (and final) round of synchronous cellular divisions in early Drosophila melanogaster development, as the 1768

relevant timescale for cellular decisions in early fruit fly development. Studies have found that the duration of this 1769

developmental period varies along the embryo, with a minimum duration of 65 minutes (Foe and Alberts, 1983). To 1770

estimate bursting timescales, we use burst inference results from our previous work (Lammers et al., 2020), which 1771

indicate a burst cycle time of approximately 2 minutes for the even-skipped gene. Thus, we arrive at an upper limit 1772

of 65/2 = 32.5 cycles. 1773

I. Higher-order molecular models 1774

Here we provide an overview of key modeling assumptions underlying our approach to modeling gene circuits with 1775

multiple activator binding sites or multiple activation steps. 1776

I.1. Gene circuits with multiple activator binding sites. A key feature of eukaryotic enhancers is the presence of multi- 1777

ple distinct binding sites for regulatory factors (Vincent et al., 2016; Erokhin et al., 2015). To better understand the 1778

impact of variable numbers of binding sites on information transmission, this work examines gene circuit models with 1779

between 1 and 5 activator binding sites. In so doing, we maintain the same basic MWC architecture outlined in the 1780

context of the simple 4 state model with one activator binding site shown in Figure 1B. No number of bound activators 1781

is alone sufficient for mRNA production, but each contributes an extra factor of ηab and ηib to impact locus activation 1782

dynamics. In all cases, we assume a single molecular activation step for multi-binding site models (NA = 1). Finally, 1783

we also allow for cooperative interactions between bound activator molecules, which are captured by the interaction 1784

term ηub. 1785

Figure A9A illustrates what this looks like for a model gene circuit with two activator binding sites. The model has 1786

eight total states, with four inactive states (top) and four active states (bottom). There are several features to note. 1787

First, the transitions between states 2 and 6, which feature two bound activator molecules, are weighted by squared 1788

interaction terms, η2
ab and η2

ib, to reflect the regulatory influence of two activators on locus activation dynamics. More 1789

generally, if n activators are bound, these weights are raised to the nth power (i.e. ηn
ab and ηn

ib). Second, note 1790

that unbinding reactions leading out of states 2 and 6 are multiplied by the additional ηub mentioned above. This 1791

reflects interactions between bound molecules. For simplicity, we assume that ηub is the same for both cognate and 1792

non-cognate activator species, as well as for interactions between cognate and non-cognate activators. In general, 1793

unbinding reactions out of states with n activators bound will be weighted by ηn−1
ub to reflect interactions from the 1794

remaining bound factors. 1795

Lastly, a key simplifying assumption that we make in this work is that each activator binding site is identical with 1796

respect to its regulatory influence on the gene locus. As a result, it does not matter which binding sites are bound, 1797

only how many are bound. In the context of Figure A9A, this means that states 1 and 5 are functionally identical to 1798

states 3 and 7, respectively. Thus, these states can be combined into single coarse-grained states, which leads to an 1799

effective model with 6 states, rather than 8. This ability to coarse grain is invaluable for more complex architectures, 1800

since it means that the total number of unique molecular states scales as NANB, rather than NNB
A . 1801
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J Deriving normalized sharpness and precision metrics

I.2. Gene circuits with multiple molecular activation steps. Setting NA > 1 is intended to reflect the reality that mul-1802

tiple distinct molecular reactions—e.g., mediator engagement, PIC assembly, nucleosome displacement, etc.—are1803

necessary preconditions for achieving productive transcription. In the main text we investigate the performance of1804

gene circuits whose transcriptional activity is dictated by 1-4 molecular components, each of which can be either1805

engaged (compatible with transcription) or disengaged (incompatible with transcription). In their simplest interpreta-1806

tion, “engaged” and “disengaged” states might correspond to the presence or absence of some critical component1807

of the transcriptional machinery at the gene locus; however, we remain intentionally non-committal about their phys-1808

ical interpretation, since these generic states are meant to capture a broad swath of potential molecular reactions.1809

For instance, in the case of a nucleosome, the “engaged” state would correspond to the absence of the nucleosome1810

(Mirny, 2010). The terms could also capture conformational shifts in key macromolecules such as mediator (Nogales1811

et al., 2017), or in the topology of the gene locus itself.1812

We assume that each component is required for transcription, such that, in a model with n molecular components1813

only molecular states with all n components engaged are transcriptionally active, and NA = n activation steps are1814

required to achieve locus activation. Furthermore, while in reality each molecular component is likely characterized1815

by heterogeneous dynamics (see, e.g., (Lammers et al., 2020)) we again make the simplifying assumption that each1816

molecular step is identical. As a result, it does not matter which molecular components are engaged, only how many.1817

Figure A9B shows how this logic plays out for the case where NA = 2. As with the NB = 2 case, the model gene circuit1818

has 8 states; however, in this case, only two states (5 and 6)—the ones in which both components are engaged—1819

are transcriptionally active. Note that the binding and unbinding reactions connecting these states are weighted by1820

factors of η2
ba and η2

ua, respectively, to reflect the influence of each molecular factor. In general, if n components1821

are engaged, these factors are raised to the nth power. In addition, we allow for cooperative interactions between1822

molecular components (curved arrow in states 1,2 and 4-7), captured by the ηaa and ηia terms in Figure A9B. In1823

general these terms are raised to the power of n − 1, where n is the number of engaged components at the initial1824

molecular states.1825

I.3. Future directions. Throughout this work, we have treated activator binding sites and activation steps as orthogonal1826

axes of gene circuit complexity. In reality, of course, both elements are likely at play in gene regulatory architectures.1827

We choose to investigate the impact of each independently for two chief reasons: first it greatly simplifies exposition1828

and allows us to more easily isolate how each aspect of gene locus architecture interacts with energy dissipation1829

to dictate rates of information transmission. Second, since model complexity scales as NANB, we are limited in our1830

ability to accurately explore the performance of models where both NA and NB are large. Improving computational1831

and numerical techniques to permit such explorations represents an interesting future direction. We note also that1832

such models should be tractable without need for additional development if limited to operate at equilibrium.1833

In addition, we wish to emphasize the potential importance of allowing for heterogeneity, both in the properties of1834

different binding sites along the enhancer and between different molecular components within the activation pathway.1835

This question seems especially interesting in the context of the molecular activation steps. Our simple model with1836

identical steps likely represents the floor of system performance. How much is to be gained when each reaction can1837

adhere to its own kinetics, and exert a distinct kind of regulatory influence over the gene locus?1838

J. Deriving normalized sharpness and precision metrics1839

In Figure 1B, the transcriptional sharpness, s, is defined as the first derivative of the transcriptional input-output1840

function multiplied by the activator concentration, c∗, such that1841

s = dr

dc
c∗. (60)1842

The transcriptional precision, p, is defined as the inverse of the intrinsic noise in the transcriptional input-output1843

function:1844

p = 1
σ

, (61)1845

where σ is as defined in Equation 11 in the main text. Under these definitions, a key challenge in comparing sharp-1846

ness and precision levels across different gene circuits is that the upper bounds on both s and p depend on the frac-1847

tion of time the system spends in the transcriptionally active state, πa (defined in Equation 10). Figure A10A and B1848

illustrate this πa-dependence for equilibrium and non-equilibrium realizations of the four-state system defined in Fig-1849

ure 1C. As an example: the equilibrium bound on s is 0.25 when πa = 0.5, but only 0.09 when πa = 0.1 (Figure A10A).1850

Since we allow gene circuits to take on different transcription rates (r = πa r0 ) at C = c∗, this πa-dependence thus1851

confounds our efforts to understand how the molecular architecture of gene circuits—the number of binding sites,1852

number of molecular steps, and presence or absence of energy dissipation—dictates transcriptional performance.1853

To overcome this issue, we need to normalize s and p such that they are independent of πa. Focusing first on1854

sharpness, we were inspired by previous works (Estrada et al., 2016; Grah et al., 2020) to leverage Hill Function as1855
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J Deriving normalized sharpness and precision metrics

Fig. A9. Higher order gene circuit models. (A) Cartoon indicating the molecular architecture of a model gene circuit with one activation step and two activator
binding sites (NA = 1 and NB = 2). (B) Molecular architecture of a model gene circuit with two activation steps and one activator binding site (NA = 1 and NB = 2).

a flexible conceptual tool for extracting generic sharpness measures. The Hill function is defined as: 1856

πa = cS

cS +KS
d

, (62) 1857

where c is the activator concentration, S is the Hill coefficient, and Kd is a constant that dictates the location of the 1858

function’s half-max point. In general, the input-output functions generated by our model gene circuits will have more 1859

complex functional forms, but nonetheless, Equation 62 indicates that we can relate these more complex functions 1860

to the Hill function via the shared parameters πa and c. 1861

The sharpness of the Hill function has the form: 1862

sH = S
cSKS

d

(cS +KS
d )2 . (63) 1863

To better relate this to our input-output function, we need to re-express Kd in terms of C and πa. Solving Equation 62 1864

for Kd yields 1865

Kd = c
(1−πa

πa

) 1
S

. (64) 1866

Plugging this in to Equation 63 we obtain, after simplification: 1867

s = πa(1−πa)S. (65) 1868

This expression tells us that the sharpness (s) of a Hill function with activity level πa at C = c∗ is equal to the Hill 1869

coefficient, S, multiplied by the term πa(1 − πa). By rearranging, we can obtain the Hill coefficient as a function of s 1870

and πa 1871

S = s

πa(1−πa) . (66) 1872

Thus, for a generic gene circuit input-output function with sharpness s and expression level πa at C = c∗ we can 1873

invoke Equation 66 to calculate the Hill coefficient for the equivalently sharp Hill function (Figure A10C). This provides 1874

us with a generic measure of transcriptional sharpness that is independent of πa and thus can facilitate comparisons 1875

across gene circuits that drive differing activity levels at C = c∗ (Figure A10D). We refer to this independent sharpness 1876

metric as the “normalized sharpness” in the main text, and denote it with the variable S. 1877

This leads us to the question of transcriptional precision. The two key considerations in defining the normalized 1878

precision metric, P, are that (i) we want it to yield a quantity proportional to the information rate when multiplied with 1879

S (Equation 66), where 1880

IR =
(δc

c∗

)2
S2P2, (67) 1881
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K Optimal equilibrium four-state gene circuits behave like effective two state systems

and (ii) we want it to adhere to a single upper bound, regardless of πa. There is only one definition that satisfies the1882

first constraint:1883

P = p
(
πa(1−πa)

)
= πa(1−πa)

σ
. (68)1884

Happily, Equation 68 exhibits consistent upper bounds for all πa values, and thus satisfies our second constraint1885

(Figure A10E).1886

Fig. A10. Defining normalized sharpness and precision. (A) Plot depicting the upper sharpness limit for equilibrium (blue) and non-equilibrium (red) realizations
of the four-state system depicted in Figure 1C. The upper limit depends on the fraction of time spent in the active state, πa. (B) Plot of precision as a function of
the transcription rate. Here again, the upper bounds depend on πa. (C) Plot of normalized sharpness as a function of the transcription rate. In the case, the upper
limits are invariant. (D) Illustration of normalized sharpness concept. For a given input-output curve, we identify normalized sharpness, S, as the Hill coefficient of an
equivalently sharp Hill function with the same expression level at C = c∗. (E) On the other hand, the normalized precision, P, exhibits invariant performance bounds.

K. Optimal equilibrium four-state gene circuits behave like effective two state systems1887

In this section, we calculate the normalized sharpness (S) and precision (P) for a simple 2 state gene circuit (Fig-1888

ure A11A) with one ON state and one OFF state and two transition rates, koff and kon. We assume that activator1889

binding dictates fluctuations into and out of the ON state, such that kon is proportional to c (kon = ck0
on). For this1890

simple system, the rate of transcription is given by1891

r = r0
ck0

on
ck0

on +koff
= r0πa. (69)1892

Differentiating this expression with respect to c and setting r0 = 1 (as in main text), we find that1893

s = ck0
onkoff

(ck0
on +koff)2 . (70)1894

Finally, dividing through by b = πa(1−πa) yields the normalized sharpness, which is simply given by1895

S = 1. (71)1896

Thus, we see that the two state model is constrained to a normalized sharpness level that represents the upper1897

performance limit for the four-state model operating at equilibrium (blue circles in Figure 3A).1898

Next, we turn to precision. From Equation 11, we find that1899

σ2 = 2ck0
onkoff

(ck0
on +koff)3 . (72)1900
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L Sharp and precise non-equilibrium networks exhibit distinct and incompatible microscopic topologies

Inverting and multiplying by b2 gives 1901

P 2 = ck0
on +koff

2(ck0
on +koff) . (73) 1902

Finally, multiplying through by τb (Equation 17) and taking the square root gives 1903

P = 1√
2

, (74) 1904

which, again, is equivalent to the upper limit of the four-state gene circuit at equilibrium (Figure 3A). 1905

Fig. A11. A simple 2 state model of transcription. Cartoon of a simple 2 state gene circuit model in which activator binding and unbinding dictate transitions into
and out of a transcriptionally active state.

L. Sharp and precise non-equilibrium networks exhibit distinct and incompatible microscopic topologies 1906

One simple way to probe the microscopic architectures of different gene circuits is to measure the degree of het- 1907

erogeneity (or dispersion) in (a) transition rates and (b) state probabilities. We developed entropy-based dispersion 1908

metrics ranging from 0 to 1 to quantify how uniform (0) or heterogeneous (1) transition rates and state probabilities 1909

were for different realizations of the four-state network shown in Figure 1C. While crude, these measures can provide 1910

useful microscopic insights. For instance, in gene circuits with a state probability score of 0 each microscopic state 1911

must be equiprobable (π1 = π2 = π3 = π4 = 1/4), while those with a 1 are maximally heterogeneous. In general, 1912

maximal heterogeneity corresponds to the case when one and only one state has a nonzero probability; however, 1913

since, for simplicity, we have elected here to focus on gene circuits where r = 0.5, the maximum instead corresponds 1914

to a case when two molecular states (one OFF and one ON) have probability πi = 0.5. Similar considerations hold 1915

for the transition rate axis. We conducted parameter sweeps to explore the space of achievable dispersion values 1916

for 10,000 non-equilibrium gene circuits (gray circles in Figure A12A). 1917

From Figure A12A, we can see immediately that precise and sharp gene circuits occupy opposite extremes of 1918

dispersion space. Specifically, precise systems exhibit highly uniform state probability and transition rate values, 1919

while sharp networks are highly heterogeneous, both with respect to the fraction of time spent in each state and the 1920

relative magnitudes of their transition rates. These stark differences, as well as the tight clustering of each motif, 1921

suggest that sharpness and precision arise from distinct and non-overlapping microscopic topologies. 1922

Detailed examination of maximally precise gene circuits from our parameter sweeps indicated that these systems 1923

exhibit highly uniform molecular architectures wherein each microscopic state is equiprobable, all clockwise transition 1924

rates are uniform, and all counterclockwise rates are negligible. This results in a “clock-like” system that maximizes 1925

the regularity of molecular transitions. Maximally sharp gene circuits, on the other hand, exhibit an all-or-none 1926

character, behaving as effective two state systems that spend most of their time either activator-bound and active 1927

(0), or unbound and inactive (1), and which have effective ON and OFF rates that are concentration-dependent (see 1928

Appendix M for further details). 1929

M. A hierarchy of microscopic transition rates underpins non-equilibrium sharpness gain 1930

Figure 3A shows that energy dissipation opens up a broad spectrum of S and P values that are not attainable at 1931

equilibrium. It is difficult to formulate general statements that apply to all gene circuit models inhabiting these spaces 1932

beyond the upper equilibrium limit; however, we can learn much by examining the architecture of gene circuits 1933

lying at the outer limits of non-equilibrium performance, since these systems tend to distil the logic underpinning 1934

non-equilibrium performance gains into relatively simple regulatory motifs. 1935

Such is the case for the IR-optimized non-equilibrium four-state systems depicted as gray circles in Figure 3A. 1936

In Main Text Section D, we found that the driver of this IR is a twofold increase in sharpness relative to the upper 1937

equilibrium limit. To realize this twofold sharpness gain, we find that non-equilibrium driving is harnessed to facilitate 1938

effective one-way transitions between the active and inactive conformations—specifically, from states 1 to 2 and 3 1939

to 0 in Figure 1C—ensuring that the system will have a strong tendency to complete transcriptional cycles in the 1940

clockwise direction (J > 0). 1941

In addition to this non-equilibrium driving, sharpness maximization places strict constraints on the relative magni- 1942

tudes of microscopic transition rates within the network. To understand these constraints, it is instructive to consider 1943
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M A hierarchy of microscopic transition rates underpins non-equilibrium sharpness gain

a coarse-grained representation of our network with a single ON state (2) and a single OFF state (0). We can obtain1944

expressions for the two effective transition rates in the network by recognizing that they are equal to the inverse of1945

the mean first passage times between states 2 and 0, which we can calculate using Equation 16 from Appendix A.1946

If we neglect the energetically disfavored transitions from 2 to 1, the effective ON rate (k∗
on in Figure 3D) takes on1947

a relatively simple form1948

k∗
on = [c]kbkaηab

[c]kb +ηabka +ku
. (75)1949

From Equation 75, we see that the effective ON rate becomes proportional to the concentration, c, when the factor1950

of [c]kb becomes negligible in the denominator. The limit where ku ≫ [c]kb,ηabka represents a scenario in which1951

the activator Kd is larger when the network is in the inactive conformation than when in the active conformation1952

such that the activator must bind multiple times (on average) before it succeeds in driving the system into the active1953

conformation. The other limit, when ηabka ≫ [c]kb,ku, corresponds to a system where locus activation happens1954

rapidly upon activator binding.1955

In similar fashion, the effective OFF rate can be expressed as the inverse of the first passage time from 3 to 11956

k∗
off = ηuakuki

ηba[c]kb +ki +ηuaku
. (76)1957

Interestingly, we see that the effective koff becomes inversely proportional to c when activator binding rate exceeds1958

both the unbinding rate and the rate of locus deactivation (ηba[c]kb ≫ ka
u,k−

off ). This imbalance causes the system1959

to become kinetically trapped in the active conformation for multiple cycles of activator unbinding and rebinding, with1960

an average duration inversely proportional to ηba[c]kb.1961

Thus, when the proper hierarchy of microscopic rates is realized, our four-state network behaves as though it were1962

a two state system in which both the on and off rates are concentration dependent, such that1963

r ≈ k∗
on

k∗
on +k∗

off
≈ [c]λ

[c]λ+ γ
[c]

, (77)1964

where λ and γ are coarse-grained transition rates with units of s−1[c]−1 and s−1[c], respectively. Repeating the1965

calculations from Appendix K for the above effective two state system will yield an S value of 2 and a P value of 1, in1966

agreement with our numerical results from Figure 3A. We propose that this doubled concentration dependence can1967

be conceptualized as a kind of “on rate-mediated” proofreading. In contrast to classical kinetic proofreading, which1968

works by amplifying intrinsic differences in ligand off rates (Hopfield, 1974; Ninio, 1975), sharp networks amplify the1969

concentration-dependence carried by binding rates, effectively “checking” C twice per cycle since both k∗
on and k∗

off1970

are functions of the activator concentration c.1971

Fig. A12. Sharp and precise non-equilibrium networks exhibit distinct and incompatible microscopic topologies. Plot showing dispersion scores for state
probabilities and transition rates for 50,000 non-equilibrium networks. Here, a score of 0 indicates maximal uniformity (all rates or probabilities are equal) and a 1
indicates maximal heterogeneity. Green and red circles indicate the scores for the 100 gene circuits within 2% of the maximum achievable non-equilibrium sharpness
and precision levels, respectively. (Transition rate and interaction term magnitudes (k and η) were constrained such that 10−5 ≤ kτb ≤ 105 and 10−5 ≤ η ≤ 105,
where τb is the burst cycle time. ηab and ηib were further constrained such that ηab ≥ 1 and ηib ≤ 1, consistent with our assumption that the transcription factor
activates the gene locus.)
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N Non-equilibrium gains in sharpness drive IR increases in more complex regulatory architectures

N. Non-equilibrium gains in sharpness drive IR increases in more complex regulatory architectures 1972

This appendix section contains additional discussion relating to sharpness-precision tradeoffs for higher-order model 1973

architectures with multiple binding sites or multiple activation steps. 1974

N.1. Sharpness maximization remains optimal for systems with multiple binding sites. To assess whether sharpness- 1975

maximization remains the optimal strategy for more complex architectures featuring multiple activator binding sites, 1976

we employed parameters sweeps to examine the space of achievable S and P values for gene circuits with 1-5 1977

activator binding sites (and NB fixed at 1). Figure S2A shows the results of this analysis. For ease of comparison 1978

across different models, we plot the relative gains in S and P for each model with respect to their maximum equilib- 1979

rium values. For instance, the maximum equilibrium S value for the NB = 2 model is 2, so a non-equilibrium gene 1980

circuit model with two binding sites that exhibits an S value of 2.5 will be calculated to have a sharpness gain of 1981

2.5/2 = 1.25. 1982

Figure S2A reveals that the sharpness-precision tradeoff observed for the one-binding site model persists and, 1983

indeed, becomes more severe for systems with additional activator binding sites. We see that the non-equilibrium 1984

gain in S is fixed at approximately 2. And while the non-equilibrium gain in P increases from
√

2 for NB = 1 to 1985

approximately 2.25 for NB = 5, these P maxima (peaks in the upper left quadrant of Figure S2A) occur at lower and 1986

lower values of S, which renders them more and more disadvantageous from an IR perspective. As a result, when 1987

we plot IR-optimal gene circuits for each value of NB (colored circles in Figure S2A), we find that they are invariably 1988

located in regions where S/Seq ≈ 2 and P/Peq ≈ 1. These results demonstrate that spending energy to maximize 1989

sharpness remains the key to maximizing transcriptional information transmission, irrespective of the number of 1990

activator binding sites. 1991

N.2. Multiple activation steps increases upper sharpness bound away from equilibrium. Figure S2B shows the range 1992

of achievable non-equilibrium gains in S and P for systems with 1-4 activation steps (and NB = 1). Once again 1993

we observe a strong tradeoff between sharpness and precision, which suggests that this incompatibility is a general 1994

feature of transcriptional systems. And, once again, we find that IR-maximizing gene circuits (colored circles) lie at or 1995

near the right-most edge of achievable parameter space, indicating that dissipating energy to enhance transcriptional 1996

sharpness (rather than precision) remains the best strategy for maximizing the IR. 1997

Yet unlike the systems examined in Figure S2A, Figure S2B reveals that the non-equilibrium gain in transcriptional 1998

sharpness (S) is not fixed but, rather, increases with the number of molecular steps from a factor of two when NA = 1 1999

to a factor of five when NA = 4. This indicates that increasing the number of dissipative molecular steps in the 2000

activation pathway raises the upper limit on the sharpness of the transcriptional input-output function, even when the 2001

number of binding sites is held constant. 2002

O. Specificity definitions and details 2003

This Appendix Section uses a simple two state gene circuit model to compare and contrast the specificity definition 2004

employed in two recent works (Shelansky and Boeger, 2020; Grah et al., 2020), which compares how a single 2005

transcription factor (“TF”) activates at two different gene loci (the “TF-centric” approach)—a target locus with specific 2006

binding sites, and a non-cognate locus that lacks binding site—with the definition employed in this work, which 2007

focuses on cognate and non-cognate factors competing to activate a single locus (the “gene-centric” approach). 2008

O.1. A detailed comparison of specificity definitions for a simple 2-state model of transcription. Figure A13A illustrates 2009

the second “Tf-centric” scenario for the case of a simple two state network with a single binding site and no possibility 2010

of a conformation change at the locus; however the same idea applies equally well for the 4 state network we 2011

considered above, as well as more complicated architectures. Here transcriptional specificity is defined as the ratio 2012

of the average steady state transcription rates at on- and off-target gene loci: 2013

fTF = rr

rw
, (78) 2014

where fTF is the specificity under the TF-centric framing of the problem, and rr and rw indicate the transcription rates 2015

at the cognate (right) and non-cognate (wrong) loci, respectively. In (Shelansky and Boeger, 2020), the authors show 2016

that specificity for the two state system shown in Figure A13A is given by: 2017

fTF = αku +[c]kb
ku +[c]kb

. (79) 2018

From Equation 79, we see that the activator specificity is bounded from above by α. Moreover, this upper perfor- 2019

mance limit is achieved only in an off rate-dominated regime where ku >> [c]kb , which the authors in (Shelansky 2020
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O Specificity definitions and details

and Boeger, 2020) note leads to a runaway increase in transcriptional noise with increasing specificity under the con-2021

straint that the mean transcription rate must remain constant. As a result, the authors conclude that non-equilibrium2022

network architectures are necessary in order to improve specificity and minimize transcriptional noise (Shelansky2023

and Boeger, 2020).2024

In analogy to the parallel case outlined above, we employ a “gene-centric” definition (Figure A13B), which takes2025

specificity as the ratio of the average number of cognate and non-cognate factors bound while the locus is in a2026

transcriptionally productive state, normalized by concentration:2027

f = w

c

πc

πw
. (80)2028

In the case of the two state model shown in Figure A13B, this is simply given by the ratio of fractional occupancies2029

of states 1 and 1∗:2030

f = w

c

π2
π2∗

. (81)2031

Since in steady state this is necessarily at equilibrium (note the absence of cycles), we can express this ratio as a2032

function of the difference between the energies of cognate and non-cognate factor binding, εc and εw, which leads2033

to2034

f = w

c
e

− (εc−εw)
kBT . (82)2035

Next, we note that the energies can be expressed as ratios of binding and unbinding rates, such that2036

εc = −kBT ln ckb
ku

(83)2037

and2038

εw = −kBT ln wkb
αku

. (84)2039

Plugging these two expressions into Equation 82, we have2040

f = w

c
e

ln ckbku
αkuwkb , (85)2041

which simplifies to a simple equality2042

f = α. (86)2043

From Equation 86, we see that f is simply equal to the binding specificity factor α for our three state network,2044

irrespective of binding kinetics. Thus, in contrast to (Shelansky and Boeger, 2020), we find that equilibrium gene2045

circuits need not shift towards a noisy, off rate-dominated regime to achieve maximum fidelity; indeed all systems2046

necessarily achieve precisely f = α. Intuitively, this difference stems from the fact that our model captures the effects2047

of kinetic competition between cognate and non-cognate activators: whenever the cognate activator (green square2048

in Figure A13B) is bound, non-cognate factors cannot bind.2049

A key limitation of this approach is that it neglects the presence of non-specific stretches of regulatory DNA, even2050

at cognate gene enhancers. Thus, to more accurately reflect the specificity challenges faced by real gene loci, a2051

synthesis of the two approaches summarized above will be necessary, which considers competition between cognate2052

and non-cognate factors to bind and activate a gene locus that features both specific binding sites (which favor the2053

cognate activator) and neutral sites (to which all activator species bind non-specifically). One expectation for such a2054

scenario is that the simple equality stated in Equation 86 will no longer hold, and tradeoffs similar to those observed2055

in (Shelansky and Boeger, 2020) will again emerge; although, this time, the severity of these tradeoffs will depend2056

on w/c.2057

O.2. Calculating equilibrium specificity for a gene circuit with one binding site and one activation step. Here we extend2058

the arguments from the previous section to show that, at equilibrium, the transcriptional specificity of the six state2059

model gene circuit shown in Figure 4B is fixed at feq = α, irrespective of molecular details. For this system, the2060

specificity is simply equal to the concentration-normalized ratio of the occupancies of states 2 and 4:2061

f = w

c

π2
π4

. (87)2062

Since we’re assuming equilibrium conditions, we can re-express this as a difference between state energies, such2063

that2064

feq = w

c
e

− (ε2−ε4)
kBT . (88)2065
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O Specificity definitions and details

Fig. A13. Accounting for the influence of off-target activation. (A) An illustration of the parallel definition of activation fidelity. This approach considers the relative
amounts of transcription driven by a transcriptional activator at its target locus and at an off target locus. (B) Cartoon illustrating “gene-centric” specificity definition,
which considers competition between cognate and non-cognate factors to bind and activate a single gene locus.

In each case, we can express the state energies as the sum of the energy due to cognate or non-cognate factor 2066

binding with the energetic contributions from being in the active conformation, εa, and from interactions between the 2067

activator and the locus conformation, εab. This leads to 2068

ε2 = −kBT ln ckb
ku

+εa +εab (89) 2069

and 2070

ε4 = −kBT ln wkb
αku

+εa +εab. (90) 2071

The key is to note the the first terms on the right-hand side of the above expressions are identical to Equations 83 2072

and 84. Since the remaining energy terms are identical, they will cancel out, such that we once again have 2073

feq = w

c
e

ln ckbku
αkuwkb , (91) 2074

which simplifies to 2075

feq = α. (92) 2076

O.3. Calculating equilibrium specificity for gene circuits with multiple binding sites. The above arguments can be 2077

extended to apply to more complex model architectures with multiple activator binding sites. To do this, we first 2078

need to generalize the definition of specificity put forward in the main text (Equation 5) for the case when there is 2079

more than one binding site. We define multi-site specificity as the ratio of the number of cognate and non-cognate 2080

activators bound to the gene locus (on average) while the gene is in the transcriptionally active (ON) conformation, 2081

such that: 2082

f = w

c

⟨nc⟩
⟨nw⟩

= w

c

∑N
i∈ON nc

i πi∑N
i∈ON nw

i πi

, (93) 2083

where i ∈ ON stipulates that state i is part of the ON conformation, πi is the probability of finding the gene locus in 2084

state i, and where nc
i and nw

i indicate the number of cognate and non-cognate factors bound to the gene locus in 2085

state i. Note also that we retain the normalizing prefactor of w/c. 2086

Now, let’s calculate f for an equilibrium gene circuit with two binding sites. Once again, we work with energies 2087

since the system is at equilibrium. From Equation 93 we see that only states with at least one cognate or non- 2088

cognate factor bound contribute to the numerator and denominator, respectively. As a result, in each case, there are 2089

just three distinct molecular states to consider. For the cognate case (numerator), these are 1 cognate bound and 0 2090

non-cognate, 1 cognate and 1 non-cognate, and 2 cognate. The non-cognate case (denominator) follows the same 2091

pattern. Drawing from the expression in the previous section, this leads to 2092

feq = w

c

ckb
ku

ηaηab +2 ckb
ku

wkb
αku

ηaη2
abηub +2

( ckb
ku

)2
ηaη2

abηub

ckb
αku

ηaηab +2 ckb
ku

wkb
αku

ηaη2
abηub +2

( ckb
αku

)2
ηaη2

abηub

, (94) 2093
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P Deriving non-equilibrium tradeoff bound between intrinsic sharpness and specificity

where ηa is a weight factor corresponding to the active conformation (ηa = e
− εa

kBT ), ηab is a weight factor capturing2094

cooperative interactions between the bound activator and the active conformation, and ηub captures cooperative2095

interactions between bound activator molecules. Note that the three terms in the numerator and denominator of2096

Equation 94 match the ordering of the scenarios given above the equation. Factoring out common multipliers leads2097

to2098

feq = w

c

ckb
ku

wkb
αku

1+2wkb
αku

ηabηub +2 ckb
ku

ηabηub

1+2 ckb
ku

ηabηub +2 ckb
αku

ηabηub

, (95)2099

where we now see that the numerator and denominator are identical in the right-most ratio. Thus, we find that2100

feq = α. (96)2101

Similar patterns repeat for systems with more binding. See the Mathematica notebook entitled “specificity_2102

multi_site.nb” in this paper’s git repository (https://github.com/nlammers371/noneq-gene-regulation.git) for a full2103

treatment of the 3 and 5 binding site cases.2104

P. Deriving non-equilibrium tradeoff bound between intrinsic sharpness and specificity2105

In this section, we lay out the key steps in deriving the non-equilibrium tradeoff bound between sharpness and2106

specificity given in Equation 7 in the main text. To do so, we make use of insights gained in Appendix M, where2107

we used first passage times to examine the key microscopic conditions for the twofold gain in sharpness away2108

from equilibrium observed in Figure 3A. Even for the simple six state system illustrated in Figure 4B, our system2109

has eight degrees of freedom when operating away from equilibrium. As such, a key part of our approach will be2110

to first reduce this complexity as much as possible while preserving the salient behaviors, namely the possibility2111

for non-equilibrium gains in sharpness and specificity. After this, we identify a tuning parameter, β, that can be2112

used to interpolate between maximally sharp to maximally specific non-equilibrium gene circuit architectures. Since2113

the expressions for non-equilibrium gene circuits are, in general, quite complex, we sketch the key steps here and2114

direct the reader to the Mathematica notebook entitled “sharpness_specificity_bound_derivation.nb” on the project2115

git repository for additional details: https://github.com/nlammers371/noneq-gene-regulation.git. Note that we work in2116

units of c throughout, such that c = 1.2117

To begin, we strip unnecessary dimensions from our system. We set ηibki and ka to the same generic rate, k1.2118

Next, we set ηabka, ηuaku, and kb to a second rate parameter, k2. Finally, we set ki equal to βηbskb, where β is our2119

interpolation parameter. This leaves us with a system with five free parameters, rather than eight.2120

In Appendix M, we saw that maximally sharp non-equilibrium gene circuits (i) only switch into the active tran-2121

scriptional conformation when the activator is bound and (ii) only switch out of the ON states when the activator2122

is unbound. This amounts to effective one-way transitions from states 1 → 2 (equivalently, 5 → 6) and 3 → 1. We2123

impose this condition by taking the limit where k1 → 0 . Next, we impose the condition uncovered by examination of2124

Equation 75,2125

ku ≫ [c]kb,ηabka, (97)2126

by taking the limit where ku approaches infinity.2127

These limits lead to a further simplified system that can be used to investigate fundamental tradeoffs between2128

intrinsic sharpness and specificity. For this stripped-down system, we find that the expression for specificity, f , is2129

quite simple:2130

f = α(α +αβ +w)
α +β +w

, (98)2131

where we see that all dependence on microscopic transition rates has dropped out, with the exception of our inter-2132

polation parameter, β. Furthermore, tuning β causes Equation 98 to shift from equilibrium levels (f = α when β = 0)2133

to the non-equilibrium limits revealed by Figure 5B (f = α2 when β ≫ α,w).2134

The normalized sharpness, S, has a slightly more complicated functional form, given by2135

S =
α

[
α(k2 +(2+β)ηbakb)+2ηbakbw

]
α2(k2 +ηbakb +βηbakb)+αw(k2 +2ηbakb)+wηbakb(β +w) . (99)2136

To obtain an expression for the intrinsic sharpness, S0, we divide through by the specificity prefactor (pc) from2137

Equation 4:2138

S0 =
f + w

c

f
S. (100)2139

Simplifying and applying the condition that k2 ≈ 0 leads to2140

S0 = 2− αβ

α +αβ + w
c

. (101)2141
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P Deriving non-equilibrium tradeoff bound between intrinsic sharpness and specificity

Here again, as with Equation 98, we see that all dependence on the on rate parameters drops away. Further, it is 2142

easy to see that this expression goes to 2 when β = 0 and 1 when β ≫ α,w. Thus, when β is small, our system 2143

exhibits equilibrium levels of specificity and non-equilibrium levels of intrinsic sharpness and, when β is large, it 2144

exhibits non-equilibrium specificity and equilibrium sharpness levels. Thus, we have succeeded in our initial aim 2145

to establish a simplified model that can capture the tradeoffs between sharpness and specificity revealed by our 2146

numerical parameter sweeps (Figure 5B). 2147

As a final step, we can solve Equation 98 to obtain an expression for β in terms of f : 2148

β = (f −α)(α +w)
α2 −f

. (102) 2149

Plugging this expression into Equation 100 and simplifying yields an expression for S0 as a function of f : 2150

S0 = α2 +αf −2f

αf −f
, (103) 2151

where we assume that α ≤ f ≤ α2. Thus, we have obtained the final S0 expression depicted in Equation 7. Observe 2152

that S0 ≈ 2 when f = α and S0 ≈ 1 when f = α2. Equation 103 gives the dashed black curve bounding f vs. 2153

S0 sweep results shown in Figure 5B, confirming that it represents the limiting behavior of intrinsic sharpness and 2154

specificity for non-equilibrium realizations of the six state model from Figure 4B. 2155
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