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Cells adapt to environments and tune gene expression by control-
ling the concentrations of proteins and their kinetics in regulatory
networks. In both eukaryotes and prokaryotes, experiments and the-
ory increasingly attest that these networks can and do consume bio-
chemical energy. How does this dissipation enable cellular behaviors
unobtainable in equilibrium? This open question demands quanti-
tative models that transcend thermodynamic equilibrium. Here we
study the control of a simple, ubiquitous gene regulatory motif to
explore the consequences of departing equilibrium in kinetic cycles.
Employing graph theory, we find that dissipation unlocks nonmono-
tonicity and enhanced sensitivity of gene expression with respect
to a transcription factor’s concentration. These features allow a
single transcription factor to act as both a repressor and activator
at different levels or achieve outputs with multiple concentration
regions of locally-enhanced sensitivity. We systematically dissect
how energetically-driving individual transitions within regulatory net-
works, or pairs of transitions, generates more adjustable and sensi-
tive phenotypic responses. Our findings quantify necessary condi-
tions and detectable consequences of energy expenditure. These
richer mathematical behaviors—feasibly accessed using biological
energy budgets and rates—may empower cells to accomplish so-
phisticated regulation with simpler architectures than those required
at equilibrium.
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Introduction1

Gene regulation—to which biology owes much of its2

exquisite sophistication (1)—is replete with network ar-3

chitectures that allow (and credibly depend on) nonequilibrium4

(2–5). To adapt to environmental cues, cells often dynamically5

tune concentrations of transcription factors (6) or inducers6

as their available control variables. This biochemical control7

adjusts the probabilities of cellular states by regulating rate8

constants that depend on the transcription factor or effec-9

tor. The majesty of biological regulation is often woven from10

the specific shapes of these input (transcription factor con-11

centration) to output (average steady-state gene expression)12

relationships. As crucial means by which cells adapt their phys-13

iology and defy environmental variation, these induction curves14

also promise to trace design principles that illuminate how15

spending biochemical energy empowers the very dynamism16

and fidelity of the living. Stubborn (7, 8)—yet increasingly17

well-measured (9–11)—energetic budget mismatches and mys-18

teries about what biochemical energy expenditures accomplish19

place fresh urgency on deciphering how dissipation modifies20

gene regulation.21

How can nonequilibrium relieve fundamental constraints on 22

physiological adaptation, or enhance the flexibility of cellular 23

behavior? To confront this question, here we examine the 24

output behavior of among the simplest closed systems capable 25

of breaking equilibrium using basic reactions pervasive in 26

biology: a cycle of four states. This system can represent the 27

dynamic behaviors of genetic transcription executed by RNA 28

polymerase (RNAP) and regulated by a transcription factor 29

acting as a control variable (Fig. 1A). 30

Given their simplicity, equivalents of the system in Fig. 31

1A have enjoyed earlier study in guises such as enzymatic 32

control (12); remodeling of nucleosomes (5); and other settings 33

in transcription (13, 14). In this work, we use tools from 34

graph theory (15, 16) to explore the full space of transcrip- 35

tional steady-state outputs available for this system under 36

different energetic drives, compared to equilibrium control. 37

We find that all equilibrium responses must be monotonic 38

(with one inflection point) as a function of control variables, 39

such as the concentration of transcription factor, measured 40

in a conventional logarithmic scale. In contrast, we discover 41

that nonequilibrium models can exhibit three types of output: 42

an “equilibrium-like,” monotonic response with one inflection 43

point, potentially displaced from equilibrium; a new —but 44

still-monotonic—shape with three inflection points; and a new, 45

surprising non-monotonic shape with two inflection points, 46

where, for instance, increasing a control variable can change 47

its effect from repression to activation. Combining analyti- 48

cal and numerical analysis, we globally bound the maximal 49
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sensitivities of transcriptional responses. Demonstrating that50

these mathematical behaviors are feasible to access within51

biological energy expenditures around typical rates, we sys-52

tematically analyze the impact of breaking detailed balance53

along each transition rate. This analysis establishes design54

principles for optimizing sensitivity and unlocking dramatic55

behaviors that are especially prone to implicate nonequilibrium56

in measurements.57

These broader, multiply-inflected transcriptional responses58

unlocked by nonequilibrium could be harnessed to achieve use-59

ful physiological functions. Our findings illustrate surprising60

regularity visible from graph theoretic tools, and explicate61

how even primordial biological networks operating out of equi-62

librium can rival the regulatory sophistication of (plausibly)63

larger, slower networks at equilibrium.64

Results65

A model of a pervasive gene regulatory motif. At steady-state,66

a system is in equilibrium (or, equivalently, at detailed balance)67

if, for all pairs of states (i, j), the probability flux kijpi into68

state j equals the flux kjipj into state i, where pi is the prob-69

ability of state i and kij is the rate of transitions from state i70

to j. Otherwise, the system is out of equilibrium and requires71

energetic dissipation to sustain the system’s steady-state. For72

systems closed to external material inputs, nonequilibrium73

steady-states can only be achieved with systems that contain at74

least one cycle; linear or branched architectures at steady-state75

must be at equilibrium (see Supporting Information (SI), §1B:76

Closed steady-state systems are either equilibrium or cyclic77

and (17, 18)). A single cycle is thus the simplest closed set-78

ting where the intriguing new consequences of nonequilibrium79

become possible.80

A cycle of four states emerges naturally from up to two81

molecules binding or unbinding to a substrate. When the82

substrate is a promoter site on the genome S, one molecule is83

RNA polymerase P , and the second molecule is a transcription84

factor protein X that can enhance or impede polymerase bind-85

ing to the genome, the resulting cycle captures transcriptional86

regulation. Specifically, the four states represent the empty site87

of the genome substrate (“S”); the genome substrate bound88

to the transcription factor only (“X”); to the polymerase only89

(“P”); or to both (“XP”). Figure 1A illustrates this central,90

motivating setting. (Note that the transcription factor and91

polymerase concentrations [X] and [P ] do not affect whether92

the system is in or out of equilibrium, and can be tuned while93

separately maintaining any extent of disequilibrium—see SI,94

§1C: The cycle condition relates a ratio of rate constants to95

(non)equilibrium.)96

This square cycle of states pervades gene regulation. In97

one of the widest experimental surveys of prokaryotic regu-98

latory motifs yet available—mapping over one hundred new99

regulatory interactions in E. coli—motifs regulated by a single100

transcription factor, which can often manifest a four-state101

cycle, were found to be the most common regulated architec-102

tures (19), joining similar reports from aggregated databases103

(20). These cyclic architectures contrast the more commonly104

studied motif of simple repression that cannot break detailed105

balance (see SI, §1B: Closed steady-state systems are either106

equilibrium or cyclic) (1, 6, 19–21). The four-state cycle finds107

widespread examples or structural-equivalents in eukaryotic108

gene regulation as well (5, 13, 22, 23). Eukaryotic gene expres-109

sion is a setting where explicit ATP-consumption is especially 110

plausible (3, 4) yet poorly understood (2, 8, 13). 111

Kinetic measurements often justify the assumption that 112

transcription factors bind and unbind with genomes quickly 113

relative to transcription by polymerase. This separation 114

of timescales makes macroscopic gene expression propor- 115

tional to the steady-state probability of finding the system 116

in transcriptionally-active microstates. (We precisely validate 117

this assumption for our setting using plausible transcriptional 118

rates in the SI, §2C: Biologically, timescales are plausibly sep- 119

arated enough that transcription is well represented by small 120

Markov chains.) 121

We note that the average gene production rate 〈r〉mRNA, 122

proportional to gene expression, is a typical and crucial output 123

of interest. This response grows with the net probability that 124

the polymerase is bound, 〈r〉mRNA = r(pP + pXP ), where r 125

is the transcription rate once the polymerase is bound, pp is 126

the probability of the state P where just the polymerase is 127

bound, and pXP is the probability of the state XP where both 128

polymerase and transcription factor are bound. 129

However, other outputs (that depend on other states) may 130

also be biologically or experimentally significant. For instance, 131

the localization of the transcription factors themselves to 132

the genome (to recruit other co-factors or epigenetic modi- 133

fications) can shape biological function independent of the 134

polymerase, e.g. invoking the probability pX . We accommo- 135

date the breadth of these possible outputs by studying how 136

any (nonnegative) linear combination 〈r〉 =
∑

states i

ripi of state 137

probabilities varies with the transcription factor concentration 138

X as a control variable, where ri gives the potency of the 139

ith state. These different outputs and problem settings are 140

captured by adopting particular {ri}, but as we will now see, 141

all are subject to universal behavior. 142

Nonequilibrium steady-state output responses. To explore 143

how these input-output responses operate away from equi- 144

librium, we cannot depart from the equilibrium statistical 145

mechanical models, which use the thermodynamic energies 146

of each state to calculate their probabilities, that suffice for 147

acyclic architectures (such as simple repression) (1, 6, 24–26). 148

Instead, we embrace a fully kinetic description (also known 149

as a chemical master equation or continuous-time Markov 150

chain) based on transitions between states. A large increase 151

in complexity and the number of parameters typically accom- 152

panies this generalization. Fortunately, these dynamics admit 153

a beautiful and powerful correspondence to graph theory that 154

helps tame this complexity (15). Our guide is the Matrix Tree 155

Theorem, which gives a simple diagrammatic procedure on a 156

network’s structure to find stationary probabilities (see Meth- 157

ods and SI, §2D: Deriving the universal form: The Matrix 158

Tree Theorem on the square graph yields a ratio of quadratic 159

polynomials). In brief, the Matrix Tree Theorem asserts that 160

at steady-state, the probability of any state is proportional 161

to the sum of products of rate constants over all spanning 162

trees rooted in that state. Here, a spanning tree is a (directed) 163

subset of edges on the graph of states that collectively visits 164

every state exactly once, privileging a root state, which has no 165

outgoing edges. Figure 1B illustrates these requirements with 166

an example of a rooted spanning tree in our four-state graph. 167

Counting all sixteen rooted spanning trees of the four- 168

state transcriptional system (Figure 1C) and deploying the 169
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Fig. 1. Structure and (non)equilibrium response of a four-state cycle, a fundamental gene-regulatory motif. (A) A square cycle of four-states emerges when up to two molecules
(such as a transcription factorX and polymerase P ) can bind to a common substrate (say a genome). Output observables 〈r〉 are linear combinations of the state probabilities;
for instance, mRNA production scales with the probabilities of transcriptionally active states where polymerase is bound to the genome (states P and XP ). These outputs
vary with the control parameter [X], here schematized as the concentration of a transcription factor. (B) An example of a spanning tree (rooted in state XP) like those that
define steady-state probabilities via the Matrix Tree Theorem. (C) All 16 directed, rooted spanning trees of the four-state cycle in (A): trees are grouped by the root state (in
columns) and by how many participating edges depend on the control parameter X (in rows). As guaranteed by the Matrix Tree Theorem, the steady-state probability of any
state—in or out of equilibrium—is given by the sum of the weights of these spanning trees, introducing up to a quadratic dependence in X in any output, as represented by Eq.
1. (D-F) Three universal output behaviors (regulatory shape phenotypes) can result from this architecture. A monotonic “equilibrium-like” sigmoidal output (D) manifests a
Hill-like or MWC-like response, behavior familiar from equilibrium thermodynamic models. However, exclusively out of equilibrium, new multiply-inflected regulatory shape
phenotypes become possible. Under drive, outputs can (E) vary non-monotonically and reach two inflection points with the control parameter; or show three inflection points
and vary monotonically (F). These richer phenotypes show a wider set of properties that characterize each curve: these include the “leak” value of the observable when the
control variable is absent (〈r〉0 = 〈r〉([X] = 0), in orange; the saturation asymptotic limit as the control variable is maximally present (〈r〉∞ = lim

[X]→∞
〈r〉; in light blue);

the observable’s values at intermediate plateau regions (〈r〉∗; in red); and slopes 1 and 2 at inflection points [X]1 and [X]2 when they are defined (in green and purple,
respectively).
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Tree Theorem explains how probabilities must vary with the170

transcription factor control parameter [X]. Depending on the171

root (separated by column in Figure 1C), each spanning tree172

carries two edges that depend on [X] (top row of Fig. 1C);173

one edge (middle row, Fig. 1C); or no [X]−dependent edges174

(bottom row, Fig. 1C). This structure yields statistical weights175

with up to quadratic scaling with [X]. Hence we find that the176

form of any output function 〈r〉, in or out of equilibrium, is a177

ratio of quadratic polynomials in [X],178

〈r〉 = A+B[X] + C[X]2

D + E[X] + F [X]2 , [1]179

where the coefficients A, B, C, D, E and F are sums of180

subsets of (weighted) directed spanning trees carrying various181

[X]-dependencies (see SI, §2D: Deriving the universal form:182

The Matrix Tree Theorem on the square graph yields a ratio183

of quadratic polynomials). The denominator, the sum of all184

rooted spanning trees and hence also a quadratic polynomial,185

serves as a normalizing factor that converts statistical weights186

to probabilities and represents a nonequilibrium partition187

function.188

Note that while we derived the output form Eq. 1 using the189

particular choice of [X]-dependent arrows appropriate for this190

transcriptional setting, the same formalism can treat many191

other control parameters that appear quite (structurally or192

biologically) distinct from these details, such as a concentration193

of another internal molecule (for instance polymerase, [P ]) or194

an external molecule (for instance explicit drive by [ATP ]).195

The SI, §2H: Driving different arrows in the square graph can196

still yield a ratio of quadratic polynomials gives some further197

examples of different placements of controlled edges that still198

produce a network output with the functional form of Eq. 1,199

and therefore remain precisely addressable by the analysis of200

this paper. Other outputs will require a fresh application of201

the Matrix Tree Theorem and new analysis but benefit from202

the same framework.203

Equilibrium output curves are constrained and always sig-204

moidal. Eq. 1 describes all induction curves, in or out of205

equilibrium, produced by this four-state transcriptional sys-206

tem. When detailed balance does hold, this equation becomes207

equivalent to thermodynamic statistical-mechanical models208

(as it must). We explain algebraic correspondences to ther-209

modynamic models, like those communing with earlier tran-210

scriptional experiments (6, 26), in the SI, §G.3, Validating211

consilience between kinetic and thermodynamic viewpoints. Im-212

portantly, we find that the equilibrium condition demotes any213

observable output to the simpler form of a ratio of linear214

polynomials in [X], namely215

〈r〉eq = A′ +B′[X]
C′ +D′[X] , [2]216

for constants {A′, B′, C′, D′} set wholly by thermodynamic pa-217

rameters (see the SI, §G.1: Demotion of responses to a (mono-218

tonic) ratio of linear polynomials at equilibrium). Not coinci-219

dentally, this functional form formally reproduces or evokes the220

Hill induction, Michaelis-Menten, Langmuir-binding, Monod-221

Wyman-Changeux, or two-state Fermi function forms from the222

equilibrium statistical mechanics of binding commonly used to223

model and fit induction curves in natural (6, 27) or synthetic224

(28) settings. This equilibrium curve is paradigmatic of our225

biochemical intuition—sigmoidally saturating, with one point 226

of inflection, with respect to transcription factor concentration 227

[X] in a conventional logarithmic scale (see Fig. 1A and the 228

SI, §2E: Discussion on observable conventions: the logarithmic 229

control variable). 230

New regulatory shape phenotypes unlocked by nonequilib- 231

rium. How much more complex is the regulation realizable 232

by nonequilibrium outputs 〈r〉 (Eq. 1), compared to that of 233

their equilibrium special case, 〈r〉eq (Eq. 2)? To reach the 234

qualitative essence of this question, we first investigate the 235

possible shapes of the output curve. Specifically, we monitor 236

the output’s changes in concavity with respect to the con- 237

trol parameter. We postpone comment on the characteristic 238

positions and scales of output curves—any shifts in their hori- 239

zontal position (viz. any characteristic concentration scales) or 240

vertical expanses (e.g. maximally-induced responses)—until 241

shortly. 242

Neglecting scales and shifts allows us to collapse the general, 243

six-parameter output curve of Eq. 1 to a normalized function 244

of just two emergent shape parameters, 245

〈r〉 − 〈r〉0
〈r〉∞ − 〈r〉0

= ax+ x2

1 + bx+ x2 , [3] 246

Here, the emergent shape parameters a and b are complicated 247

functions of the coefficients in Eq. 1 (and hence of underlying 248

rate constants), and x is the governing concentration [X] 249

measured in terms of a characteristic concentration scale (all 250

defined in the SI, §2F: Collapse of eight parameters into two 251

emergent fundamental shape parameters (a, b)). The values 252

〈r〉0 ≡ 〈r〉 ([X] = 0) and 〈r〉∞ ≡ lim
[X]→∞

are the leakiness 253

(uninduced) and saturation (maximally-induced) responses; 254

we return to these values in the following subsections. This 255

representation preserves the concavity of the response function, 256

allowing us to explore shapes and quantitative features in a 257

two-dimensional space more efficiently and comprehensively 258

than possible in the space of the eight rates.∗ 259

Harnessing this collapsed representation, we discover that 260

all output curves assume just three different universal shapes 261

(see Methods & SI, §2I: Any averaged observable 〈r〉 has zero, 262

one, two, or three inflection points, with varying monotonic- 263

ity).† First, the output can be sigmoidal and monotonic, with 264

a single inflection point, with respect to the control param- 265

eter (on a log scale), recalling the shape of the equilibrium 266

response (Fig. 1D). Uniquely out of equilibrium, however, two 267

additional multiply-inflected response shapes become possible. 268

Under energy expenditure, outputs can become nonmonotonic 269

and show two inflection points (Fig. 1E), or remain monotonic 270

with three inflection points (Fig. 1F), with respect to the log 271

of the control parameter. Responses with three inflections are 272

always shaped as depicted in Fig. 1F: maximally steep at the 273

first and third inflection points, but minimally steep at the 274

second inflection point. 275

Clearly, these nonequilibrium curves are marked departures 276

from simple equilibrium-like sigmoids, but betray a remark- 277

able parsimony and regularity, given that they describe all 278

∗The two-parameter simplicity of Eq. 3 is one possible nonequilibrium sophistication of the (usu-
ally one-parameter) data collapses used to unify simpler, equilibrium, two-state physiological re-
sponses (27) and regulation (6) in bacteria.

†Throughout our analysis and discussion in this paper, we monitor the shape, number of inflection
points, and sensitivity of transcriptional outputs with respect to the control parameter of the con-
centration of transcription factor, on a logarithmic scale. We use this logarithmic convention in
alignment with common practice in biochemical and transcriptional studies (6, 28, 29).
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departures from equilibrium for any rate parameter values.279

These three regulatory behaviors can pose different physiolog-280

ical implications for an organism; admit distinct quantitative281

constraints on sensitivity (as we will soon see); and require282

different conditions on underlying rate constants to be reached.283

In view of their categorical differences, we refer to these possi-284

ble shapes as regulatory (shape) phenotypes.‡285

Quantitative traits of response functions. Beyond their shape286

phenotypes, regulatory output curves affect the destiny of287

organisms through their quantitative traits. Further, engineer-288

ing responses with desirable properties—e.g. high gain, low289

background, tight affinity, and high sensitivity with respect290

to an inducer—is a critical and intensely-pursued design goal291

of synthetic biology (28, 30); such traits can also themselves292

reveal the presence of nonequilibrium, as with the presence of293

ultrasensitivity (31).294

These properties include the leakiness 〈r〉0 ≡ 〈r〉([X] = 0)295

and saturation 〈r〉∞ ≡ lim
[X]→∞

〈r〉 defined earlier; and the dy-296

namic range (difference between the leakiness and the satu-297

ration, |〈r〉∞ − 〈r〉0|). In addition, the response’s maximum298

sensitivity with respect to the input (often characterized by299

a suitable logarithmic sensitivity, sharpness, or effective Hill300

coefficient)—and the level(s) of input where this maximal301

sharpness occurs, namely the location(s) of the inflection302

point(s)—are crucial determinants of regulatory adaptability.303

For equilibrium-like binding curves, just one input level (the304

single inflection point, localizing maximal sensitivity) suffices305

to define the horizontal position of the curve. This inflection306

point is often linked with the input needed to induce a response307

about halfway between leakiness and saturation, denoted the308

EC50. However, the new complexity of nonequilibrium outputs309

introduces additional characteristic concentration scales (at310

each point of inflection) and their associated locally-extremal311

sensitivities.312

Does spending energy enable finer control over these quan-313

titative traits, beyond growing their number? In fact, as we314

now discuss, only some traits are given extra adjustability by315

spending energy.316

Leakiness, saturation, and EC50 are tunable at equilibrium.317

Without the transcription factor, the system cannot be found318

in any microstate that involves it, collapsing four states into319

just the two {S, P} states. This pair of states forms an acyclic320

graph, so these steady-state probabilities must show detailed321

balance (i.e. are set purely thermodynamically). Thus, leak-322

iness 〈r〉0, determined exclusively by S and P states, can323

be adjusted freely while maintaining detailed balance. Anal-324

ogously, when the transcription factor concentration is sat-325

urating ([X] → ∞), the system is never found in the two326

microstates without the transcription factor, again admitting327

an orthogonal description of a balance between two states, now328

{X,XP}. Hence, saturation 〈r〉∞ is also freely adjustable at329

equilibrium. These leakiness and saturation values are inde-330

pendently adjustable by two separate energy parameters—the331

binding energies of the polymerase to the genome when the332

transcription factor is absent or present, respectively. At equi-333

librium, once the leakiness and saturation are fixed by energy334

‡We use the phrase “regulatory (shape) phenotype,” referring to the overall shape of a response
curve, to distinguish our meaning from the usage of Reference (2), who instead referred to specific
quantitative traits within curves of a single mathematical shape (such as sensitivity or noise) as
“regulatory phenotypes.”

parameters, the response’s maximal sensitivity (slope at the 335

inflection point) is predetermined and no longer tunable, as re- 336

vealed by its algebraic dependencies (see SI §G.2). In contrast, 337

while the location of the governing inflection point depends on 338

these two energy parameters, it can also be tuned—remaining 339

at equilibrium—using another energy parameter (the binding 340

energy between the transcription factor and genome). (See SI, 341

§G.2:Leakiness, saturation, and EC50 are tunable at equilib- 342

rium for details.) 343

Nonequilibrium control of sensitivity obeys shape-dependent 344

global bounds. Out of equilibrium, the sensitivity of responses 345

enjoys greater adjustability. Specifically, the diversity of input- 346

output curves accessible under drive motivate us to assess 347

sensitivity by a suitably normalized slope s([X]), defined by 348

s([X]) ≡
∣∣∣∣ d〈r〉
d ln ([X]/[X]0)

1
〈r〉max − 〈r〉min

∣∣∣∣ , [4] 349

where 〈r〉min ≡ min
[X]
〈r〉 and 〈r〉max ≡ max

[X]
〈r〉 are the ex- 350

tremal values of the observable over all [X], and [X]0 is an 351

arbitrary characteristic concentration scale ensuring dimen- 352

sional consistency. For monotonic curves, the maximum 〈r〉max 353

and minimum 〈r〉min responses are necessarily the uninduced 354

leakiness 〈r〉0 and the maximally-induced saturation 〈r〉∞ (or 355

vice-versa), whereas for nonmonotonic responses with two in- 356

flections, the maximal and minimal responses can occur at 357

intermediate finite values of [X]. 358

This normalized sensitivity s([X]) is directly related to 359

familiar measures such as the logarithmic sensitivity and the 360

effective Hill coefficient, but more naturally describes sensitiv- 361

ities of nonmonotonic phenotypes using finite values (see SI, 362

§J: New bounds on nonequilibrium sensitivity). 363

½ ½

¼
¼¼

equilib
riu

m min

max

~0.16

m
axm
ax

min slope
min

log ([X]/[X]0)

⅛

global bounds on maximum (normalized) sensitivity

one inflection point two inflection points three inflection points

Fig. 2. Global bounds, in or out of equilibrium, restrict maximal (normalized) response
sensitivity (with respect to input concentrations [X] on a log scale). Plotted are

normalized responses 〈r〉−〈r〉min
〈r〉max−〈r〉min

near points of inflection that maximize slope,
separated by shape phenotype. When the output has one inflection point (left),
the maximal sensitivity is bounded between a minimum of 0.158 (blue line) and a
maximum of 1/2 (red line) for any set of rate values or any dissipation; this subsumes
the equilibrium case, whose normalized sensitivity is fixed at 1/4 (black dotted line).
When the output has two inflections (middle), the maximal sensitivity is bounded
between 1/4 and 1/2. When the output has three inflections (right), the maximal
sensitivity is bounded between 1/8 and 1/4.

By combining wide numerical sampling, symbolic inequal- 364

ity solving, and analytical arguments (see SI, §J: New bounds 365

on nonequilibrium sensitivity), we investigated the maximal 366

normalized sensitivity s([X]) any response curve can exhibit 367
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for the four-state system across its three possible shape phe-368

notypes. We discovered that sensitivity is tightly bounded369

above and below by precise finite limits; these limits vary by370

phenotype. Figure 2 summarizes these bounds, visualized by371

how normalized and centered response curves 〈r〉−〈r〉min
〈r〉max−〈r〉min

372

behave around inflection points of maximal slope. Equilibrium373

response curves always show a normalized sensitivity of ex-374

actly one-fourth. Out of equilibrium, singly-inflected response375

curves can increase this maximal sensitivity up to one-half, or376

decrease maximal sensitivity below the equilibrium value to a377

numerical value of about 0.158. (We lack a coherent explana-378

tion for this curious numerical lower bound, but verified it by379

precise symbolic inequality solving; see SI, §J). Driven curves380

with two inflection points all have maximal sensitivity of at381

least the equilibrium level of one-fourth, but up to one-half.382

Driven curves with three inflection points all show maximal383

sensitivity of at most the equilibrium level of one-fourth, and384

at least a sensitivity of one-eighth.385

Cast in terms of the raw maximal sharpness386

d〈r〉/d ln ([X]/[X]0) of each response curve, these bounds report387

that raw maximal sharpness is always between one eighth and388

one half of the distance between the maximum and minimum389

responses per e ≈ 2.7-fold increase in the concentration390

[X]. We stress that these bounds on sensitivity, in terms391

of the observed 〈r〉min and 〈r〉max, are tighter quantitative392

constraints than bounds merely in terms of the maximal393

or minimal potency values max
i
{ri} or min

i
{ri} that any394

microstate of the system can show, as can be connected395

to recent, related upper bounds (29). This follows since in396

general the extrema of the average observable response curve397

over all [X] are usually more restricted than the most extreme398

potencies over microstates (namely, max
i
{ri} ≥ 〈r〉max and399

min
i
{ri} ≤ 〈r〉min). (See SI, §J.4: General upper bound on a400

related, differently-normalized slope.)401

These findings emphasize that network architecture and402

dissipation are not the only hard global constraints that bound403

sensitivity. The global shape of the response curve further404

categorically constrains the possible sensitivity. This rela-405

tionship is potentially biologically relevant: for instance, it406

is impossible for an organism regulated by the square-graph407

transcriptional motif to achieve both a triply-inflected output408

curve and a normalized sensitivity greater than that at equilib-409

rium. This represents a tradeoff between the shape complexity410

of a response and its maximal sensitivity.411

Breaking detailed balance along each edge. Our foregoing412

analysis has been mathematically general. That is, the con-413

strained shapes and bounds on sensitivity hold for any response414

following Eq. 1, over all rate constant values and energetic415

dissipations. These constraints also apply even—as previously416

noted—if the response is produced by a different underlying417

graph architecture than the particular transcriptional motif418

shown in Fig. 1A, as long as the graph still yields spanning419

trees that depend up to quadratically on the control variable.420

Just because multiply-inflected or adjustable response curves421

are mathematically possible, however, does not establish that422

they are biologically plausible. To assess whether these behav-423

iors can be accessed using physiologically-plausible amounts424

of energy expenditure or typical biological rates, we now spe-425

cialize to the plausible particulars of transcription as in Fig.426

1A. In the remainder of this paper, we quantify the extent of427

dissipation sustaining a nonequilibrium steady-state by focus- 428

ing on the free energy ∆µ coupled to the system, with units of 429

kBT or Joule; we refer to this quantity as the nonequilibrium 430

driving force or simply as the (net) drive (see SI, §1D: Discus- 431

sion of various ways of quantifying dissipation for discussion 432

of different quantitative aspects of dissipation). In addition, 433

we now adopt the transcriptional potencies rP = rXP = 1 434

and rS = rX = 0. This choice makes our response observ- 435

able 〈r〉mRNA the probability that polymerase is bound to the 436

genome. 437

Typical empirical binding energies, diffusion-limited rates, 438

and single-molecule kinetic measurements yield order-of- 439

magnitude estimates for the eight rates governing transcription 440

at equilibrium (see SI, §B:Order of magnitude estimated rate 441

constants for prokaryotic transcription and Fig. 1A). First, 442

we choose a set of default rates consistent with these orders- 443

of-magnitude (given in the lower right stem plot of Fig 3C). 444

Next, we investigate how breaking detailed balance by spend- 445

ing energy to increase or decrease a single rate constant at a 446

time—while keeping the seven other rates fixed at biological 447

default values—modulates the transcriptional response curve. 448

Hydrolyzing an ATP molecule makes available ≈ 20 kBT 449

of energy (BNID 101701, (32); (33)) that can be used as a 450

chemical potential gradient to drive transitions (for instance, 451

by powering an enzymatically-assisted pathway (34)). This 452

amount of free energy is also the scale observed to power ac- 453

tive processes like biomolecular motors (35). Accordingly, to 454

conservatively emulate a biological energy budget, we allot a 455

maximum of just two ATP hydrolyses’ worth of free energy, 456

|∆µ| ≤ 40 kBT , to break detailed balance. This budget for 457

drive allows a given individual rate to be scaled by up to a 458

factor exp[∆µ/kBT ] = exp[±40]. 459

Applied edge-by-edge, this procedure reveals that 460

biologically-feasible energy expenditures dramatically modify 461

the response curve and easily attain all three regulatory shape 462

phenotypes. Illustrating this regulatory plasticity, Fig. 3A 463

shows how breaking detailed balance by scaling a rate up (in- 464

creasingly red curves) or down (increasingly green-blue curves) 465

can shift response curves to the left or right on the horizontal 466

log[X] axis (effectively tuning what EC50 formerly represented 467

at equilibrium), and also smoothly change the number of inflec- 468

tion points. Yet even for the same net nonequilibrium driving 469

force, the consequences of breaking detailed balance depend 470

significantly on the edge it is broken along. Fig. 3B shows 471

another representative behavior by modifying a different edge, 472

where the major effect of departing equilibrium is to modulate 473

the leakiness, saturation, or intermediate scales of the response. 474

Despite the diversity of this regulation, quantitatively-regular 475

control behavior emerges as well: inset plots emphasize that 476

phenotypic properties such as the position, max{log[X]∗}, of 477

the final inflection point and the saturation, 〈r〉∞, scale as 478

power laws with the net drive over some regimes. 479

This broad regulatory flexibility is sustained over all eight 480

rate constants, whose comprehensive response behaviors under 481

drive are analyzed in the SI, §2K: Systematic census of effects 482

of pushing on one and two edges. Fig. 3C summarizes how driv- 483

ing each rate attains different shape phenotypes (number of in- 484

flections). Notably, any rate can be driven to access any of the 485

three response shape phenotypes at some small, biologically- 486

feasible dissipation. Yet the minimum nonequilibrium driv- 487

ing force values needed to unlock a given phenotype—and 488
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Fig. 3. Systematically breaking detailed balance edge-by-edge. (A) Example of how spending energy to modify a single rate (here, kXS )—while the seven other rates remain
fixed—changes the response curve away from default equilibrium behavior (pale yellow curve labeled "0" net drive and outlined in black). Responses from rate values larger
than (or smaller than) at equilibrium are shown in increasingly red (or blue) colors, respectively; curves are also labeled with the numerical values of the net drive that generated
them in kBT units (positive for an increase; negative for a decrease). Each curve’s resulting inflection points are marked by yellow, orange, or pink markers, denoting one to
three inflection points (respectively), and summarized in the associated one-dimensional (shape phenotypic) phase-diagram with the same colors on the right. Inset: the
position of the final inflection point max ln [X]∗/[X]0 versus net drive (power law exponent is ∼ 1); eccentric points near zero drive result from the shifts in shape phenotype in
that vicinity. (B) Another representative behavior is displayed when kX,XP is instead the rate varied. Inset: the saturation 〈r〉∞ versus net drive (power law exponent is ∼ 1).
(C) Summary of how all eight rates respond to energy expenditure to realize different regulatory shape phenotypes. Below, stem plots give precise values of each default rate
constant at equilibrium. (These rates acknowledge initial “broken symmetries” among the rates that violate the conditions Eq. 5 by default, facilitating more ready access to
nonmonotonicity. The SI Appendix, §2K, documents the impact of departing from different default starting rates that instead satisfy Eq.5.) (Here, the reference concentration
scale setting the horizontal offset of the concentration axis is [X]0 ≡ 1 nM.)

the fraction of rate space manifesting said phenotype—varies489

markedly across the rates. For instance, the two-inflection-490

point nonequilibrium response shape (orange) is only reached491

for a fairly narrow, fine-tuned region of drive for the rates492

kP S , kXP,X , kSP , and kX,XP , but is the most common shape493

phenotype over finite net drives for the rates kXS , kXP,P , kSX ,494

and kP,XP . Such variable consequences of injecting energy495

along different rate transitions reflect the privileged roles that496

states XP and P play in the graph, given that their probabil-497

ity is the transcriptionally-potent response we monitor. The498

contrasting impacts of modifying each edge are also sensitive499

to the default rates that define the system’s biological equi-500

librium starting point, a revealing dependence that we will501

return to shortly in the final Results section.502

Breaking detailed balance two edges at a time. Adjusting one503

edge at a time, as we have just investigated, is but one of many504

ways a network could invest energy to control its input-output505

function. Indeed, the classical scheme of kinetic proofreading506

recognized that many steps could each be driven independently507

(36), as has later been repeatedly observed in the multistep 508

ways that T-cell or MAPK activation implement kinetic proof- 509

reading (37–40) or in mechanochemical operation of myosin 510

motors (41). How do such distributed investments of energy 511

afford expanded control of response functions? To understand 512

this question, we now appraise how breaking detailed balance 513

along up to two edges at a time expands how different response 514

behaviors may be accessed. With two independent drives (one 515

for each edge’s departure from its default biological value), the 516

formerly-one-dimensional phase diagrams of Fig. 3 become 517

slices of two-dimensional phase diagrams that map where re- 518

sponse shapes are reached (see Fig. 4A-B; and also the census 519

of how all twenty-eight rate pairs behave found in the SI, §2K). 520

Geometrically more complex than their one-edge equiva- 521

lents in Fig. 3, these two-edge phase diagrams expose new 522

ways to transition between the shape phenotypes. One mea- 523

sure of this new facility is the energetic cost needed to reach 524

nonmonotonic (two inflection-point) response curves. Starting 525

from biological equilibrium, what is the minimum net drive 526

∆µ0 required for the response to become nonmonotonic, when 527
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Fig. 4. Breaking detailed balance along two edges unlocks higher sensitivity and multiply-inflected outputs with smaller drive than required for breaking detailed balance along
single edges. (A) Adjusting the rate pair (kSX , kP S)—while fixing the other six rates at their default biological values at equilibrium (of Figure 1A and Figure 3C’s stem
plot)—varies the number of inflection points (light yellow: one inflection, orange: two inflections, pink: three inflections), in a 2D analog of Figure 3. Specifically, this rate pair
illustrates a case where nonmonotonic two-inflection curves can be reached with only an infinitesimal net drive. (B) In contrast, when tuning (kXS , kSX), a finite minimum
drive is needed to access nonmonotonicity; numerical sampling reveals that this total drive is the same as required while only tuning one edge at a time. (C) Maxima of raw
slope d〈r〉/d ln [X]/[X]0 over the same modulations (axes) of the rate pair (kSX , kP S) shown in (A), with slope-maximizing rates within the permissible rate space indicated
with a circle. [X]0 ≡ 1 nM is a reference concentration. (D) Overlaying the same positions of maximal slope for all twenty-eight rate pairs emphasizes that optimal slopes are
found at the boundary of the permissible rate space. Marker colors reflect the maximal slope achieved for each rate pair. Panel (E) summarizes the behavior of panel (D) by
representing each optimal rate pair value with two important natural parameters: the net drive ∆µ/kBT (either the log ratio or log product of each rate’s difference from their
equilibrium starting values, depending on the relative (counter)clockwise orientation of the rates in a pair); and the net total distance the optimal values are found from their

starting values in rate space, D

(
ln kmn

kmneq
, ln

kij
kijeq

)
≡

√(
ln kmn

kmneq

)2
+
(

ln
kij

kijeq

)2
.

energy can be injected along just one edge at a time (Fig 3)528

or up to two edges at a time (Fig. 4A & 4B)? Regarding529

this question, we find that the
(8

2

)
= 28 possible pairs of530

edges can be divided into two types. A few—like the edge531

pair (kXS , kSX) illustrated in Fig. 4B—require the same finite532

total dissipation to reach nonmonotonicity as needed if only533

pushing on either individual edge. However, the majority of534

rate pairs—such as the edge pair (kSX , kP S)—offer a dissipa-535

tive bargain: by controlling both rates it is possible to find536

a point in rate space where only an infinitesimal departure537

from detailed balance activates nonmonotonicity (as circled538

in 4A). These inifinitesimal minimal drives contrast the finite539

drives always required while modifying single edges (Fig. 3C).540

This new economy is enjoyed by the 22 rate pairs that include541

at least one of the four special rates kX,XP , kSP , kXP,X , or542

kP S ; their membership will be a clue for identifying critical543

conditions on nonmotonicity we deduce in the next (and final)544

Results section. 545

The richer behaviors achievable by breaking detailed bal- 546

ance along two rates (instead of just one) become even more 547

pronounced from the lens of sensitivity. The heatmap of Fig. 548

4C depicts the maximal unnormalized sharpness d〈r〉/d ln[X] 549

reached by modifying the rate pair (kSX , kP S) (the same rates 550

mapped phenotypically in the phase space of Fig. 4A). If 551

only one rate constant at a time were allowed to be driven, 552

only the slices of sharpness along the white dotted x = 0 and 553

y = 0 vertical and horizontal lines would be accessible, at 554

most realizing a maximal unnormalized sharpness of . 0.15 555

with respect to the concentration [X] on a log scale. However, 556

once both edges can be modified, it becomes possible to ac- 557

cess the maximal slope region on the lower right, yielding a 558

greater maximum sensitivity of about 0.35. Repeating this 559

procedure for all 28 rate pairs, as shown in Fig. 4D, we find 560

that the points in rate space that maximize slope all require 561
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both rate constants in each pair to be modified from their562

default equilibrium values (lying away from the x = 0 and563

y = 0 vertical and horizontal lines). To maximize sensitivity,564

all rate pairs show one (but usually not both) rate constant565

that has been driven to the maximal extent allowed by the566

nonequilibrium driving force budget (localizing optimal points567

to the borders—but not necessarily corners—in Fig. 4D). The568

net drive ∆µ ensuing from both rate’s departure from their569

equilibrium values is often distinct from those independent570

departures. Fig. 4E recasts the same slope-maximizing points571

in Fig. 4D in terms of these two separate properties (the net572

drive ∆µ, and the average geometric distance, D, each edge573

moved from its biological starting point.) Different rate pairs574

show dramatically different optimal maximum sensitivities at575

varying cost: choosing to break detailed balance along the576

(kSX , kP S) can achieve a maximal slope of about 0.35 (prob-577

ability units per e-fold change in [X]) at a net drive of only578

∆µ ≈ 10 kBT (dark grey marker), but choosing less wisely579

the rate pair (kSX , kP XP ) at best attains a slope of about580

0.054 (probability units per e-fold change in [X]), even while581

spending a net energy ∆µ & 35 kBT almost four times as582

large. Collectively, these findings highlight how prudently583

distributing dissipation over the transitions in a network can584

achieve more precise and dramatic responses.585

Generic rate conditions forbid access to nonmonotonic re-586

sponses. Why, as we have seen, are nonmonotonic responses587

accessed with different ease while driving some rates—or still588

more economically, rate pairs—rather than others? How do589

the default equilibrium rates from which biology departs affect590

the tunability of responses? Confronting these questions leads591

us to glean general kinetic conditions that enable or forbid592

nonmonotonicity. We reformulate the criterion for nonmono-593

tonicity to explicitly invoke net drive and rate constants (see594

SI, §2L:Crucial imbalances in rate-constants are required for595

nonmonotonic responses). Using these analytical arguments,596

we determine that nonmonotonicity is forbidden for any net597

drive when transition rates satisfy the following, surprisingly598

loose, conditions:599

〈r〉
is always

monotonic
in [X]

≡
{
kX,XP ≥ kSP and kXP,X ≤ kP S , or
kX,XP ≤ kSP and kXP,X ≥ kP S .

[5]600

That is, if the presence of the transcription factor on the601

genome increases or decreases the polymerase’s binding rate in602

a sense opposite to its effect on the unbinding rate (or leaves603

either unchanged), the response must depend on the transcrip-604

tion factor monotonically. Only when the transcription factor605

plays a functionally “ambiguous,” dualistic role—coherently606

changing both the polymerase’s binding and unbinding rates607

(that themselves have opposite effects on the response)—may608

the response become nonmonotonic under a sufficient net drive.609

Since access to nonmonotonicity is governed by kinetic con-610

ditions in Eq. (5)—but thermodynamic parameters instead611

set whether a response is globally activating or repressing (SI612

§)—the qualitative origin of nonmonotonicity stems from when613

kinetic and thermodynamic aspects in the system oppose each614

other.615

This condition of Eq. 5 helps explain why some rates and616

rate pairs reach regulatory shape phenotypes so differently617

under drive, and how default starting rate constants matter.618

A comprehensive census of responses while driving one edge619

at a time when default rates satisfy Eq. 5 is provided in the 620

SI Appendix. 621

Instructively, Eq. 5 demands that when the transcription 622

factor does not change the polymerase’s (un)binding rates— 623

namely, either kX,XP = kSP or kXP,X = kP S—the response 624

must be monotonic. By default, under the often reasonable 625

classical assumption that the binding rate of polymerase is 626

purely diffusion-limited (1), the transcription factor indeed 627

may not affect the polymerase’s binding rate, thus forcing the 628

response to be monotonic.§ This type of biophysical constraint 629

may contribute to why monotonic transcriptional responses 630

are most canonically pictured as monotonic. However, while 631

plausible, this biophysical scenario is hardly inescapable or 632

universal. In fact, even for architectures as “simple” as lac 633

repression, there is gathering empirical evidence that proteins 634

associate with DNA binding sites under more intricate regu- 635

lation than merely diffusion (42). Transcription factors that 636

mediate steric access to the genome (dissipatively or not), 637

such as via DNA looping (43), may also be especially prone 638

to contravene this condition. 639

Discussion 640

In this work, we dissected how spending energy transforms 641

the control of gene expression in a minimal and common 642

transcriptional motif. Harnessing a kinetic description and 643

diagrammatic procedure from graph theory, we found that any 644

transcriptional outputs follow a universal form with respect to 645

a control parameter like a transcription factor’s concentration. 646

We discovered these responses may only adopt three shapes, 647

including an equilibrium-like (monotonic, sigmoidal) response. 648

Uniquely out of equilibrium, however, two unexpected and 649

noncanonical output behaviors become possible: a doubly- 650

inflected, nonmonotonic response; and a triply-inflected, mono- 651

tonic response. Underneath wide parametric complexity, we 652

established tight global bounds on transcriptional response’s 653

maximal sensitivity and learned these can vary and tradeoff 654

with response shape. Next, we systematically mapped how 655

biologically-feasible amounts of energy along single rates or 656

rate pairs control responses. These findings established that 657

the noncanonical responses are easily accessed around rates 658

plausible for transcription, especially when dissipation can 659

be distributed more widely over a network. Last, we uncov- 660

ered global and transparent kinetic conditions that forbid (or 661

enable) novel nonmonotonic responses. 662

The flexible regulation unlocked by nonequilibrium could 663

be widely biological salient. Responses that can show three 664

inflection points—instead of just one at equilibrium—could 665

effectively accomplish the role of two classical (singly-inflected) 666

input-output functions. Since an inflection can mark a local 667

region of enhanced output sensitivity, and effectively imple- 668

ment a threshold, this functionality could allow cells to achieve 669

distinct cellular fates, such as in Wolpert’s classical French 670

Flag model (44). By contrast to our small architecture, canon- 671

ical pictures of multiple thresholded responses usually require 672

multiple genes—often at least one specific gene per threshold 673

(45). One imporant example is the celebrated Dorsal protein in 674

Drosophila, where two critical thresholds have been proposed 675

§By contrast, by the assumption that the transcription factor has the typical biophysical effect of
changing the affinity between the polymerase and genome, the polymerase’s off-rate from the
genome is affected by the transcripton factor’s presence, and kXP,X 6= kP S . So usually it is
not an equality between polymerase’s off-rates that prevents a response from being nonmonotonic.
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to accomplish twist gene activation and decapentaplegic gene676

repression to help establish distinct parts of dorsal patterns677

in embryonic development (46, Fig. 2.26, p. 64). We pro-678

pose that triply-inflected responses from a single gene could679

accomplish some of this same functionality with a smaller680

architecture.681

Nonmonotonic response functions with two inflection points682

could empower cells to accomplish more sophisticated signal683

processing, such as band-pass or band-gap filtering of chemi-684

cal inputs, and/or generate temporal pulses of chemical out-685

puts. Similar implications have been been explored by Alon686

& coworkers, inter alios, who established how nonmonotonic687

outputs can be produced by chaining together incoherent feed-688

forward loops (47–50). To achieve more complex outputs,689

these networks use transcriptional interactions among mul-690

tiple genes at equilibrium—e.g. from two to six (or more)691

genes in such examples. Hence these networks operate with692

comparatively larger sizes and timescales than mere binding-693

unbinding reactions on a single gene’s regulatory network like694

the square graph we study in this report. We suggest these695

comparisons contribute new material to a maturing discourse696

about when and how biology uses thermodynamic or kinetic697

control mechanisms (34, 41).698

Even responses that remain “equilibrium-like” with a single699

inflection benefit from energy expenditure, since our bounds700

establish they may be up to two times more sensitive than701

at equilibrium, and enjoy new kinetic (instead of merely ther-702

modynamic) ways of controlling the location of the governing703

inflection point (EC50).704

While only mild net drives transpire to unlock useful regu-705

latory shapes and traits, our analysis emphasizes other mech-706

anistic factors that govern how easily these behaviors can707

be accessed, or measured as signatures of nonequilibrium in708

natural or synthetic settings.709

First, the biological network’s architecture determines710

whether these new macroscopic behaviors can be attained711

at all. Although prokaryotic gene regulation has regularly712

shown a compelling coherence between quantitative measure-713

ments and equilibrium statistical mechanical models (including714

demanding studies from our own laboratories over the past715

two decades (6, 19, 24, 51, 52) and beyond (43)), many of716

the most fiercely interrogated systems (e.g. the lac repres-717

sor) are indeed exactly those with acyclic network topologies718

that make nonequilibrium steady-states impossible (without719

open fluxes) and guarantee detailed balance. This reflects720

a possible overrepresentation of biological settings where de-721

tailed balance may be expected a priori to apply on mere722

structural grounds. On the other hand, the means to spend723

energy biochemically clearly exist, even in bacteria through724

two-component regulatory systems (53) and other active set-725

tings like nucleosome remodeling in eukaryotes (5). Hence our726

findings invite a renewed and vigorous reappraisal of whether727

signatures of nonequilibrium are in fact lurking in architec-728

tures that are more prone to accommodate it, such as the729

four-state “simple activation” motif we discussed here. More-730

over, the measurements (or synthetic biological perturbations)731

needed to map the nonequilibrium landscape of transcriptional732

responses must differ from the convenient binding site modifi-733

cations (e.g. parallel promoter libraries (19, 54)) previously734

used to test equilibrium models, since manipulating binding735

energies inherently preserves detailed balance. Developing736

fresh experimental approaches to augment or attenuate a sin- 737

gle transition between microstates (or set of transitions) in 738

situ to break detailed balance is a crucial direction of future 739

empirical work, whose value is advocated for by our results. 740

To manipulate and probe tractable models of transcription, 741

these methods might include optogenetic control (55, 56), or 742

suitable adjustments of governing enzyme concentrations or 743

activities. 744

Second, where energy is invested crucially dictates which 745

regulatory behaviors are available. We found that investing 746

energy along more than one rate at once was capable of achiev- 747

ing more dramatic response curves more economically. This 748

finding may help explain the many observations in biological 749

systems where energy is independently injected along multiple 750

steps (36–41). However, since each independently-regulated 751

injection of energy may also be accompanied by architectural 752

costs, not all examples of biological regulation may contain 753

the distributed dissipation machinery required to make novel 754

nonequilibrium response signatures conspicuous. 755

Third, the structures of responses while breaking detailed 756

balance edge-by-edge, and our general kinetic criteria that 757

forbid nonmonotonicity, highlight that certain critical imbal- 758

ances between rate constants are needed to produce the most 759

conspicuously non-sigmoidal shape phenotypes available out 760

of equilibrium. On basic biophysical grounds, some natural 761

systems may—or may not—exhibit the required rate imbal- 762

ances to make novel responses as easy to activate (see SI, §L.2: 763

Conditions that suffice to forbid nonmonotonicity). 764

Indeed, the rate imbalances required to produce nonmono- 765

tonicity we found are non-obvious. These kinetic criteria have 766

significant implications for organizing parameter explorations. 767

For instance, we show in the SI, §2M: Implications of critical 768

symmetry conditions for widespread numerical screens that an 769

exciting study just published (13) exploring the informational 770

consequences of nonequilibrium in a four-state model (that 771

is mappable to our setting) imposes simplifying assumptions 772

on rate constants that in fact preclude the possibility of non- 773

monotonic responses, according to our monotonicity criterion. 774

We expect that our approach and kinetic criteria will help 775

future works include and capture the regulatory consequences 776

of these rich behaviors. We anticipate this flexibility may be 777

especially germane for environments that present nonuniform 778

input statistics. 779

The contrast between the nonequilibrium steady-states pos- 780

sible to support using this “simple activation” architecture, 781

and the difficulty of sustaining nonequilibrium steady-states in 782

a simple repression architecture that lacks a cycle, also possi- 783

bly provides a new design principle to understand the timeless 784

question of why both activators and repressors are employed as 785

distinct architectures when they can produce the same mean 786

gene expression. Intriguing rationalizations based on ecolog- 787

ical demand have been offered for why these architectures 788

are used differently in E. coli, such as the classical proposal 789

by Savageau (57–59). We speculate that another, quite dis- 790

tinct, feature—the very possibility of using nonequilibrium 791

to steer input-output response curves so flexibly—may also 792

contribute to why organisms might use a simple-activation (or 793

other cycle-containing) architecture over acyclic architectures, 794

all other features being equal. Whether this nonequilibrium 795

controllability significantly shapes the natural incidence of 796

regulatory architectures can only be assessed using quanti- 797
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tative measurements of input-output behaviors from a much798

broader set of architectures than the relatively narrow (e.g.799

Lac repressor, Bicoid, CI in bacteriophage-λ switch) subjects800

of existing analyses.801

Our work provides explicit maps of parameter spaces that802

can guide the naturalist looking for whether this expanded803

regulation occurs naturally in some manifestations of transcrip-804

tion. This information is also a guide to the synthetic biologist805

who endeavors to engineer such responses in genetic circuits806

and exploit the advantages of producing complex regulation807

using a small driven network, instead of a comparatively larger,808

more slowly tuned network of multiple genes at equilibrium.809

Beyond advocating for experimental progress, our findings810

invite many theoretical extensions. How dissipation affects811

the intricate tradeoffs between sensitivity, specificity, speed,812

and stochasticity in (steady-state or transient) gene regulation813

is a large, open, physiologically-relevant question amenable to814

further graph-theoretic dissection. In addition, we hope for815

deeper analytical rationalization of our bounds on sensitivity;816

our upper bounds surely share similar foundations with looser,817

more architecturally general, bounds recently and insightfully818

established by Owen & Horowitz (29), though our additional819

lower bounds and different mathematical quantities suggest820

separate theoretical ingredients.821

Overall, we foresee that graph-theoretic treatments like822

we have deployed here—and as have been first so powerfully823

established and refined by other foundational investigators824

(16)—will produce further dividends when addressing still more825

sophisticated networks. Logically (but not psychologically)826

equivalent to tedious, purely algebraic analysis of steady-state827

probabilities, these perspectives promise to be engines of dis-828

covery amid the complexity of nonequilibrium biology, just as829

diagrammatic analyses such as Feynman diagrams continue to830

catalyze progress in field theory and particle physics (60, 61).831

Materials and Methods832

833

Nonequilibrium steady-state probabilities via the Matrix Tree The-
orem. Consider a continuous-time Markov chain with N states,
whose transition rates kij between states i and j are stored in the
j, ith element of the transition matrix L, and so the probabilities
p(t) = [p1, . . . , pN ]> of finding the system in these states evolve
according to

dp
dt

= Lp.

(With this convention of p as a column vector, the columns of the834

matrix L sum to zero and the diagonal entries are accordingly Lii =835

−
∑
j 6=i

Lji = −
∑
j 6=i

kij .) Note that (Lp)i is the net probability flux836

entering the node i. Identifying our Markov system as a weighted837

graph, a spanning tree over the states is a set of N − 1 edges that838

visits every state exactly once. A spanning tree +i rooted in a state839

i contains no outgoing edges from state i (and exactly one outgoing840

edge for every other state j 6= i). (These notions are summarized841

in the example of Fig. 1B.) The Matrix Tree Theorem (MTT)842

(also known as the Markov Chain Tree Theorem) states that at843

steady state
(

dp
dt

= Lp = 0
)
, the statistical weight of the ith state844

is the sum of products of rate constants over spanning trees rooted845

in node i846

ρi =

NTi∑
span. +i

 N−1∏
krs∈+i

krs

 , [6]847

where NT i is the number of spanning trees rooted in i (16, 21). 848

This weight ρi is the relative odds of finding the system in state 849

i as a fraction of all the statistical weights ρtot =
∑

j

ρj , namely 850

pi = ρi/ρtot. Applying the MTT to the regulatory motif of Fig. 1A 851

indicates that any steady-state probabilistic observable depends on 852

the transcription factor control parameter [X] according to Eq. 1 853

(see SI). 854

Emergent shape parameters & shape phenotypes. The collapsed 855

shape representation of Eq. 3 allows us to solve for the number 856

of positive solutions to d〈r〉/d ln ([X]/[X]0), yields the numbers of 857

possible inflection points (via, for instance, Descartes’ rule of signs 858

or explicit inequality solving) and hence shapes (see SI). Numerical 859

and symbolic analysis of the space formed by these two emergent 860

shape parameters (a, b) (Eq. 3 and SI appendix) helps establish 861

our global bounds on sensitivity. Ultimately, this collapsed repre- 862

sentation is also a crucial theoretical stepladder to find the generic 863

conditions forbidding nonmonotonicity given in Eqs. 5 (see SI). 864

Single edge and edge pair perturbations. We estimated default bi- 865

ological rates for transcription at equilibrium by synthesizing re- 866

ported binding affinities, association rates, and diffusion constants. 867

We solved the condition for an inflection point symbolically and 868

numerically (see SI). 869

Data & Availability 870

All symbolic and numerical code used for this study’s analyses 871

and presented figures will be available open-source. See https: 872

//github.com/glsalmon1/graphnoneq. 873
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