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Abstract
The 50th anniversary of the classic Monod–Wyman–Changeux (MWC) model provides an opportunity to
survey the broader conceptual and quantitative implications of this quintessential biophysical model. With
the use of statistical mechanics, the mathematical implementation of the MWC concept links problems that
seem otherwise to have no ostensible biological connection including ligand–receptor binding, ligand-gated
ion channels, chemotaxis, chromatin structure and gene regulation. Hence, a thorough mathematical
analysis of the MWC model can illuminate the performance limits of a number of unrelated biological
systems in one stroke. The goal of our review is twofold. First, we describe in detail the general physical
principles that are used to derive the activity of MWC molecules as a function of their regulatory ligands.
Second, we illustrate the power of ideas from information theory and dynamical systems for quantifying how
well the output of MWC molecules tracks their sensory input, giving a sense of the “design” constraints faced
by these receptors.

© 2013 Published by Elsevier Ltd.
Introduction

Modern biology has garnered deep insights from a
large collection of “model systems” ranging from
specific molecules such as hemoglobin, Lac repres-
sor and the nicotinic acetylcholine (nACh) receptor
to organisms such as Escherichia coli and its
phages to the fruit fly Drosophila melanogaster and
beyond.1,2 Studies of “model” molecules such as
hemoglobin have given rise, in turn, to very general
statistical mechanical models that provide a simple
link between the structural conformation of these
molecules and their regulation by external ligands.
One such model, the Monod–Wyman–Changeux
(MWC) model,3,4 is beginning to assume similar
proportions in biology to those of the Ising model in
physics, which has been used to explain diverse
phenomena ranging from magnetism to the liquid–
gas transition.5 As we describe in this article, the
0022-2836/$ - see front matter © 2013 Published by Elsevier Ltd.
MWCmodel sheds light on a similarly broad swath of
biological phenomena.
A signature feature of any powerful model is its

ability to make convincing connections between
apparently unrelated phenomena. A simple search
on the initials “MWC” on PubMed reveals the vast
array of different molecular situations in which
researchers have appealed to the MWC model as
an instructive conceptual framework. A similar
search on the Web of Science in December of
2012 reveals 1517 unique citations for the 1963
paper of Monod, Changeux and Jacob and 6086
unique citations for the 1965 paper of Monod,
Wyman and Changeux.3,4 In speaking of the papers
that introduced these ideas, Monod noted “The first
paper was, really, on the idea of indirect regulation.
Which I think is the really important idea. The second
paper is a physical-chemical interpretation of this
fact in terms of the geometry of the molecule”.6 In our
J. Mol. Biol. (2013) 425, 1433–1460
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paper, we hope to explain why Monod christened the
idea of indirect regulation embodied in the MWC
model “the second secret of life”6 by mathematically
examining the general implications of the indirect
regulation concept and its implementation in statis-
tical mechanical language. It is interesting to note
that, of the two papers, the second paper4 is more
cited than the first,3 despite Monod's claim of the
greater importance of the former.
Indirect regulation, the subject of the first of this

important pair of papers and a key feature of the
MWC model, arises when a macromolecule of
interest has two classes of conformational states,
which we will refer to generically as the inactive and
active states. The molecular decision of whether or
not the macromolecule is active is dictated by the
binding of some regulatory ligand or ligands that bind
preferentially to one state over the other, thereby
tilting the balance between the inactive and active
states.2,4,7,8 As we will see below, in the simplest
variant of the model, there are thus four distinct
states, active and inactive both with and without
ligand. This simplest picture can serve as the starting
point for a whole suite of more complex models
involving multiple binding sites and hence, coopera-
tivity, different sets of intermediate states and
multiple ligands, for example.
The organization of the paper is as follows. In

States and Weights in the MWC Setting, we show
how “states-and-weights” diagrams illustrate all of
the different microscopic states available to an MWC
molecule and how statistical mechanics can be used
to assign “statistical weights” to each such state.
With these results in hand, we show how to compute
the activity of an MWC molecule as a function of the
concentration of its governing ligand. In Case
Studies in MWC Thinking, we highlight a few of the
many biological processes that can be described by
anMWCmodel, including ligand-gated ion channels,
two-component signal transduction systems and
gene regulation. Some of the unexpected predic-
tions that arise from such models are highlighted in
these various examples. In An Information-Theoretic
Perspective of the MWC Concept, we then consider
how information theory can be used to characterize
the ability of MWC molecules to “read” the state of
their environment and to convert it into cellular
decisions. In Dynamical MWC, we introduce a
simplified model of dynamics for MWC molecules
and analyze how well such molecules “read” an
environment whose state is changing in time. In
Discussion, we close by reflecting on the MWC
concept as viewed through the prism of “toy models”
in statistical mechanics and how it provides a
powerful complement to more microscopically real-
istic perspectives that have emerged from structural
biology. Some of the detailed steps of our derivations
are presented in several appendices that follow the
reference list. We consider these appendices an
important part of the overall review since they
provide details for results used in the literature that
are rarely presented pedagogically, if at all.
The references cited throughout the paper are

intended to provide an entry into the vast literature on
the MWC concept with special emphasis on how
physical scientists have exploited the model. Spe-
cifically, we place less emphasis on fitting the data
for one particular molecule and more emphasis on
the general features of such molecules and the
physical constraints that they must face. Given the
more than 7000 citations of the two papers that
launched the MWC world view, it is no surprise that
our list of references is representative rather than
complete, and we apologize in advance to those
whose important work has been neglected.
States and Weights in the MWC Setting

For the purposes of this article, we define an MWC
molecule as having two classes of structural
states.3,4 In the case of hemoglobin, for example,
these states correspond to the famed “T” (tense)
and “R” (relaxed). For ligand-gated channels such
as the nACh receptor or cyclic guanosine monopho-
sphate (cGMP)-gated ion channels such as those
found in photoreceptors, these two states corre-
spond to the closed and open states of the
channel.9 These same ideas can be used even
farther afield such as to describe different structural
states of chromatin in which the DNA molecule is
either “inaccessible” or “accessible”.10,11 In this
section, we will denote the two states of the receptor
by “I” and “A”, referring to the inactive state and to
the active state, respectively. Our goals in this
section are twofold. First, we aim to discuss indirect
regulation and cooperativity in the MWC model.
Second, and perhaps more importantly, we aim to
provide a clear recipe for converting diagrammatic
descriptions of ligand–receptor binding (“states dia-
grams”) into testable equations. To achieve the
latter goal, we begin this section by describing the
noncooperative one-site MWC molecule. Then, we
focus our attention on the general n-site MWC
molecule from which we can understand how the
indirect regulation inherent in the MWC model can
give rise to apparently cooperative interactions.
An MWC molecule with a single binding site has

four possible states: the receptor can be inactive or
active, and the binding site can have or cannot have
a bound ligand. Figure 1a provides a generic
schematic of these four distinct molecular situations
and also lays the groundwork for a statistical
mechanical investigation of the relative probabilities
of these different states. Each of the possible
microscopic states has probability proportional to
its Gibbs factor, exp(−(Estate − nstate μ)/kBT), where
Estate is the energy of the microscopic state of
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Fig. 1. States-and-weights diagram of the one-site MWC molecule. (a) Each of the four states has an associated
energy, part of which is due to the conformational degrees of freedom of the molecule and part of which reflects the free
energy of the binding process. (b) pactive as given in Eq. (2) as a function of concentration in units of the inactive state's
dissociation constant. The activity curve is shown on a log scale in the main plot and on a linear scale in the inset. (c) The
four curves show the probabilities of each of the distinct states as a function of the ligand concentration. Each state is
labeled by a pair of numbers. The first number of the pair is 1 if the receptor is active and 0 if the receptor is inactive; the
second number of the pair is 1 if a ligand is bound and 0 if no ligand is bound. The parameter values used in the figure are
Δε = εI − εA = −4 kBT and Δεb = εb

(A) − εb
(I) = −5 kBT.
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interest, nstate is the number of ligands bound to the
receptor in that state and μ is the chemical potential
that here encapsulates the free-energy cost of
moving a ligand molecule from the solution to the
receptor.2,5 For the remainder of this article, we
define the variable β ¼ 1

kBT
as is typically done in the

statistical mechanics literature.
We can decompose the energy of a state Estate

into two different contributions: the conformational
energy of the receptor and the energy of binding a
ligand. We label the conformational energy of the
active receptor as εA, the conformation energy of the
inactive receptor as εI, the energy of binding a ligand
to the active receptor as εb

(A) and the energy of
binding a ligand to the inactive receptor as εb

(I).
Calculating the conformational energy of the recep-
tor or the energy of binding a ligand from first
principles could be incredibly complicated, as it
depends on the details of the bonding interactions
within the receptor, between the receptor and the
surrounding solution and between the receptor and
ligands. The free-energy cost of removing a ligand
from a dilute solution is encapsulated in the chemical
potential μ,

μ ¼ μ0 þ kBT ln
c
c0

ð1Þ

where μ0 and c0 are an unspecified reference
chemical potential and its corresponding (unspeci-
fied) reference ligand concentration. Using the
prescription that each state has a probability
proportional to exp(−β(Estate − nstate μ)), we find
“weights” shown in Fig. 1a for each state. From
these weights, we can derive the probability of the
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one-site receptor being active, which can be
calculated as the sum of the weights of the active
receptor normalized by the total sum of all of the
weights, namely,

pactive

¼
e−βεA 1þ c

c0
e−β ε Að Þ

b −μ0ð Þ� �

e−βεA 1þ c
c0
e−β ε Að Þ

b −μ0ð Þ� �
þ e−βεI 1þ c

c0
e−β ε Ið Þ

b −μ0ð Þ� �

ð2Þ
Figure 1b shows that the probability of the active

state increases as ligand concentration increases;
this curve is often called the “activity curve”.
We can also derive the “binding curve” as the

average number of bound ligands, which for the one-
site receptor is the sum of the weights of the
receptors with one ligand normalized by the total
sum of all of the weights,

Nboundh i

¼
e−βεA c

c0
e−β ε Að Þ

b −μ0ð Þ� �
þ e−βεI c

c0
e−β ε Ið Þ

b −μ0ð Þ� �

e−βεA 1þ c
c0
e−β ε Að Þ

b −μ0ð Þ� �
þe−βεI 1þ c

c0
e−β ε Ið Þ

b −μ0ð Þ� �

ð3Þ
When the active state has a larger affinity for the

ligand than the inactive state, εb
(A) b εb

(I), both pactive
and 〈Nbound〉 increase with the ligand concentration
c. These are consequences of the fact that an
increase in ligand concentration increases the
statistical weight of the bound, active state relative
to the weight of the unbound, inactive state.
Figure 1c plots the probabilities of each of these
states as a function of concentration. As expected,
the inactive, unbound state dominates at low ligand
concentrations and the active, bound state domi-
nates at high concentrations.
Some readers may find Eqs. (2) and (3) unfamiliar

since activity curves and binding curves are often
written in terms of a different set of parameters.
Thermodynamic language is often used instead
of statistical mechanical language, employing
dissociation constants†‡ K Að Þ

d ¼ c0e
β ε Að Þ

b −μ0ð Þ and
K Ið Þ
d ¼ c0e

β ε Ið Þ
b −μ0ð Þ and the conformational equilibrium
Fig. 2. Table of key quantities that can be computed within t
for two MWC molecules: a one-site receptor with Δε = εI −
difference in binding energy of ε Að Þ

b −ε Ið Þ
b ¼ logK Að Þ

d

K Ið Þ
d

¼ −4kBT ; an
1 μM, and Kd

(I) = 12.2 μM, giving a binding energy difference o
with concentrations on a log scale. The transition point concent
shown with vertical and horizontal lines, respectively, for the on
key parameters of interest in both statistical mechanics and
binding sites on the receptor, L = e− βΔε is the conformational
conformational energy between the inactive and active state,K
for ligand binding, K Að Þ

d ¼ c0e
β ε Að Þ

b −μ0ð Þ is the active state's dis
concentration.
constant L ¼ e−β εA−εIð Þ.2 Note that, as commented
on previously, only energy differences are mean-
ingful. With this parameterization, the activity curve
for the one-site MWC molecule has the form

pactive ¼
1þ c

K Að Þ
d

1þ c

K Að Þ
d

� �
þ L 1þ c

K Ið Þ
d

� � ð4Þ

and the binding curve has the form

Nboundh i ¼
c

K Að Þ
d

þ L c

K Ið Þ
d

1þ c

K Að Þ
d

� �
þ L 1þ c

K Ið Þ
d

� � ð5Þ

The thermodynamic formulation is directly related
to the original MWC parameters§. The activity curve
and binding curve given in Eqs. (4) and (5) can in
turn be fit to the MWC equation for pactive to find the
microscopic parameters of the MWC model, for
example, Kd

(A), Kd
(I), L. For the rest of this paper, we

will use a combination of statistical mechanics and
thermodynamic notation: dissociation constants Kd

(A)

and Kd
(I) will be used in preference of c0e

−β ε Að Þ
b −μ0ð Þ

and c0e
−β ε Ið Þ

b −μ0ð Þ, respectively, and conformational
energies εA and εI will be used in preference of the
conformational energy equilibrium constant L. Of
course, this choice is a matter of personal taste; we
find that the notation favored here combines the
brevity of the original MWC notation4 with the clarity
of biophysical understanding provided by statistical
mechanics notation.
The concept of indirect regulation is already

present in a one-site MWC molecule. Typically, the
inactive receptor is more energetically favorable
than the active receptor, εA N εI or L N 1. The
presence of ligand shifts the balance toward the
active receptor because the binding of ligand to the
active receptor is more favorable than the binding of
ligand to the inactive receptor, that is, εb

(A) b εb
(I),

Kd
(A) b Kd

(I). However, studying the one-site receptor
cannot elucidate the phenomenon of cooperativity,
he MWC framework. (a) The activity curve on a linear scale
εA = −4 kBT, Kd

(A) = 1 μM and Kd
(I) = 148 μM, giving a

d a two-site receptor with Δε = εI − εA = −4 kBT, Kd
(A) =

f ε Að Þ
b −ε Ið Þ

b ¼ logK Að Þ
d

K Ið Þ
d

¼ −2kBT . (b) The activity curves from (a)
ration c* = 40.6 μM and effective Hill coefficient heff = 1 are
e-site receptor. (c) This table gives formulas for some of the
thermodynamic language. Here, n is the total number of
equilibrium constant where Δε = εI − εA is the difference in
Ið Þ

d ¼ c0e
β ε Ið Þ

b −μ0ð Þ is the inactive state's dissociation constant
sociation constant for ligand binding and c is the ligand



1438 Review: Statistical Mechanics of MWC Models
in which the binding of one ligand appears to
encourage or discourage the binding of the next.
Thus, we turn our attention to a more general n-site
MWC molecule. Some details of cooperativity
calculations are confined to Supplemental Informa-
tion, Appendix 1.
As for the one-site MWCmolecule, the n-site MWC

molecule can be in either an active state or an
inactive state, and in each state, each of the n sites
can either be empty or have a bound ligand. A full
states-and-weights diagram would therefore have
2 × 2n states.
The weights assigned to each state follow the

general pattern set forth in Fig. 1a, and deriving the
formulas for key quantities such as pactive follows
similar logic to that of the n = 1 case. For the reader's
convenience, a number of these key formulas are
listed for the general MWC molecule with n binding
sites in Fig. 2, including formulas for the activity
curve pactive and the binding curve 〈Nbound〉. Note that
when faced with some new problem, we find that it is
often much simpler to write down the various states
and their associated statistical weights in statistical
mechanical language and then to convert to a more
familiar Kd language at the end. It is for this reason
that we illustrate the results in both languages.
As n increases, the activity curves become flatter

for high and low concentrations and steeper near the
“transition point”, the halfway point between a
minimally and maximally active receptor denoted
by c* in Fig. 2. This steepness is a signature of
cooperativity, which means that the binding of one
ligand seems to encourage or discourage the
next.8,12,13 In the MWC model, this phenomenon is
the result of indirect regulation rather than direct
regulation: the presence of ligand increases the
probability of the receptor existing in the state with
higher ligand affinity, thereby increasing the proba-
bility of the next ligand binding. There are certainly
other models that can explain cooperativity, often by
postulating direct energetic interactions between
bound ligands.2 One popular and simple model of
cooperativity postulates that activity curves follow
the Hill function2,12,13 given by

p Hillð Þ
active ¼ c=KAð Þh

1þ c=KAð Þh
ð6Þ

If the Hill function were derived from a states-and-
weights diagram similar to that in Fig. 1a, then there
would only be two states for this receptor with
identical binding sites of dissociation constant KA: a
receptor with no ligands bound and a receptor with h
ligands bound. This is often not a realistic mecha-
nistic explanation for cooperativity despite the Hill
function's ubiquitous presence in the biological
literature. However, h is a useful proxy for the
degree of cooperativity in the system since it
quantifies exactly the steepness of the activity
curve at the transition point. Similarly, one can
define an effective Hill coefficient, heff, for any activity
curve as twice the slope of the activity curve on a
log–log scale at its transition point.12 A formula for
heff in the case of the MWC model is given in Fig. 2.
The effective Hill coefficient is a useful heuristic for
cooperativity. If |heff| N 1, then the presence of one
bound ligand increases the likelihood of the next
ligand binding, a signature of positive cooperativity; if
|heff| b 1, then the presence of one bound ligand
decreases the likelihood of the next ligand binding;
and if |heff| ≃ 1, then the binding of one ligand
indifferent to the binding of the next, a signature of no
cooperativity. As shown in Supplemental Informa-
tion, Appendix 1, the effective Hill coefficient for the
MWCmolecule can be summarized as follows.When
the active state and the inactive state of an MWC
molecule with multiple binding sites have different
ligand affinities, |heff| N 1, and when there is only one
binding site or when the two states have equal affinity
for the ligand, then there is no signature of
cooperativity, |heff| = 1. To model an MWC molecule
with negative cooperativity, one needs to introduce
repulsive interaction energies between ligands, as
was done by Narula and Igoshin, for example.11

With the statistical mechanical preliminaries now
in place, the remainder of the paper is devoted to
specific case studies. Each such study is introduced
either to highlight some specific twist on the
statistical mechanical analysis (such as the pres-
ence of more than one binding site) or to examine
modern applications of the MWC concept to prob-
lems of current interest.
Case Studies in MWC Thinking

The MWC concept presented above has been
applied to a very wide array of different molecular
scenarios, as evidenced by the massive citation list.
In the 1960s, the MWC concept and related

models were used to great effect as the basis
for thinking about several important “model”
molecules,4,14,15 most famously, hemoglobin. For a
beautiful review on the evolution of thinking on
hemoglobin, see the work of Eaton et al.16 Recall
that the hemoglobin molecule binds oxygen mole-
cules, which are then delivered to tissues throughout
the body. Hemoglobin can bind up to four oxygen
molecules and therefore has a more complicated
states-and-weights diagram and activity curve than
that of the simpler one-site receptor in Fig. 1. One of
the signature features of the binding curve of oxygen
on hemoglobin is its characteristic sigmoidal shape
that indicates the existence of cooperativity, de-
scribed in detail in the previous section. Traditionally,
one of the most well studied ways of characterizing
cooperativity is through the Hill function as already
discussed in Eq. (6). As we already noted in States
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and Weights in the MWC Setting, Hill cooperativity is
very strict in the sense that, from a statistical
mechanical perspective, it banishes the states of
partial occupancy that are present in the MWC
framework. One of the key insights of the MWC
perspective is that it too can give rise to sigmoidal
binding curves, but on the basis of a different
underlying picture of the allowed molecular states.
Models of ligand–receptor binding that include
intermediate states can also give rise to sigmoidal
binding curves, but unlike the MWC model, these
models often posit direct energetic interactions
between bound ligands. In the remainder of this
section, rather than focusing on MWC classics such
as hemoglobin, we highlight the spectrum of more
recent examples of the MWC concept that have
been applied to topics of great current research
interest ranging from bacterial chemotaxis to the
accessibility of chromatin to DNA binding proteins.

MWC ligand-gated channels

The cell membrane is richly decorated with a host
of different molecular species, many of which detect
and respond to molecules present in the external
milieu. Ion channels are one of the most important
examples of such membrane-bound proteins that
respond to external cues resulting in changes of the
cellular state such as a change in the membrane
potential. One mechanism by which ion channels
can detect environmental signals is through an
MWC-like mechanism: when a molecule binds to
the channel, it shifts its equilibrium such that the
open state is more likely than the closed one. There
are a number of important ligand-gated ion channels,
but we will primarily focus on two examples: (i) the
nACh receptors at neuromuscular junctions17 and
(ii) cGMP-gated ion channels that enable photore-
ceptors to amplify their response to light.9,18
STATE
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Figure 3a shows the states and weights for a toy
MWC model of an ion channel in which we imagine
that there are two distinct binding sites for the
relevant ligand. The four states on the left of Fig. 3a
correspond to all the different variants on the closed
state and the four states on the right correspond to
the different variants of the open state. For conve-
nience, we have taken the conformational energy of
the closed state to be zero while the conformational
energy of the open state is given by ε. We can add up
the statistical weights for all of the open states
permitting us to compute the open probability as
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Much effort on the use of MWC models has been
aimed at the rigorous attempt to figure out the
answers to precise questions such as how many
binding sites are present in the MWC molecule of
interest, whether or not those sites are heteroge-
neous and what are the precise values of the
molecular parameters associated with the various
states. Of course, these questions are all of great
interest. We show an example of the kind of data that
engenders these discussions in Fig. 3b, which
shows the open probability of cGMP-gated ion
channels as a function of the concentration of
cGMP. These channels are a key part of the signal
transduction pathway in the retina, undergoing a
gating transition from open to closed when photore-
ceptors are exposed to light.2,18,20 The key point for
our discussion here is to note that the MWC concept
gives us a framework for thinking about how channel
gating depends upon key parameters such as the
ligand concentration, the number of binding sites (as
revealed in the effective Hill coefficient) and a variety
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of other quantities of interest, including those shown
in Fig. 2.2,19,21

MWC and bacterial chemotaxis

A second recent application of the MWC model
that illustrates its adaptability to new experimental
situations is that of bacterial chemotaxis, the process
whereby bacteria are observed to move up gradients
of chemoattractant.22,23 In the time since the
development of the MWC concept, one of the best
studied (at least in quantitative detail) examples of
signal transduction in living organisms is provided by
this fascinating directed motion. Specifically, bacte-
rial motility in these situations is characterized by
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Fig. 4. Bacterial chemotaxis. (a) A schematic showing the m
tumbles. (b) A chemoreceptor and the bacterial flagellar motor
bacteria, they are often on opposite poles. In the presence of l
not induced to alter its rotation direction. (c) Activity of the ch
concentration with MWC parameters taken from Ref. 24.
“runs” during which the bacterium uses its flagella to
swim in a roughly straight path, punctuated by
“tumbles” during which the bacterium reorients and
then swims off in a new direction (see Fig. 4a).22,25

The circuit that mediates this bacterial decision
making has been subjected to detailed experimental
scrutiny, and recent fluorescence resonance energy
transfer (FRET) experiments26,27 provide precise
quantitative data on the signal transduction path-
ways involved in bacterial chemotaxis. For our
purposes here, the key point is that the bacterial
surface is decorated with chemoreceptors that serve
the role of detecting chemoattractants in the sur-
rounding medium and then changing the state of
phosphorylation of its diffusible response regulators
(b)

clockwise
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igand, CheY is not phosphorylated and hence the motor is
emoreceptor in the limits of low and high chemoattractant
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(CheY). Once phosphorylated, CheY-P then induces
the bacterial flagellar motor to undergo a change of
rotational direction that leads to a tumble. This
process is shown schematically in Fig. 4b. In this
case, the chemoreceptor is actually inactive in
the presence of ligands. In the presence of che-
moattractants, the bacterium is what Howard Berg
has dubbed an “optimist” and would like to simply
keep going in the same direction (i.e., to not undergo
a tumble).
The MWC concept has been applied in both

clever and subtle ways to describe the response of
bacteria to chemoattractants through sets of differ-
STATE
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shown in Fig. 1 except that, in this case, binding to
the inactive state has the lower Kd (i.e., Kd
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with chemoattractant present, the bacteria tumble
less often.
Figure 5 shows how the simplest MWC concept

can be extended to account for several particularly
interesting features of chemoreceptors in bacteria.
For instance, multiple receptors are clumped togeth-
er into clusters, an aspect of these receptors that has
been long recognized and recently studied system-
atically across different species.32–35 For the case of
clusters of size n and all of the same species, the
activity is given by

pactive¼
e−βε onð Þ 1þ c

K onð Þ
d

� �n

e−βε onð Þ 1þ c

K onð Þ
d

� �n

þe−βε offð Þ 1þ c

K offð Þ
d

� �n ð8Þ

a simple extension of the models introduced already
and which can be developed in direct analogy with
the way we worked out the ion channel open
probability in Fig. 3. The consequence of this
clustering is an effective increase in cooperativity
that sharpens the response of the chemotactic two-
component signaling system to chemoattractant with
respect to the response of a single chemoreceptor.
The FRET experiments of Sourjik and Berg

measured the fluorescence signal change when the
response regulator CheY-P interacts with down-
stream signaling partners, thereby effectively mea-
suring activity curves for a number of differentmutants
of the receptors that mediate chemoreception. These
experiments provided stringent constraints on any
theoretical explanations set forth to explain chemo-
tactic activity.26,27 Indeed, models following the MWC
concept found that the only way to explain the data
was to consider that the receptor clusters are
chemically heterogeneous, which means that a
specific cluster of chemoreceptors will contain re-
ceptors of more than one type that have different
binding affinities for the same chemoattractant.
Specifically, as shown in Fig. 5, if there are n copies
of the first receptor type and m copies of the second
receptor type, when constructing the states-and-
weights diagram, we must sum over all possible
states of activity and ligand occupancy. If we ascribe
binding constants κd

(on) and κd
(off) to the second

receptor type, the activity of the receptor cluster as a
function of chemoattractant concentration is given by

pactive

¼
e−βε onð Þ 1þ c

K onð Þ
d

� �n

1þ c

κ onð Þ
d

� �m

e−βε onð Þ 1þ c

K onð Þ
d

� �n
1þ c

κ onð Þ
d

� �m
þe−βε offð Þ 1þ c

K offð Þ
d

� �n
1þ c

κ offð Þ
d

� �m

ð9Þ
a result used to consider the activity data coming from
FRET experiments for a number of different chemo-
receptor mutants in quantitative detail.28–31
As shown in this section, the MWC model has
been used to great effect in a number of different
situations, producing powerful predictions and in-
sights into cellular signaling. We now describe a
completely different implementation of the MWC
concept in the context of the behavior of genomic
DNA.

MWC and genomic accessibility

The MWC model has been recently and
perhaps unexpectedly applied to transcriptional
regulation.10,11,36,37

Genomic DNA can exist in a compact state (i.e.,
nucleosome bound or in some higher-order chroma-
tin configuration) that is inaccessible to various
molecules, for example, to transcription factors that
activate some gene of interest. However, sufficiently
high concentrations of transcription factors (i.e., the
ligand) can increase the favorability of the chromatin
open state, even though the open conformation of
chromatin incurs a free energy cost. As will be
discussed below, there are many variants on this
basic picture in which combinations of transcription
factors lead to different logic functions such as AND,
OR and so on.11 Our aim here is to illustrate the
overarching conceptual picture through several
specific examples.
As a first foray into DNA accessibility problems

from the MWC perspective, we consider the acces-
sibility of a DNA segment wrapped within a single
nucleosome. To get a first impression of the kinds of
molecular states of interest and how they can be
described using statistical mechanics, Fig. 6 shows
a hypothetical eukaryotic promoter bound with some
disposition relative to a nucleosome. We note from
the outset that, because of the rules of nucleosome
positioning,38–40 the real situation is more subtle
than this and that this example is intended only to
illustrate the “indirect regulation” that could be
exercised by the presence of nucleosome-bound
DNA. As seen in the figure, the DNA segment of
interest harbors both a promoter and a binding site
for a transcription factor. When the promoter is
wrapped within the nucleosome, the gene of interest
is inactive. The four states of this promoter in this
simple model then correspond to inactive and active
configurations of the promoter and the transcription
factor binding site either unoccupied or occupied,
with the transcription factor serving as the ligand in
much the same way as other ligands did in previous
examples. Computing the probability of the active
state follows the developments described above and
further details can be found elsewhere (see chapter
10 of Phillips et al.).2,41

One of the most compelling discoveries to emerge
from the study of eukaryotic gene regulation,
especially in multicellular organisms, is the existence
of binding sites contained on the DNA known as
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enhancers that result in regulatory “action at a
distance”. Interestingly, the MWC concept is also
useful for characterizing these ubiquitous eukaryotic
regulatory architectures. The concept of such
enhancers is that there are binding sites that are
not in genomic proximity to the promoter they
control. Depending upon the binding of transcription
factors to these enhancers, the genes will be
expressed to differing extents. A particularly intrigu-
ing aspect of these enhancers from the point of view
of more traditional views of gene regulation is their
extreme flexibility—in some cases, there seems to
be a generic indifference to the number of binding
sites, their specific position and even their chemical
identity.42

For example, the embryonic development of the
fruit flyD. melanogaster's body plan is determined by
the expression levels of a hierarchy of genes with
single-cell resolution43,44 along the anterior–poste-
rior axis of the embryo. One such gene is even-
skipped, which is expressed in seven stripes along
the anterior–posterior axis of the embryo. Each one
of these stripes is controlled by an individual
enhancer located up to 8 kb upstream or down-
stream of the actual eve gene.42 The enhancer that
controls stripe 2, for example, is located 1.5 kb
upstream from the gene and in its minimal form
spans 480 bp.45 It contains several binding sites for
two activators and two repressors. Specifically, it has
three binding sites for the activator Bicoid despite the
fact that the deletion of one of these sites does not
cause any qualitative changes to the output
pattern.45 Perhaps more revealing in terms of the
flexibility of these regions is the fact that this
enhancer sequence has undergone significant
changes throughout evolution while retaining its
function. For example, in Drosophila pseudoobs-
cura, the same enhancer has lost and gained
binding sites while the remaining binding sites
have changed in their affinities with respect to the
D. melanogaster enhancer. The spacing between
some of these sites has also changed in some cases
by up to 80 bp.46 Nevertheless, when the D.
pseudoobscura enhancer is introduced into D.
melanogaster, not only does it result in a very similar
pattern of expression but also it can even rescue
mutations in the eve gene.46–48

Recent quantitative models that have had some
success in explaining these observations are pred-
icated on the idea that these enhancers affect gene
expression levels by controlling chromatin accessi-
bility. This is in stark contrast to a picture in which
transcriptional cooperativity is attributed to direct
interactions between transcription factors and the
basal transcription apparatus. Figure 7a shows a
schematic example of how the MWC concept can be
applied to model chromatin state. In the “closed” or
inaccessible state, the DNA is wrapped up in some
tight nucleosomal configuration, here indicated by
one of many hypothetical higher-order chromatin
structures (i.e., the putative 30-nm fiber).1 While in
this state, the promoter of interest is hypothesized to
be unavailable for transcription. The concept of the
model is that RNA polymerase and transcription
factors can bind more easily to DNA when it is in its
open or accessible state, indicated schematically in
Fig. 7 by DNA that is freely available in the “open
chromatin” configuration.
Even within the relatively simple scenario depicted

in Fig. 7a, there is already a great deal of conceptual
and quantitative flexibility to account for a host of
different regulatory architectures. For example, one
can imagine situations such as shown in Fig. 7b in
which the transcription factors are more favorably
bound in either the closed or the open conformation,
thus stabilizing one state or the other. Similarly, one
can imagine both positive and negative cooperativity
between the transcription factors themselves
through direct physical contacts, permitting the
construction of various logic functions such as
AND and OR functions (and many others).11 From
the perspective of the MWC model itself, the key
parameters that come into play are the difference in
energy between the closed and open conformations,
Δε = εc − εo, the binding energies (or Kd values) for
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the relevant transcription factors in each of the states
and the effective Hill coefficient that can be tuned by
changing the number of binding sites for the DNA
binding proteins in question. In Fig. 7c, we show an
example of how the probability of being in the active
state depends upon the concentrations of the two
species of transcription factor.

The Bohr effect generalized

A beautiful example of the unifying power of MWC
models is the suggestion of an analog of the Bohr
effect in the context of chromatin. The reader is
reminded that the Bohr effect refers to the oxygen
binding properties of hemoglobin and how the affinity
for oxygen is tuned by changes in the pH, for
example, as shown in Fig. 8a. Originally, the Bohr
effect was an empirical observation. In the language
of MWC models, however, the Bohr effect can be
thought of in terms of how the binding curves are
altered as the difference in energy between the two
conformational states is changed. Mirny recently
described an analogous, Bohr-like effect in gene
regulation using the MWC model of chromatin state
in which (for example) changes in the histone–DNA
affinity can affect changes in the occupancy curve as
shown in Fig. 8b.10
Specifically, we consider the example given in
Fig. 7b for the case in which the two binding sites are
used by the same transcription factor. In this case,
we can use the states and weights highlighted in
Fig. 7b to compute the probability that the DNA will
be in the closed (inactive) state as

pinactive ¼
e−βεc 1þ c

K cð Þ
d

� �2

e−βεc 1þ c

K cð Þ
d

� �2

þ e−βεo 1þ c

K oð Þ
d

� �2 ð10Þ

Note that, for the case considered here, the two
enhancers bind the same transcription factor with the
same affinities, although those affinities are different
in the open and closed chromatin conformations.
From Fig. 2, the average number of bound transcrip-
tions factors is

Nboundh i ¼
2e−βεc c

K cð Þ
d

1þ c

K cð Þ
d

� �
þ 2e−βεo c

K oð Þ
d
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d

� �
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K cð Þ
d
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d
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As seen in Fig. 8b, the modulation of this binding
curve as a function of the energy difference between
open and closed chromatin conformations, εo − εc,
reflects the chromatin Bohr effect.
Interestingly, the mutants considered in the bac-

terial chemotaxis setting correspond effectively to
different states of methylation of the chemotaxis
receptors.26,27 Like in the case of chromatin, our
view is that the theoretical models using the MWC
concept in that context too are yet another example
of the “Bohr effect”, but now in the context of
chemotaxis.28–31 This discussion provides a prime
example of the unexpected biological insights that
come from classifying biological topics on the basis
of their conceptual proximity based on the underlying
physics or mathematics, rather than on the basis of
biological concepts.
An Information-Theoretic Perspective of
the MWC Concept

The MWC model provides a simple conceptual
mechanism whereby ligands can regulate “at a
distance”. For instance, as described in Case
Studies in MWC Thinking, enhancers can affect
the expression of a distant gene.49 So far, we have
focused on the generic features of MWCmodels and
how to calculate molecular activity from pictures of
states. However, a powerful advantage of an
analytically tractable model such as the MWC
model is that it can be used to calculate quantities
that are difficult to measure but that still have great
conceptual value. Calculating these quantities can
shed light on how a regulatory system works and
why it works in the way that it does. In this section,
we shift away from a discussion of the MWC model
itself and ask more general questions about the
capacities of MWC molecules as regulators.
Specifically, we discuss the recent information-

theoretic description of MWC molecules as sensors
of ligand concentration.8,50,51 To see what ideas are
in play, consider the case of bacterial transcription. If
E. coli are grown in media rich in lactose instead of
glucose, they produce an enzyme to digest the
lactose. This production is mediated by transcription
factors that allow information about the environmen-
tal conditions (lactose and glucose concentrations)
to affect protein production (β-galactosidase en-
zyme) by influencing the likelihood of an RNA
polymerase molecule to transcribe the relevant
gene. Evolutionarily, it seems highly beneficial for
an organism to excel at gathering information about
environmental conditions and using that information
to regulate protein production. However, such de-
scriptions are qualitative, whereas we desire a way
to quantify “how well” the output of a sensor (e.g., β-
galactosidase production) tracks noisy sensory input
(e.g., lactose concentration).
One quantification strategy is to make an educated

guess as to how the molecule's behavior affects the
organism's fitness. This approach is fraught with risk,
as what initially appears to be noise often turns out to
be signal in biological systems,52–54 and biological
intuitions for fitness functions are often based on
these guesses as to what is a signal and what is
noise. For example, it is of course interesting that the
sensory systems described by MWC models can be
tuned to mimic the Boolean logic gates that underlie
today's computers,11,55 but there is no guarantee
that MWC molecules have been selected to mimic
Boolean logic gates. There is a more general
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quantitative framework, information theory, that does
not require knowing exactly what computation is
being done by the cell but that still allows us to
quantify how well the sensor output tracks input.56

Many have already written excellent reviews of
information theory with a biological bent57–61; thus,
we will just introduce the definitions that we need for
this section. Given a black box system (e.g., an
MWC molecule) that takes a noisy input X (ligand
concentration) and returns a noisy output Y (whether
or not the receptor is in the active state), then
measuring Y provides information about the state of
X. There is a unique function that will quantify the
information content of a probability distribution
subject to certain plausible assumptions about the
form of this function.56,62,63 From this function, we
can specify the amount of information about X
gained by measuring Y as the “mutual information”
I(X;Y)56,62,63 (see Supplemental Material, Appendix
2 for details). There are several ways to calculate
the mutual information, but the one that we will focus
on here uses the conditional probability of y given x,
p(y|x), and can be written as

I X ;Yð Þ ¼ ∫∫pðy xj Þ p xð Þlog2
pðy xj Þ
p yð Þ dx dy ð12Þ

If Y tracks X well, then I(X;Y) is large; on the other
hand, if Y and X are independent, then I(X;Y) =
0.62,63 What is the maximal amount of information
one can expect between input and output? An
answer to this question can be captured mathemat-
ically by computing the “channel capacity”, which is
the mutual information for an optimal p(x), explicitly

channel capacity ¼ Iopt X ;Yð Þ ¼ max
p xð Þ

I X ;Yð Þ ð13Þ

See Supplemental Material, Appendix 2 for details.
The quantities described above provide principles

for quantifying what is possible in a molecular
signaling system, and interestingly, some biological
systems seem to be operating very close to channel
capacity. A spectacular example of this appears to
be the expression of the Hunchback protein in the
early Drosophila embryo, which is activated by the
Bicoid transcription factor. It has been argued that
the probability distribution of the Bicoid transcription
factor is optimized so as to maximize the mutual
information between this input and the output
Hunchback expression level.50 Case studies such
as these have motivated other investigators to study
the channel capacity of MWC models more
generally,8 a topic we take up below.
We stress here that not all MWC molecules are

near-optimal sensors, nor should we expect them to
be. For instance, hemoglobin picks up oxygen in the
bloodstream and deposits that oxygen in distant
tissues. This task does not necessarily require
maximizing the mutual information between oxygen
concentration and the number of oxygen molecules
bound to hemoglobin. However, many of the MWC
molecules described in Case Studies in MWC
Thinking are likely to be high-performance sensors
of their environment. The nACh receptor at the
neuromuscular junction must turn a chemical signal
in the form of diffusing acetylcholine (ACh) mole-
cules into a corresponding electrical signal that can
contract a muscle fiber. If nACh receptors misrepre-
sent an incoming signal, the consequences could
range from an inability to stimulate the motor system
to an inability to stop moving. Similarly, the cGMP
receptor must turn a chemical signal based on the
presence of light in the environment into an electrical
signal. If our cGMP receptors in our photoreceptors
do not accurately represent the incoming light signal,
then we will not be able to see. These and other such
receptors could encode information about ligand
concentration in terms of the average number of
bound ligands or the probability that the receptor is in
the active state. Hence, it makes sense to study the
sensing properties of MWC molecules, and our
motivation for doing such an analysis is inspired by a
recent general analysis of the sensing properties of
MWC molecules.8

In the remaining portion of this section, we use a
toy model of N independent ligand-gated ion
channels (inspired by the example of nACh re-
ceptors) to illustrate how to quantify the ideas
presented in the previous paragraph. Though we
will use the specific language of ion channels, the
concepts apply much more broadly. Indeed, general
reflections of this kind were analyzed comprehen-
sively and in more generality elsewhere.8 Here, we
present an abridged version of their analysis
specialized to a toy model of a ligand-gated ion
channel such as the nACh receptor; many of the
calculational details have been relegated to Supple-
mental Material, Appendix 3.

Model system: nACh receptors

To illustrate the power of these information-
theoretic principles, we now investigate in detail an
MWCmodel of a ligand-gated ion channel. Again, the
hope is that calculations on this toymodel will provide
some qualitative insight into their functionality.
To see why ligand-gated ion channels could

plausibly be conceptualized as sensors, we now
describe the nACh receptors that lie at neuromus-
cular synaptic junctions, which are a key component
of the communication pathway between the nervous
system and the motor system. When our brain
decides that a particular muscle should contract, for
example, to avoid a hot stove, a motor neuron
releases vesicles of ACh molecules across a
synaptic gap to a muscle fiber. On the other side of
this synaptic gap are many thousands of nACh
receptors, with a surface density of roughly 105
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receptors per square micron. The diffusing ACh
molecules bind to the nACh receptors, stochastically
opening some number Nopen of the total number of
receptors N. Each open channel allows for an influx
of sodium ions and an outflux of potassium ions,
which results in a net depolarization of the muscle
fiber. When membrane potential reaches threshold,
the muscle fiber contracts.64,65

Extensive studies have revealed that nACh re-
ceptors behave as MWC molecules, though the two
binding sites in a nACh receptor are not necessarily
identical, and there are likely more than two states of
the nACh receptor.66,67 However, despite its short-
comings, the two-state MWC model of the nACh
receptor's response to ACh is an excellent example
with which to illustrate the information-theoretic
underpinnings of decision making based upon
input–output functions.
It is clear that, in order to operate effectively, nACh

receptors should respond quickly to commands from
the nervous system. As described above, the
response of nACh receptors should reflect the size
of the stimulus. Ligand-gated ion channels more
generally face a difficulty similar to that of nACh
receptors: they convey information about some
stimulus from the outside to the inside of the cell
body, and they use energy by virtue of maintaining a
difference between the ion concentrations inside and
outside of cells. Inspired by the example of the nACh
receptor, we investigate the ability of ligand-gated
ion channels to turn an input, ligand concentration c,
into an output, the number of open ion channels
Nopen. Conceptually, we are asking how well the
Nopen output tracks the c input. The calculations
shown here are merely illustrative of the kinds of
calculations that could be done to elucidate the
functioning of a particular sensory system. There are
plenty of systems, including this ensemble of nACh
receptors, whose input might be best described by a
magnitude other than c and whose output might be
best described by a magnitude other than Nopen.
In general, this problem is challenging since c and

Nopen are both fluctuating quantities, typical of any
such microscopic variable in biology. Even if each
receptor experienced exactly the same ligand
concentration, the number of open ion channels is
still subject to fluctuations. In particular, for every
ligand concentration, there is a corresponding
probability of being open, popen(c). Recall from
Eq. (7) and Fig. 3 that this probability is given by

popen cð Þ ¼
1þ c

K oð Þ
d

� �2

1þ c

K oð Þ
d

� �2

þ e−βε 1þ c

K cð Þ
d

� �2 ð14Þ

where Kd
(o) is the dissociation constant of the open

ion channel, Kd
(c) is the dissociation constant of the
closed ion channel and ε is the energy difference
between the closed and open ion channels. Even
when ligand molecules are absent, there is a
nonzero probability of being in the active state.
This limit defines the minimum, baseline probability
of being open given by

pmin
open ¼ popen c ¼ 0ð Þ ¼ 1

1þ e−βε ð15Þ

Likewise, as the ligand concentration tends to
infinity, there is a nonzero probability of the receptor
being in the inactive state and the ion channel being
closed. This limit as c → ∞ defines a maximum value
of the probability of being in the open state, namely,

pmax
open ¼ lim

c→∞
popen cð Þ ¼ 1

1þ e−βε K oð Þ
d

K cð Þ
d

� �2 ð16Þ

For example, for the nACh receptor, we have popen
min ≃

8 × 10−4 and popen
max ≃ 1 using characteristic MWC

parameters for this channel.68 Thus, there is a
probability that all N nACh receptors will be closed,
but this probability is very small evenwhen [ACh] = 0.
WithN identical and independent ion channels, the

conditional probability that Nopen of the ion channels
are open given a ligand concentration c is the
binomial distribution

pðNopen cj Þ¼ N
Nopen

� �
popen cð Þ� �Nopen 1−popen cð Þ� �N−Nopen

ð17Þ
This binomial distribution has mean N open cð Þ ¼
Npopen cð Þ and variance σ2

Nopen
¼Npopen cð Þ 1−popen cð Þ� �

.
For each value of c, the distribution p(Nopen|c) is
highly peaked about its mean, as can be seen in
Fig. 9, a fact that we will use later on to evaluate the
channel capacity using a “small-noise approxima-
tion”. However, there are still fluctuations in Nopen
that prevent the output Nopen from determining the
ligand concentration c noiselessly.
As ligand concentration varies, the most likely

value of Nopen varies from N min
open ¼ Npmin

open to
N max

open ¼ Npmax
open. The “dynamic range”8 captures

the range of this likely output,

N max
open−N min

open ¼ N p open
max −pmin

open

� �

¼ N
1

1þ e−βε Kd

Kd

� �2 −
1

1þ e−βε

0
B@

1
CA ð18Þ

The dynamic range already provides a first glimpse
into how well the output Nopen follows the input c;
the larger the dynamic range, the better Nopen will
be able to distinguish between different values of c
despite the intrinsic fluctuations in Nopen. This
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quantity is shown in Fig. 10a as a function of the
difference in energy between the inactive state and
the active state (−ε) and the difference in ligand
binding affinity between the active and inactive
states ( logK oð Þ

d

K cð Þ
d

) for a fixed N = 105. In this plot, we
also show the point corresponding to the experi-
mentally available data for the nACh receptor, just
for comparison.68 Figure 10d shows the dynamic
range of a two-site MWC molecule as a function of
the number of receptors N using characteristic
MWC parameters for the nACh receptor.68

We are now ready to calculate the mutual
information between the concentration of ligand
and the number of open channels. If the joint
probability distribution of c and Nopen is p(c,Nopen),
then following the procedure outlined in Eq. (12),
mutual information is defined as

I c;Nopen
� �¼∫ XN

Nopen¼0

pðNopen cj Þ p cð Þlog2
pðNopen cj Þ
p Nopen
� � dc

ð19Þ
As shown in Supplemental Material, Appendix 2, by
invoking key approximations such as the “small-
noise approximation”, this can be simplified as

I c;Nopen
� �

≃−∫p N open
� �

� log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πeσNopen

2
q

þlog2p N open
� �� �

dN open

ð20Þ
Notice that, in this equation, we have replaced the
probability distribution p(Nopen) with the value of the
probability around the mean of the distribution,
p N open
� �

. This latter distribution is directly deter-
mined by the probability distribution of the ligand
concentration p(c) sinceN open ¼ Npopen cð Þ and thus
the probability distributions of c andN open are related
by p cð Þ ¼ p N open cð Þ� �

dN open

dc

			 			.
Without measuring the probability distribution of

ligand concentration p(c), we are unable to calculate
the mutual information given in Eq. (20). Hence, we
instead calculate the channel capacity by considering
the distribution p(c) or, equivalently, the distribution
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p N open
� �

that maximizes the mutual information.
We hope that the channel capacity can still give
insight into theworkings of the system, as it did for the
Hunchback/Bicoid gradient.50 We note that some
of the systems described by the MWC model are
unable to alter the probability distribution of ligand
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concentrations and are therefore unlikely to operate
at channel capacity. For example, bacteria cannot
usually control the probability distribution of chemoat-
tractant in the environment so that their bacterial
chemotactic receptors operate constantly at channel
capacity. However, the body can alter the probability
distribution of ACh concentration at the neuromus-
cular junction by altering the size distribution and
number distribution of synaptic vesicles. In short, a
calculation of the channel capacity will not always be
meaningful, but we suspect that this calculation can
be made relevant for ligand-gated ion channels and
other MWC molecules. The optimal p N open

� �
can be

found using variational calculus, a step that is
described in Supplemental Material, Appendix 3.
The form of p N open

� �
that maximizes the mutual

information is

p� N open
� � ¼ 1

Z
1

σNopen N open
� � ð21Þ

where Z is a normalization constant,

Z ¼ ∫
N

min

open

N
max

open dN open

σNopen N open
� � ð22Þ

Using Eqs. (21) and (22) to simplify Eq. (20) yields

Iopt c;Nopen
� � ¼ log2

Zffiffiffiffiffiffiffiffiffi
2πe

p ð23Þ

indicating that the channel capacity increases as the
noise of the output decreases. In Supplemental
Material, Appendix 3, we compute Z explicitly, thus
permitting us to write the channel capacity of the N
identical uncoupled ligand-gated ion channels as

Iopt c;Nopen
� � ¼ log2 sin−1

ffiffiffiffiffiffiffiffiffiffi
popenmax

q
−sin−1

ffiffiffiffiffiffiffiffiffi
popenmin

q� �

þlog2

ffiffiffiffiffiffiffi
2N
πe

r
ð24Þ

where popen
max and popen

min are given byEqs. (15) and (16).
A more general formula for the channel capacity of N
receptors when each receptor has n binding sites is
given in Ref. 8, and a more detailed derivation of the
channel capacity is given elsewhere.51,58,69,70

Dynamic range and channel capacity are closely
related to the previously described concept of
cooperativity. A receptor with a high degree of
cooperativity will have a “steeper” activity curve
popen(c) near its transition point. Intuitively, increas-
ing the cooperativity increases the ability of the
system of N independent receptors to differentiate
between different ligand concentrations c near the
transition point. For a given popen

min , increasing
cooperativity will increase popen

max , thereby increasing
dynamic range and channel capacity according to
Eqs. (18) and (24), respectively. The left column of
Fig. 10 below shows how dynamic range, channel
capacity and effective Hill coefficient vary as a
function of MWC parameters, the conformational
energy difference (ε) and the difference in binding
energy ( logK o

Kc
). Recall that the effective Hill coeffi-

cient, defined in States and Weights in the MWC
Setting and Fig. 2, is a measure of the degree of
cooperativity. All three quantities are highly correlat-
ed and are largest when the closed ion channel is far
more energetically favorable than the open ion
channel and when the open ion channel has much
higher affinity for the ligand than the closed ion
channel. The results of Ref. 8 also show that all three
quantities increase when n increases, since increas-
ing the number of sites increases the effective
Hill coefficient.
The right column of Fig. 10 shows that the dynamic

range increases linearly with the total number of ion
channels N but that channel capacity increases
more slowly as the logarithm of N. Increasing the
total number of ion channels always increases the
channel capacity, but increasing the channel capac-
ity by n bits requires increasing the total number of
ion channels (and the average number of ion
channels) by a factor of 4n. However, increasing
the total number of ion channels requires
manufacturing proteins, which requires materials
and energy.2,71 Hence, increasing the channel
capacity might be potentially energetically expen-
sive. Again, we emphasize that these calculations
are merely illustrative, and we are not claiming that
nACh receptors or any other receptors have this
tradeoff between energy and information.

Optimization principle: Maximization of mutual
information

Operating at channel capacity requires that the
probability distribution of ligand concentration takes
on a peculiar form shown in Fig. 9. If the measured
distribution of ligand concentration matched this
predicted probability distribution, then this match
would provide additional support for the claim that
the ensemble of ligand-gated ion channels have
evolved to maximize mutual information between the
input (c) and the output (Nopen) within biophysical
constraints. Such a measurement was made for the
Bicoid/Hunchback system in the early Drosophila
embryo, and the predicted probability distribution of
Hunchback gene expression was strikingly close to
the empirical probability distribution.50 Sometimes,
an organism cannot control the probability distribu-
tion of ligand concentration, but this does not
preclude use of information theory. For instance,
the chemotactic receptors described in Case Studies
in MWC Thinking must use information about
chemoattractant concentration to decide on whether
the cell runs or tumbles. There are different
information-theoretic optimal ways to move in
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different chemoattractant gradients, and the optimal
movements can be compared to the observed
movements of the organism, as was done in Ref. 72.
The idea that biological systems might have

evolved to maximize the mutual information between
their “input” and “output” is certainly not new. This
optimality principle has previously been applied to a
variety of “information bottlenecks” in the brain, in
which some physical barrier prevents information in
one region from being copied directly into another
region, but where the second region needs the
information encoded by the first region. For example,
the light intensities hitting photoreceptors must be
encoded as binary spikes sent by retinal ganglion
neurons to the lateral geniculate nucleus, and the
distribution of spike times chosen should convey
maximal information about the incident light
intensities.57,59 A few investigators have begun to
calculate the mutual information between the input
and output of molecular systems,60,73,74 in particu-
lar, for genetic regulatory circuits and signal trans-
duction pathways.
It is important to note that mutual information

calculations are suggestive and potentially helpful
for understanding organism behavior but never
definitive. Mutual information between the input
and output could be well correlated with another
quantity that the system has evolved to maximize, in
the same way that cooperativity is correlated with
dynamic range and channel capacity in the calcula-
tion above. Additionally, in these calculations, we
might have incorrectly identified the input and output
of the system.
Finally, mutual information calculations can be

incredibly difficult. In particular, it is often difficult to
analyze nonlinear systems subject to time-varying
environmental stimuli and systems with feedback.
Many biological systems, however, respond non-
linearly to time-varying environmental stimuli and are
part of a feedback loop. Analyzing these systems
using information theory will likely require theoretical
advances in communication theory.
Dynamical MWC

Molecules that are described in terms of the MWC
concept are not necessarily optimal information
encoders as described in the previous section.
Nevertheless, there are many processes in the life
of an organism where signaling molecules should
respond quickly and definitively to changes in ligand
concentration. Another feature that might be
expected of such molecules is that they block out
high-frequency molecular noise so that they only
respond to changes that occur over “long” time-
scales. To explore such time-dependent properties,
we need to go beyond the equilibrium statistical
mechanics description exploited thus far.
Though the original formulation of the MWC model
was primarily an equilibrium concept, generalization
to the dynamical situation is relatively straightforward
and has been undertaken by many workers in the
meantime,8,75–81 sometimes under the heading of
the “kinetic allosteric model”.82–84 The chemical
reactions underlying the dynamical MWC model
were outlined in one of the original papers,4 and an
application of transition state theory85–87 to those
chemical reactions yields the kinetic allosteric model.
The dynamical MWC model that we will present in
this review article uses only the law of mass action
and does not come close to using the full power of
transition state theory, which can calculate the values
of rate constants from first principles.85–87

A smaller set of researchers have turned to
the language of control theory88,89 to describe
the kinetics of MWC molecules using transfer
functions.8,80,90,91 In doing so, these researchers
have described the dynamics of an MWC molecule
using frequency instead of time. The two descriptions
are mathematically related; high-frequency signals
oscillate quickly and change on small timescales,
whereas low-frequency signals oscillate slowly and
change on long timescales. Transfer functions and
frequency response functions are often economical
ways of describing the response of a system to a
change in the inputs. These functions are often used
in electrical engineering and signal processing to
design filters that block noise and not signal. More
recent articles have calculated the transfer functions
that describe how MWC molecules respond to
changes in ligand concentration8,80 and showed
that a general MWC molecule does not respond
strongly to quickly changing ligand concentrations.8

In this section, we will describe a general approach
to the dynamics of MWC molecules, once again
illustrated through the special case of ligand-gated
ion channels. Specifically, we will examine the
response of such a channel to changes in the
concentration of the relevant gating ligand.

Transition matrices and master equations

The general MWC molecule can be active or
inactive and can have anywhere from 0 to n ligands
bound to it in each of these states of activity, giving a
total of 2 × 2n states. For even small numbers of
binding sites,models of the transitions between these
2 × 2n states can become unwieldy. However, if all of
the binding sites are identical, then this description

can be greatly simplified. There are
n
k

� �
different

ways for the receptor with n sites to bind k ligands, but
all of these configurations have the same energy and
therefore the sameBoltzmannweight. Hence,we can
describe the state of an n-site MWC molecule in
terms of only two variables: the configurational state
of the receptor and how many ligands are bound to
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the receptor in total. In this simplified description,
there are 2 × (n = 1) different states for an MWC
moleculewith n binding sites. For example, for the toy
model of the nACh receptor considered here, the
possible ligand–receptor configurations are {O2,O1,
O0,C0,C1,C2} where Oi denotes the open nACh ion
channel with i bound ACh molecules and Ci denotes
the closed nACh ion channel with i bound ACh
molecules, as shown in Fig. 11. The state of the
system x(t) can be described as a list of the
concentrations of each of these configurations,

x tð Þ ¼

O2½ �
O1½ �
O0½ �
C0½ �
C1½ �
C2½ �

0
BBBBBB@

1
CCCCCCA

ð25Þ

although the ordering of the states in x is completely
arbitrary. A dynamical MWC model will describe how
x evolves with time. If the system is Markovian
(“memory-less”), then x obeys a first-order ordinary
differential equation,

dx
dt

¼ Mx ð26Þ

where M is a so-called “transition matrix” of size
2(n + 1) × 2(n + 1). For those unfamiliar with matri-
ces and vectors, row i of Eq. (26) is

dxi
dt

¼
X2 nþ1ð Þ

j¼1

Mijxj ð27Þ

and this formulation is mathematically equivalent to
that given by Eq. (26). Deriving a dynamical MWC
model is therefore equivalent to specifying the
elements of the transition matrix, Mij.
The statistical mechanics of chemical reactions

constrains the form of the matrix elements Mij. To
see this, consider the situation shown in Fig. 11: how
might we change the concentration of open ion
channels with two ligands bound, [O2]? Based on the
arrows in the diagram, there are two elementary
reactions that can change this concentration. First, a
ligand could bind to the open site of an open ion
channel with one ligand bound, O1 + L → O2. Sec-
ond, an open ion channel with two bound ligands
could lose one ligand to the solution, O2 → O1 + L.
The law of mass action implies that

d O2½ �
dt

¼ kO1→O2 L½ � O1½ �−2kO2→O1 O2½ � ð28Þ

The kinetic rateskO2→O1 andkO1→O2 are linked together
by the requirement that the ratio of kinetic rates yields
the equilibrium constant, kO2→O1

kO1→O2
¼ K cð Þ

d . The factor of 2 in
the reaction rate for O1 + L → O2 arises because of a
degeneracy in state space: there are two “types” ofO1
molecules, one in which the ligand is bound at the left
site and one in which the ligand is bound at the right
site. An alternative and equivalent viewpoint is that
there are two ligands on O2 that can unbind from the
receptor, but there is only one site on O1 to which a
ligand can bind.8 The kinetic rates kO1→O2 and kO2→O1

reflect the height of activationenergy barriers between
the states, and the concentration dependence of the
reaction rates encodes the frequency with which the
reactants will meet. Those readers interested in
calculating these rates more exactly using transition
state theory should consult other references, for
example, Refs. 85,86. Note that Eq. (27) when i = 1 is

d O2½ �
dt

¼ M11 O2½ � þM12 O1½ � þM13 O0½ �
þM14 C0½ � þM15 C1½ � þM16 C2½ � ð29Þ

Comparison of Eqs. (28) and (29) indicates that

M11 ¼ −2kO2→O1 ; M12 ¼ kO1→O2c; M13 ¼ M14

¼ M15 ¼ M16 ¼ 0 ð30Þ
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Where c = [L], the ligand concentration. The rates
kO1→O2 and kO2→O1 are denoted as the forward and
backward rates fO and bO, respectively. Similar logic
can be used to determine the rest of the transition
matrix M, which we list in full here as

M ¼

−2bO fOc 0 0 0 0
2bO − bOþ fOcð Þ 2fOc 0 0 0
0 bO − fLþ2fOcð Þ bL 0 0
0 0 fL − bLþ2fCcð Þ bC 0
0 0 0 2fCc − bCþ fCcð Þ 2bC
0 0 0 0 fCc −2bC

0
BBBBBB@

1
CCCCCCA

ð31Þ
The rates fO, bO, fC, bC, fL and bL correspond to the
forward and backward rates for binding a ligand to
the receptor in its open state, the forward and
backward rates for binding a ligand to the receptor
in its closed state and the forward and backward
rates for switching from the closed state to the open
state, respectively, as shown in Fig. 11. See
Supplemental Material, Appendix 4. The ratio of
forward and backward kinetic rates is the equilibrium
constant, yielding

e−βε ¼ fL
bL

; K oð Þ
d ¼ bO

fO
; K cð Þ

d ¼ bC
fC

ð32Þ

The transition matrix M in Eq. (31) includes only a
subset of the elementary reactions that could affect
concentrations of the various ligand–receptor con-
figurations. For example, another elementary reac-
tion that is often included in dynamical MWC
models is O2 → C2, which describes the phenome-
non of the ion channel opening and closing while
ligands are bound. It is also possible to allow for
rate constants for each binding site to be different or
to allow for rate constants that change as a function
of the total number of ligands. However, the
transition matrix in Eq. (31) has sufficient complexity
to give the correct qualitative behavior of the
transfer function.8 Our aim is to illustrate the
general principles underlying dynamical MWC
models, not to find the exact kinetic rates or transfer
function for a particular receptor.
Equations (26) and (31) give us a simple frame-

work with which to analyze the dynamics of an MWC
molecule. In fact, if the concentration is a function of
time c(t) and the rate parameters are constant, then
there is an exact analytic solution for the state vector
x(t),89 namely,

x tð Þ ¼ e∫
t
0M c t ′ð Þð Þdt ′x 0ð Þ ð33Þ

If M is a function of x(t) because the rate parameters
are being continuously altered by some feedback
mechanism, then solving Eq. (26) becomes a much
more challenging proposition unless there is a
separation of timescales. For instance, if the
equilibration time between MWC states is much
smaller than the timescale on which rate constants
are altered, then x(t) ≃ xeq. This assumption can be
a useful approximation for simulating systems with
feedback, for example, the precise adaptation of
bacterial chemotactic receptors.24
Responses to changes in ligand concentration:
The frequency response of an MWC molecule

One of the most interesting properties of a ligand-
gated ion channel such as the nACh receptor is that
it operates outside of equilibrium. Its task is to
transition to the active state (i.e., open ion channel)
when vesicles of ACh are released and travel across
the synaptic gap. This means that, at the time of an
incoming action potential, the nACh receptor must
respond to what is essentially a jump in ACh
concentration. Similar arguments can be made with
sudden changes in chemoattractant concentration in
the setting of bacterial chemotaxis or changes in the
acetylation of a histone in the context of chromatin
serving as two specific examples.
To see the significance of the temporal response

of an MWC molecule, consider the following two
hypothetical ligand-gated ion channels that can be
described by the MWC model. One receptor re-
sponds very quickly to changes in ligand concentra-
tion, tracking the changes in ligand concentration
with high fidelity. The second receptor takes a longer
time to respond to changes in ligand concentration. If
stray ligand molecules (or some other competing
ligand such as nicotine) occasionally find their way to
these receptors, then the signal that the two re-
ceptors send to the motor neuron soma will be quite
different. The first, quick receptor will track the
quickly changing concentrations of ligand, causing
a correspondingly rapid change in membrane
voltage. The second, slower receptor will not
necessarily be able to track the quickly changing
ligand concentrations, resulting in slower but more
deliberate responses of the membrane voltage.
To quantify this, we could first determine how an

MWC molecule with two binding sites responds
when perturbed from its rest state, and we can solve
this problem exactly using Eq. (33). To find the
probability of the channel being open from the state
vector x, we need to compute

popen tð Þ ¼ O2½ � þ O1½ � þ O0½ �
O2½ � þ O1½ � þ O0½ � þ C0½ � þ C1½ � þ C2½ �

¼ 1
R½ � PR x ð34Þ

where the projection vector is defined as PR ¼
1 1 1 0 0 0ð Þ and the total concentration of

receptor molecules [R] = [O2] + [O1] + [O0] +
[C0] + [C1] + [C2] is constant. Combining Eq. (34)
above with Eq. (33) that describes the evolution of
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the state vector, we can now write the time evolution
of the open probability as

popen tð Þ ¼ 1
R½ �PR e∫

t
0M c t ′ð Þð Þdt ′

� �
x t ¼ 0ð Þ ð35Þ

Figure 12a shows plots of popen(t) for a step function
increase in ligand concentration, which could be a
simple approximation for the change in ACh con-
centration during the transmission of an action
potential, for example. The step function increase
in ligand concentration leads to a slower, almost
rounded step function increase in the probability of
the channel opening; this curve is a linear combina-
tion of exponentials whose decay constants are the
eigenvalues of the transition matrix.89

The rounded responseof the ion channel to changes
in the concentration suggests that the receptor has
difficulty responding to quickly changing concentra-
tions. In other words, high-frequency responses are
damped relative to lower-frequency oscillations, and
thus sharp changes in ligand concentration become
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“rounded”. A much more economical way of quantify-
ing this idea is to calculate the frequency response
function of the ion channel, which is defined as

G ωð Þ ¼ F popen
� �
F cð Þ ð36Þ

where F(popen) denotes the (invertible) Fourier trans-
form of popen(t), namely,

F popen
� � ¼ 1ffiffiffiffiffiffi

2π
p ∫∞−∞ popen tð Þe−iωt dt ð37Þ

and F(c) is the Fourier transform of the ligand
concentration. One of the typical assumptions of
Eq. (36) is that an oscillatory ligand concentration
with frequency ω will lead to an oscillatory popen at
frequency ω.
The oscillatory response of the receptor is there-

fore characterized by its amplitude, that is, how
strongly it feels the effects of that oscillatory ligand
concentration, and its phase, that is, the phase delay
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between when ligand concentration and popen reach
their respective maximum in time. The amplitude of
the frequency response function |G(ω)| indicates
which frequencies the system blocks and which
frequencies it passes. In engineering applications,
the shape of |G(ω)| is often designed to attenuate
unwanted noise while passing the signal through the
system largely unaltered, thereby increasing the
signal-to-noise ratio. This type of filtering can
substantially affect the fitness of an organism. For
instance, the ability of E. coli to sense chemoattrac-
tants depends strongly on the frequency filter
properties of its bacterial chemotactic receptors.92

Many biological systems act as low-pass frequency
filters,8,80,90–92 which means that |G(ω)| is relatively
large for smallω and that |G(ω)| trails off rapidly forω
above a certain “cutoff frequency”ωcutoff. This finding
holds for MWCmolecules, and the cutoff frequencies
of MWC-like receptors are given by the time
constants of their internal dynamics,8 as we will
illustrate below for a toy model of a ligand-gated ion
channel such as the nACh receptor.
To find G(ω) for a toy model of a ligand-gated ion

channel, we choose a particular initial ligand
concentration and consider only small fluctuations
since a ligand-gated ion channel responds to
changes in ligand concentration in a nonlinear way.
We present only a sketch of the derivation here, but
we showmore mathematical details in Supplemental
Material, Appendix 5. If the changes in ligand
concentration are sufficiently small, then it is
appropriate to deal with this system as a perturbative
one and to expand the equations above about a
particular ligand concentration c0, using

c tð Þ ¼ c0 þ Δc tð Þ ð38Þ
If Δc(t) b b c0, then we can similarly write

x tð Þ ¼ x c0ð Þ þ Δx tð Þ ¼ x0 þ Δx tð Þ ð39Þ
and

popen tð Þ ¼ popen c0ð Þ þ Δpopen tð Þ ð40Þ
where |Δx(t)| b b |x0| and Δpopen(t) b b popen(c0).
The entries in the transition matrix M in Eq. (31)
are all linear functions of the ligand concentration c,
which allows us to rewrite the transition matrix as a
linear function of Δc(t),

M ¼ M0 þM1 Δc tð Þ ð41Þ
where

M0¼

−2bO fOc0 0 0 0 0
2bO − bOþfOc0ð Þ 2fOc0 0 0 0
0 bO − fLþ2fOc0ð Þ bL 0 0
0 0 fL − bLþ2fCc0ð Þ bC 0
0 0 0 2fCc0 − bCþfCc0ð Þ 2bC
0 0 0 0 fCc0 −2bC

0
BBBBBB@

1
CCCCCCA

ð42Þ

(42)
and

M1 ¼

0 fO 0 0 0 0
0 −fO 2fO 0 0 0
0 0 −2fO 0 0 0
0 0 0 −2fC 0 0
0 0 0 2fC −fC 0
0 0 0 0 fC 0

0
BBBBBB@

1
CCCCCCA

ð43Þ

This decomposition is approximately true for more
complicated transition matrices whose entries are
nonlinear functions of c, as can be shown using a
Taylor expansion. Substituting Eqs. (41), (39) and
(40) into our first-order differential equation for x in
Eq. (26) yields a linear first-order differential equation

dΔx
dt

¼ M0Δx þM1x0Δc ð44Þ

Recall that the quantity Δpopen can be related to the
change in state vector using Eq. (34),

Δpopen ¼ 1
R½ � PR Δx ð45Þ

Equation (44) is easily solved in the Fourier domain
because time derivatives d

dt
, once Fourier trans-

formed, turn into multiplication by iω, yielding

iωF Δxð Þ ¼ M0F Δxð Þ þM1x0F Δcð Þ ð46Þ

Solving forG ωð Þ ¼ F Δxð Þ
F Δcð Þ by rearranging terms in this

equation above gives

F Δxð Þ ¼ iω−M0ð Þ−1M1x0F Δcð Þ ð47Þ
From this, we can find the Fourier transform of
Δpopen as

F Δpopen
� � ¼ 1

R½ � PRF Δxð Þ

¼ 1
R½ � PR iω−M0ð Þ−1M1x0F Δcð Þ

ð48Þ

and from this, the frequency response function of
this ligand-gated ion channel,

G ωð Þ ¼ F Δpopen
� �
F Δcð Þ ¼ 1

R½ � PR iω−M0ð Þ−1M1x0 ð49Þ

By diagonalizing the matrix iω − M0, we can rewrite
this frequency response function as linear combi-
nations of frequency response functions Gk(ω),

G ωð Þ ¼ ∑
k
ak c0ð ÞGk ωð Þ ð50Þ

where

Gk ωð Þ ¼ 1
iωþ λk

¼ 1
iωþωcutoff;k

ð51Þ

(43)
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and ak(c0) are linear weighting coefficients that are
frequency independent and ωcutoff,k are the differ-
ent internal time constants of the MWC molecule.
These cutoff frequencies are complicated functions
of the various kinetic rates that do not have any
obvious scaling relationship with the MWC param-
eters since equilibrium constants say nothing about
how quickly the corresponding reactions occur.
These filters in Eq. (51) are low-pass first-order
frequency filters since

Gk ωð Þj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þω2

cutoff;k

q ð52Þ

will be roughly constant at low frequencies, ∼ 1
ωcutoff;k

when ω b b ωcutoff,k, and will drop sharply at higher

frequencies, ∼1
ω

when ω N Nωcutoff,k. Essentially,

high-frequency noise in ligand concentration will be
“filtered out”. A ligand-gated ion channel cannot
track changes in ligand concentration that happen
more quickly than the fastest time constant of its
internal dynamics. The frequency response of this
ligand-gated ion channel is shown in Fig. 12 as a
function of both frequency and mean ligand
concentration c0. The response is generally de-
creased when the ligand-gated ion channel is
saturated, which confirms a reasonable intuition:
that a ligand-gated ion channel with both binding
sites filled with ligand will have a hard time
responding to any changes in ligand concentration.
Here we note that a similar analysis applies to all

systems whose dynamics can be described by an
equation such as Eq. (26), that is, any Markovian
system.89 If perturbations are larger and depend on
time in a more complicated fashion, the response will
not necessarily take the form of a first-order low-pass
filter. A Markovian system with feedback, for
instance, can act as a higher-order low-pass
frequency filter.90
Discussion

In his wonderful book The Eighth Day of Creation,
Horace Freeland Judson describes the work culmi-
nating in the MWC model as follows: “Two decades
of work had coalesced; as the theory of the repressor
had done, yet in a manner more fundamental and
embracing, allostery brought diverse and apparently
contradictory modes of regulation under an over-
arching singular vision”. In our article, we have
examined the way in which this overarching singular
vision can be cast in the language of statistical
mechanics and used to describe a stunningly broad
variety of different biological circumstances. Though
we accept the proposition that science moves
forward by forceful and detailed debates about very
specific molecular mechanisms, we also think that it
is sometimes useful to step back and take a broader
view of the features that the many different molecular
mechanisms have in common.
The papers from the early 1960s that introduced

this important class of two-state models described
both a concept and a specific class of models.3,4 One
of the points of our article has been to argue that, in
some cases, an emphasis on specific molecular
details can lead to molecular obfuscation rather than
molecular enlightenment. For example, in consider-
ing some particular molecule such as hemoglobin,
the nACh receptor or some transcription factor, deep
and far-reaching debates focus on very specific
molecular mechanisms. An example of some of the
different subsets of states that can be included when
constructing a statistical mechanical or kinetic model
of a given molecule is shown in Fig. 13.93,94 One can
easily go even farther to include other features such
as the distinction between different subunits as
demonstrated clearly in the case of hemoglobin, to
name but one example.16 When these mechanisms
are recast in mathematical form, they lead in turn to
an allied passionate discourse on the ability of this or
that molecular model to “fit” particular data sets. From
our perspective, the more important service of such
models is to provide a unifying framework that
casts completely different systems such as hemo-
globin and nucleosomes in the same light and that
make polarizing predictions about new classes of
experiments.
One of the most influential tools arising from

studies of biological similarity are phylogenetic
trees, which succinctly capture the evolutionary
history of the immense biological diversity seen in
both the hidden world of microbes and macroscopic
organisms. Historically, though much was learned
about these questions by studying morphology and
form, a powerful modern alternative is based on
comparing the genome sequences of different
organisms. The power of models such as the MWC
model is that they serve as the basis for a different
kind of phylogeny, namely, a phylogeny of concepts
in which apparently completely distinct biological
entities such as hemoglobin and chromatin end up
being described by precisely the same physics and
mathematics. This conceptual phylogeny then tells
us stories about the function of one system in terms
of the other in much the same way that sequence
gazing allows us to understand biological function in
one organism by studying another. In our view, the
MWC concept should be seen as one of the key
branches on the “phylogenetic tree” of fundamental
concepts that tie together diverse and broad classes
of molecules describing everything from enzyme
action to molecular sensors (e.g., bacterial chemo-
tactic receptors) to the physical state of genomic
DNA. We have every reason to expect that the next
50 years will see many more examples of the MWC
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Fig. 13. Molecular cartoons showing the variety of different allowed states and subsets of states considered in different
models.93,94 The states shaded in light blue correspond to the traditional MWC model. The states shaded in light pink
correspond to a sequential model of the KNF form.15 The green box surrounds all of the states and generalizes the MWC
scenario to include other intermediates. The version shown here is a slight variant on that presented in the excellent review
by Hilser et al.94

† In the more general case, this dissociation constant is
the equilibrium constant for a reaction in which the ligand
binds to a particular site on the receptor. As all sites of the
receptor in the MWC model described here are identical, it
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concept serving as the basis for fundamental
biological insights.
Supplementary data to this article can be found

online at http://dx.doi.org/10.1016/j.jmb.2013.03.013

does not matter which one we consider.

‡The dissociation constants and equilibrium constants
are related via the equations K Að Þ

d ¼ Active; unbound½ � Ligand½ �
Active; bound½ � ¼

c0e
β ε Að Þ

b −μ0ð Þ, K Ið Þ
d ¼ Inactive; unbound½ � Ligand½ �

Inactive; bound½ � ¼ c0e
β ε Ið Þ

b −μ0ð Þ and
L ¼ Active; no ligand½ �

Inactive;no ligand½ � ¼ e−β εA−εIð Þ.

§ The original MWC parameters measure ligand con-
centration α in units of the active state dissociation
constant Kd

(A), that is, α ¼ c
K Að Þ
d

, and denote the ratio of

dissociation constants as c ¼ K Að Þ
d

K Ið Þ
d

.
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