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Gene regulation is central to cellular function. Yet, despite decades of work, we
lack quantitative models that can predict how transcriptional control emerges from
molecular interactions at the gene locus. Thermodynamic models of transcription,
which assume that gene circuits operate at equilibrium, have previously been employed
with considerable success in the context of bacterial systems. However, the presence
of ATP-dependent processes within the eukaryotic transcriptional cycle suggests that
equilibrium models may be insufficient to capture how eukaryotic gene circuits sense
and respond to input transcription factor concentrations. Here, we employ simple
kinetic models of transcription to investigate how energy dissipation within the
transcriptional cycle impacts the rate at which genes transmit information and drive
cellular decisions. We find that biologically plausible levels of energy input can lead
to significant gains in how rapidly gene loci transmit information but discover that
the regulatory mechanisms underlying these gains change depending on the level of
interference from noncognate activator binding. When interference is low, information
is maximized by harnessing energy to push the sensitivity of the transcriptional
response to input transcription factors beyond its equilibrium limits. Conversely,
when interference is high, conditions favor genes that harness energy to increase
transcriptional specificity by proofreading activator identity. Our analysis further
reveals that equilibrium gene regulatory mechanisms break down as transcriptional
interference increases, suggesting that energy dissipation may be indispensable in
systems where noncognate factor interference is sufficiently large.

gene regulation | decision theory | nonequilibrium | transcriptional dynamics | cell signaling

Throughout biology, systems must make accurate decisions under time constraints
using noisy molecular machinery. Eukaryotic gene regulation exemplifies this challenge:
genes must read out input concentrations of transcription factor proteins and respond
by producing appropriate levels of gene product (mRNA and eventually protein) to
drive downstream cellular decisions. Interestingly, the gene activity underlying cellular
decision-making is often subject to large amounts of noise. Indeed, experiments across a
wide range of organisms have revealed that eukaryotic transcription is highly stochastic,
occurring in episodic bursts (1, 2)—periods of activity interspersed with periods of
transcriptional silence—that unfold over timescales ranging from minutes to hours (3).
Because of this stochasticity, the transcription rate is a noisy reflection of transcription
factor concentration. Over time, the accumulation of gene products tends to average
out this noise, but biological processes must operate under time constraints: Cells in
developing fruit fly embryos have only minutes to determine their developmental fates
(4, 5), antigen recognition in T-cells unfolds over a single day (6), and cells in adult
tissues are constrained by mRNA half-lives that range from minutes to days (7).

A key question, therefore, is how the molecular architecture of gene loci—the number
and identity of biochemical steps in the transcriptional cycle and the reaction rates
connecting these steps—dictates the amount of time needed for bursty gene expression
to drive accurate cellular decisions. In particular, while it is widely accepted that processes
within the eukaryotic transcriptional cycle consume biochemical energy (8, 9), we do
not yet know what nonequilibrium should “look like” in the context of transcriptional
systems. Indeed, it remains challenging not only to predict unambiguous signatures of
energy expenditure that can be detected experimentally (10–12) but also to establish how
energy consumption can be harnessed to improve gene regulatory performance in the
first place (13).

Here, we use concepts from information theory and statistical physics as a lens to
investigate how energy dissipation impacts the timescale on which gene circuits can drive
cellular decisions. We consider a simple binary choice scenario wherein a cell must decide,
as rapidly as possible, whether it is subjected to a high (c1) or low (c0) concentration of
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a transcriptional activator based on the transcriptional output of a
gene locus. The basis for this decision is the gene’s input–output
function (Fig. 1 A and B), which emerges from microscopic

A

C

D

E

B

Fig. 1. Three regulatory features shaping transcriptional information trans-
mission. (A) Gene regulatory input–output function illustrating the basic
biological problem considered in this work. Here, a cell must distinguish
between two activator concentrations, c0 and c1, based on the transcriptional
output of a gene locus (purple curve). (B) We examine how three regulatory
features of the transcriptional input–output function—sharpness, precision,
and specificity—dictate the rate at which the transcriptional output drives
biological decisions. (C) Four-state MWC-like model of transcription used
as the foundation of our investigations accounting for activator binding and
where mRNA production occurs when the gene locus switches to its active
(ON) conformation. A hypothetical energy input is depicted along the rate
from state 3 to state 0. In practice, our framework permits nonequilibrium
driving to occur along any of the eight transition rates in the model. (D)
Simulated burst dynamics for one realization of the model shown in (C).
The burst cycle time is defined as the average time required to complete one
ON→ OFF→ ON cycle and sets the timescale over which biological decisions
unfold. (E) Illustrative simulation results for accumulated mRNA levels driven
by c1 and c0. Solid lines show trajectories for a single locus, and shaded
regions indicate the SD of levels taken across 100 simulated trajectories. The
vertical dashed line indicates the “decision time,” when the expected mRNA
levels driven by c1 and c0 are sufficiently different to permit an accurate
decision about the input activator concentration.

interactions between input activator molecules and their target
gene loci (Fig. 1C ) that induce differences in the output dynamics
of transcriptional bursting (Fig. 1D) for high and low activator
concentrations. In turn, these differences in burst dynamics drive
different rates of mRNA accumulation (Fig. 1E). Because each
ON/OFF fluctuation is stochastic, the resulting gene expression
levels are noisy, and the cell must wait for some time T before
it is possible to accurately distinguish between c1 and c0. Our
central question in this work is whether energy dissipation
within the molecular processes driving transcription allows gene
loci to decrease the decision time, T , and, if so, how this
performance gain manifests in terms of measurable features of
the transcriptional input–output function.

There are multiple ways in which energy dissipation could alter
the input–output behavior of a gene locus to improve cellular
decision-making. As illustrated in Fig. 1 A and B, nonequi-
librium processes could increase sensitivity to differences in
input transcription factor concentration (“sharpness”) or suppress
transcriptional noise (“precision”). Since our model assumes that,
in addition to the concentration of the cognate activator, C , the
gene locus is subject to some level of noncognate factors, W ,
energy dissipation could also buffer against interference from
off-target activation (“specificity”).

Recent works have begun to uncover a complex space of
tradeoffs among these three aspects of transcriptional perfor-
mance both at and away from thermodynamic equilibrium. A
recent study found that systems operating at thermodynamic
equilibrium suffer from strict tradeoffs between transcriptional
specificity and transcriptional precision (14) but that this tradeoff
can be overcome by gene circuits that spend energy to enhance
specificity through a scheme reminiscent of classical kinetic
proofreading (15, 16). Similarly, a separate study demonstrated
that energy dissipation can enhance transcriptional sharpness
(17). Interestingly, while energy can increase sharpness and
specificity separately, another study found that nonequilibrium
levels of specificity come at the cost of suboptimal sharpness
(18). The authors also found that energy dissipation tends to
decrease transcriptional precision, although this conclusion likely
hinges on the study’s modeling assumptions (18). Despite this
progress, it remains unclear how these nonequilibrium gains
and tradeoffs ultimately impact how effectively gene circuits can
harness differences in transcription factor concentrations to drive
cellular decisions.

In this work, we identify a key quantity, the rate of information
transmission (IR) from input transcription factor concentrations
to output transcription rates as the quantitative link between
energy-dependent changes in the transcriptional input–output
function (Fig. 1B) and the speed at which gene loci drive accurate
biological decisions (Fig. 1E) (5, 20). We use this rate as a
quantitative measure to examine the interplay between energy
dissipation and cellular decision-making. We consider model
gene circuits with varying numbers of activator binding sites. We
also examine models with different numbers of molecular steps
in the activation pathway since transcription is also thought to
require multiple molecular steps beyond activator binding itself,
such as the localization of key general transcription factors to the
gene locus (21).

We demonstrate that energy dissipation increases the rate at
which genes can drive cellular decisions for all models considered.
Additionally, we find that while energy input can drive increases
in all three regulatory features considered (sharpness, precision,
and specificity; Fig. 1B), genes cannot realize these gains
simultaneously. In particular, we show that the upper limit

2 of 12 https://doi.org/10.1073/pnas.2211203120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 D
IG

IT
A

L
 L

IB
R

A
R

Y
 o

n 
M

ar
ch

 3
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
6.

15
2.

14
3.

21
5.



of information transmission is defined by a shifting tradeoff
between sharpness and specificity that is defined by the relative
concentration of wrong-to-right activator species.

In closing, we identify hallmarks of nonequilibrium gene
regulation that may be amenable to experimental detection. We
also demonstrate the importance of using theoretical models
that account for noncognate factor binding when interpreting
experimental measurements of gene expression. Altogether, this
work provides a rigorous foundation for interrogating the role of
energy dissipation in eukaryotic gene circuit regulation.

1. Results

A. A Simple Model for Probing the Interplay Between Energy
and Information in Transcription. We sought to establish gene
circuit models that capture two essential characteristics of eukary-
otic transcription. First, gene regulation hinges upon interactions
between specific and general transcription factors. Although
salient regulatory information tends to reside exclusively in a
few specific transcription factors targeted to binding sites within
enhancers (22), these proteins are not sufficient to give rise to
transcription. Instead, transcription and transcriptional control
depend on interactions between specific regulatory factors and
other key molecular players at the gene locus, such as mediators
(18, 23), RNA polymerase (24), nucleosomes (14, 25), and
various subunits of the preinitiation complex (21). While these
factors do not themselves carry information about the input
activator concentration, they constitute key molecular steps
within the transcriptional cycle. This multiplicity of molecular
players implies that gene loci may exist in multiple distinct
molecular states corresponding to different binding configura-
tions of specific and general molecules (e.g., ref. 26). Moreover,
some of these processes—e.g., nucleosome displacement (27),
preinitiation complex assembly (28), and RNA polymerase
initiation (29)—entail the dissipation of biochemical energy,
opening the door to nonequilibrium behaviors.

Second, it has recently become apparent that eukaryotic
transcription is characterized by stochastic, episodic bursts of
activity interspersed with periods of transcriptional silence (1–
3). Since the concentration of specific transcription factors
can regulate burst dynamics (30–32), a simple model would
suggest that transcriptional bursts originate from the binding
and unbinding of specific transcription factors. Although this
may be the case in some yeast genes (33), recent in vivo
measurements in other eukaryotic systems have revealed that
activators and repressors typically bind DNA for seconds, rather
than minutes or hours (2, 30). This temporal disconnect between
bursting and transcription factor binding suggests a model in
which transcriptional burst cycles—corresponding to OFF →
ON→ OFF fluctuations in the locus conformation (Fig. 1D)—
are not determined by transcription factor binding alone, but
entail additional molecular reactions that are decoupled from the
timescale of activator binding.

Together, these observations support a Monod–Wyman–
Changeux (MWC)-like framework (14, 18, 19, 25) for modeling
transcription wherein specific transcription factors act as effector
molecules, conditioning the frequency with which the gene
locus fluctuates between active and inactive transcriptional
conformations. The simplest model that meets this description is
one where a transcriptional activator binds to a single binding site
at the gene locus and where a second molecular reaction dictates
fluctuations between two conformations: an inactive (OFF) state
where no mRNA is produced and a transcriptionally active (ON)
state where mRNA is produced at rate r0.

If we neglect the binding of noncognate transcription factors,
this leads to the model shown in Fig. 1C . This model contains
four basal reaction rates: the transcription factor binding and
unbinding rates (kb and ku) and the locus activation and
deactivation rates (ka and ki). We leave the molecular identity
of this locus activation step unspecified, but in principle, it may
reflect a conformational change in any of the elements of the
general transcriptional machinery mentioned above. In addition
to these basal rates, the η terms in Fig. 1C capture interactions
between the molecular components that make up the gene circuit.
Here, the first subscript indicates which molecular reaction the η
term modifies (binding or unbinding; activation or inactivation of
the general transcriptional machinery), and the second subscript
indicates the molecule performing the modification (bound
activator “b” or activated transcriptional machinery “a”). For
instance, ηab encodes the degree to which the rate of locus
activation is modified by having a transcription factor bound
at the locus (ηab > 1 corresponds to an activating transcription
factor). Lastly, the average rate of mRNA production in this
model is simply equal to r = r0(π2 + π3), where πi is the
steady-state probability of finding the system in state i.

B. Calculating Energy Dissipation Rates and Decision Times. At
equilibrium, all state transitions in our model must obey the
law of microscopic reversibility. Energy dissipation along one
or more of the microscopic transitions shown in Fig. 1C lifts
this strict equilibrium constraint and opens the door to novel
forms of nonequilibrium gene regulatory logic. For the model
shown in Fig. 1C , the energy dissipated per unit time (8) can be
expressed as

8 = J ln
ηabηua

ηibηba
, [1]

where the η terms are defined in Fig. 1C and the net probability
flux, J (defined in SI Appendix, Eq. S5), encodes the degree to
which microscopic transitions in the system are biased in the
clockwise (J > 0) or counterclockwise (J < 0) direction (34). SI
Appendix, Appendix A.2 for further details.8 is a strictly positive
quantity with units of kBT per unit time that indicates how “near”
or “far” a system is from thermodynamic equilibrium (34, 35).
For ease of comparison across different realizations of our model
gene circuit, we express8 in units of kBT per burst cycle (“energy
per burst”). We note that all time-dependent quantities reported
throughout this work will, likewise, be given in burst cycle units
(SI Appendix, sections A.5 and A.6 for details).

Our central aim is to understand how energy dissipation
impacts the rate at which gene loci transmit information and
drive cellular decisions. For simplicity, we assume that c0 and
c1 are constant over time. We also stipulate that the difference
between these concentrations (δc) is relatively small, such that
δc = c1 − c0 = 0.1c∗, where c∗ is the midpoint concentration
c∗ = (c1 + c0)/2. This value of δc is equivalent, for example,
to concentration differences for the activator Bicoid between
adjacent nuclei in early fruit fly development (36). Finally,
throughout this work, we measure all concentrations in units
of c∗. Fig. 1E shows the predicted integrated transcriptional
output of a gene locus when it is exposed to high or low activator
concentrations. Intuitively, it should be easier to distinguish
between these two scenarios when i) the difference between
average transcript production rates (slope of the lines in Fig. 1E)
is large or ii) the noise (shaded regions) in the accumulated output
is small.

IR codifies this intuition, providing a quantitative measure of a
gene’s ability to read out and respond to different input activator

PNAS 2023 Vol. 120 No. 10 e2211203120 https://doi.org/10.1073/pnas.2211203120 3 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 D
IG

IT
A

L
 L

IB
R

A
R

Y
 o

n 
M

ar
ch

 3
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
6.

15
2.

14
3.

21
5.

https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials


concentrations. Formally, IR is defined as the rate of change in the
Kullback–Leibler divergence (37) between our two hypotheses
(C = c0 andC = c1) given the expected transcriptional output of
our model gene circuit. If we take the noise in the transcriptional
output to be approximately Gaussian (SI Appendix, Appendix B),
IR can be expressed as

IR =
1
2

(δc
c∗
)2

︸ ︷︷ ︸
input

× s2p2︸︷︷︸
output

, [2]

where IR is strictly positive and has units of information per
unit time, and s and p are the sharpness and precision of the
transcriptional response, respectively, as defined in Fig. 1B. SI
Appendix, Appendix C for a full derivation of this expression. We
note that the native units of Eq. 2 are natural log units (“nats”).
For simplicity, we give all informational quantities in the more
familiar “bits,” such that IR has units of bits per burst cycle (“bits
per burst”). Additionally, the precision term, p, pertains solely
to noise from intrinsic fluctuations between microscopic states at
the gene locus and does not account for Poisson noise resulting
from mRNA synthesis, which is expected to be small relative to
the noise from locus fluctuations (SI Appendix, Appendix D for
details).

Eq. 2 contains two terms: an input component that encodes
the size of the activator concentration gradient and an output
component that depends on the sharpness and precision of
the transcriptional input–output function (Fig. 1 A and B).
This expression provides quantitative support for the intuitions
outlined above. IR can be increased both by increasing the
difference between the transcription rates driven by c1 and c0
(i.e., increasing the sharpness) and by decreasing the noise level
(i.e., increasing precision). Moreover, since both s and p can be
calculated analytically from the microscopic reaction rates in our
gene circuit (SI Appendix, Appendix A.3), Eq. 2 allows us to
calculate and compare information rates for gene circuits with
different microscopic reaction rates.

The IR, in turn, dictates how rapidly cells can distinguish
between the two activator concentrations, c0 and c1, based on the
accumulated transcriptional output of a gene circuit. Previous
works (5, 20) have established that the theoretical lower limit for
the time required to distinguish between c0 and c1 is given by

T = ln
(1− ε

ε

)1− 2ε
IR

, [3]

where ε is the probability of being wrong , i.e., choosing c1 when
the true value is c0 (or vice versa) (SI Appendix, Appendix E
and (5) for details). We note the error-tolerance ε in Eq. 3 is
extrinsic to the gene circuit model and depends on the nature of
the downstream cellular processes. Unless otherwise noted, we
follow (5) and set ε = 0.32, equivalent to an error level of “1
sigma.” Finally, we note that all calculations for decision times
an related quantities assume that microscopic reactions within
the gene circuit have reached steady state; an approach that is
well justified for the decision timescales considered (SI Appendix,
Appendix F).

C. Energy Dissipation Increases the Rate of Information Trans-
mission. Utilizing our framework, we investigated whether in-
creasing the energy dissipated by our model gene circuit, 8,
increases the rate at which this circuit drives cellular decisions be-
tween c0 and c1. We expanded methods employed in refs. 12, 17

to develop an algorithm capable of systematically exploring
how different transition rates dictate gene circuit features. This
algorithm can determine the maximum IR achievable by different
realizations of our gene circuit as a function of energy dissipation.
SI Appendix, Appendices G and H for details regarding its
implementation and validation.

Fig. 2A shows the relation between IR and8 resulting from our
numerical analysis. Here, each circle represents IR and 8 values
for a single realization of our gene circuit (Fig. 1C ), as defined
by its complement of transition rate values. Near equilibrium,
our analysis reveals that gene circuits can transmit information
no faster than 0.035 bits per burst (far left-hand side of Fig. 2A).
According to Eq. 3, this means that the best equilibrium gene
circuits require at least 110 burst cycles to drive a decision between
concentrations c1 and c0 with an error probability of 32% when
these concentrations differ by 10% (Fig. 2B). In the developing
fruit fly embryo (D. melanogaster), where the burst timescale (τb)
is approximately 2 min (3), this translates to a decision time
of 3.7 h, far too long to meet the time constraints imposed by
early nuclear cleavage cycles, 8–60 min, (4). Our equilibrium
gene circuit would require even longer times in adult nematode
(C. elegans) and mouse (M. musculus) cells, where τb is much
higher, with measurements ranging from 61 to 105 min, T ≥
112 h, (38) and 30 min to multiple hours, T ≥ 55 h, (30),
respectively. In each case, these timescales likely exceed decision
time limits imposed by mRNA decay or cellular division times,
which set upper limits on the time over which gene output can be
averaged (horizontal lines in Fig. 2B and SI Appendix, Appendix I
for further details).

A

C D

B

Fig. 2. Energy dissipation increases the information transmission rate in
gene circuits. (A) Parameter sweep exploring the range of possible model
performance for information rate (IR from Eq. 2) as a function of energy
dissipation rate (8 from Eq. 1). (B) The amount of time needed to distinguish
between c0 and c1 as a function of the probability of deciding incorrectly for
equilibrium and nonequilibrium gene circuits. The decision time is given in
terms of the number of transcriptional burst cycles required for a decision
to be made. Achievable decision times for equilibrium and nonequilibrium
are indicated as shaded regions. Note that the x-axis is arranged in order
of decreasing error probability (i.e., increasing accuracy) from left to right.
Horizontal lines indicate approximate upper bounds on decision times
(in burst cycles) for different organisms. (C) Parameter sweep results for
achievable IR and 8 values (shaded regions) for gene circuits with 1 to
5 activator binding sites. (D) Sweep results illustrating achievable IR vs. 8
regimes for gene circuits featuring 1 to 4 molecular activation steps. (For
all parameter sweep results in A–D, transition rate and interaction term
magnitudes, k and �, were constrained such that 10−5

≤ k�b ≤ 105 and
10−5

≤ � ≤ 105, where �b is the burst cycle time. �ab and �ib were further
constrained such that �ab ≥ 1 and �ib ≤ 1, consistent with our assumption
that the transcription factor activates the gene locus. Note that we apply these
same parameter bounds for all subsequent sweeps presented throughout
the main text.)

4 of 12 https://doi.org/10.1073/pnas.2211203120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 D
IG

IT
A

L
 L

IB
R

A
R

Y
 o

n 
M

ar
ch

 3
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
6.

15
2.

14
3.

21
5.

https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials


Our analysis indicates that energy dissipation opens the door
to improved information transmission, leading to a fourfold
increase in the upper IR limit from 0.0035 to 0.014 bits per
burst cycle (Fig. 2A). Moreover, this performance gain is realized
at biologically plausible levels of energy consumption: IR reaches
its maximum nonequilibrium value at 8 ≈ 20 kBT per cycle,
which is approximately equivalent to the hydrolysis of one to two
ATP molecules (39). This corresponds to an energy-dependent
decrease in decision time from 110 to 29 burst cycles (red shaded
region in Fig. 2B). This reduction meets the upper decision
limit for mouse cells (Fig. 2B). Yet, there remains an absolute
speed limit that no amount of energy dissipation can overcome,
as shown by the empty space below the red nonequilibrium
boundary in Fig. 2B.

How can gene circuits do better? Real transcriptional systems
are typically far more complex than the simple four-state model in
Fig. 1C ; gene enhancers typically feature multiple transcription
factor binding sites (22), and transcriptional activation depends
on the combined action of multiple general transcription factors
at the gene locus (3). Thus, to overcome this speed limit, we
must examine the impact of tuning two molecular “knobs”: the
number of specific activator binding sites in our model (NB) and
the number of molecular steps required to achieve productive
transcription (NA). For simplicity, we focus on systems in which
all binding sites are identical and assume identical kinetics for
all molecular transitions between locus conformations. While
restrictive, this simple approach gives rise to rich, biologically
salient behaviors. While we explore the effects of varying NB and
NA separately, these mechanisms are mutually compatible and
may act jointly in real biological systems. SI Appendix, Appendix J
for details regarding the implementation of these higher-order
models.
Adding binding sites improves information-energy tradeoffs. We
first examined the performance of gene circuit models with
multiple binding sites. In these models (as with the four-state
model described above), activator binding does not directly
dictate transitions in and out of transcriptionally active molecular
states, but instead increases or decreases the likelihood of these
transitions. Models with multiple binding sites also permit
pairwise cooperative interactions between activator molecules,
encoded by ηub terms (SI Appendix, Appendix J and Fig. S15A).
With these assumptions, we employed our parameter sweep
algorithm to explore tradeoffs between the rate of energy
dissipation (8) and the IR for systems with 1 to 5 activator
binding sites. SI Appendix, Appendix A.2 for details about how
we extend Eq. 1 to calculate 8 for higher-order models. In all
cases, we held the number of activation steps constant at NA = 1
(as in Fig. 1C ).

As illustrated in Fig. 2C , adding activator binding sites shifts
the IR vs. 8 tradeoff boundary from Fig. 2A upward, allowing
for higher information transmission rates for a given energy
dissipation rate. This leads to significant IR gains, even in
gene circuits operating near the equilibrium limit (left-hand
side of Fig. 2C ), with the upper equilibrium limit increasing
by approximately a factor of 25 from 0.0035 bits per burst cycle
for NB = 1 to 0.090 bits per cycle for NB = 5. As a result, gene
circuits with five binding sites need as little as five burst cycles
to distinguish between c1 and c0 in the absence of any energy
dissipation, easily satisfying the decision time constraints of the
biological systems shown in Fig. 2B. More generally, we find
that the lower decision time limit for equilibrium circuits scales
as the inverse of the number of binding sites squared (T ∼ N−2

B ,
SI Appendix, Fig. S1A).

Adding molecular activation steps allows gene circuits to harness
higher rates of energy dissipation. Next, we expanded the four-
state model by changing the number of activation steps (1 ≤
NA ≤ 4) while holding the number of binding sites fixed at
NB = 1 (Fig. 2 D, Top). To illustrate this model, let us first
consider the baseline case, where NA = 1. Here, locus activation
depends on the state of a single molecular component (e.g.,
mediator), which can be disengaged (i.e., the locus is OFF) or
engaged (i.e., the locus is ON). Now, consider a model in which
locus activation also depends on the state of a second molecular
component (e.g., PIC assembly) that can, likewise, be either
engaged or disengaged. If we stipulate that both components
must be engaged to achieve RNA polymerase initiation, then
two molecular activation steps are required to reach the ON state
and NA = 2. We use the same logic to extend the model to the
NA = 3 and NA = 4 cases to capture the impact of the additional
molecular components necessary for transcription. SI Appendix,
Appendix J and Fig. S15B for details.

We conducted parameter sweeps to examine the interplay
between energy dissipation and information transmission for
these systems. As with adding binding sites, the addition of
activation steps leads to increased rates of information trans-
mission. Unlike increasing NB, however, these IR gains do not
come for free. Instead, the addition of activation steps extends
the 8-IR boundary into higher-energy regimes such that, for
nonequilibrium gene circuits to achieve larger gains in IR, they
must do so at the expense of increased energy dissipation rates
(Fig. 2D).

This increased IR gain means that systems with multiple
activation steps can drive decisions between c1 and c0 more
rapidly than the simple four-state gene circuit. For example,
nonequilibrium gene circuits with four activation steps can drive
decisions nearly four times as rapidly as systems with a single
step (8 vs. 29 burst cycles; SI Appendix, Fig. S1B). This 8-burst-
cycle limit approaches what can be achieved by an equilibrium
gene circuit with five activator binding sites (five burst cycles;
compare SI Appendix, Fig. S1 A and B), suggesting a similarity
between adding activator binding sites at equilibrium and adding
activation steps out of equilibrium. However, this parity has an
energetic cost: to approach the performance of the equilibrium
five-binding-site model, the nonequilibrium one-binding-site
system with five conformations must dissipate at least 180 kBT
per burst.

D. Increases in Nonequilibrium Sharpness Improve Informa-
tion Transmission. According to Eq. 2, the energy-dependent
increases in IR uncovered in Fig. 2 must result from increased
sharpness, increased precision, or some combination thereof.
Thus, to uncover how energy reshapes the transcriptional input–
output function to increase IR, we used our numerical sweep
algorithm to examine the space of achievable sharpness and
precision values for our baseline four-state model (Fig. 1C ) both
at and away from thermodynamic equilibrium. One challenge
in comparing sharpness and precision levels across different gene
circuits is that the upper bounds on both s and p depend on
the transcription rate at c∗, r = r0πa (Fig. 1A), where πa is
the fraction of time that the system spends in transcriptionally
active states. This makes it difficult to compare the sharpness
and precision of gene circuits with different transcription rates.
Thus, for ease of comparison across different model realizations,
we give all results in terms of normalized sharpness and precision
measures: S and P, where S = s/(πa(1−πa)) and P = p(πa(1−
πa)). These metrics adhere to consistent bounds irrespective of
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the activity level and have intuitive interpretations. For instance,
the S value of a particular gene circuit’s input–output function
gives the Hill coefficient of an equivalently sharp Hill function.
SI Appendix, Appendix K for details.

Fig. 3A shows the results of our analysis, with each circle
representing the S and P values for a single gene circuit realization.
For systems operating at equilibrium (blue dots in Fig. 3A),
we find that both S and P are bound by “Hopfield barriers”
(dashed lines) (16, 17) with values of 1 and 1/

√
2, respectively.

These bounds place strict limits on information transmission at
equilibrium and have a straightforward interpretation: they are
precisely equal to the sharpness and precision of a simple two-state
gene circuit with a single activator binding site and no molecular
activation step (SI Appendix, Appendix L).

Energy dissipation permits gene circuits to overcome these
equilibrium performance bounds, increasing S by up to a
factor of 2 and P by up to a factor of

√
2 with respect

to their equilibrium limits (Fig. 3A). Yet, while energy can
improve sharpness and precision individually, the absence of
realizable gene circuits in the upper-right-hand corner of Fig. 3A
indicates that genes cannot maximize both simultaneously.
This tradeoff places inexorable limits on the degree to which
energy can boost IR and arises because maximally sharp and
maximally precise gene circuits require distinct and incompatible
underlying molecular architectures (SI Appendix, Appendix M for
details).

Because sharpness and precision cannot be maximized simulta-
neously, gene circuits that dissipate energy must “choose” which
aspect to maximize. From the perspective of IR maximization,
the choice is clear: Fig. 3A shows the location of 100 gene
circuits within 1% of the maximum of 0.014 bits per cycle
(Fig. 2A) in S − P phase space (green circles). The clustering
of all these circuits in the plot reveals that the most informative
gene circuits maximize transcriptional sharpness (S = 2) at
the cost of retaining equilibrium precision levels (P = 1/

√
2).

As with the equilibrium case, these values have an intuitive
interpretation: They are simply equal to the expected sharpness
and precision of a two-state system, one in which both the
ON and OFF rates are concentration-dependent (SI Appendix,
Appendix N). Thus, although spending energy to overcome the
constraints of detailed balance opens up a vast new space of
possible regulatory schemes, maximally informative nonequilib-
rium gene circuits exhibit an emergent simplicity, converging

upon architectures in which their many molecular degrees of
freedom collapse into a few effective parameters that define system
behavior.
Nonequilibrium gains in sharpness drive IR increases in more
complex regulatory architectures. To assess the generality of our
results, we used our parameter sweep algorithm to examine
equilibrium and nonequilibrium tradeoffs between sharpness and
precision for more complex gene circuits with 2 to 5 activator
binding sites and 2 to 4 molecular activation steps. In all cases,
energy dissipation increases the upper limits of S and P, and
as with our simple four-state model, these nonequilibrium per-
formance gains cannot be realized simultaneously (SI Appendix,
Fig. S2 A and B). For all models considered, the gains in IR
uncovered in Fig. 2 are maximized by spending energy to increase
sharpness, rather than precision (SI Appendix, Appendix O for
further details). For the case of multiple activator binding sites
(NB > 1), the NB-dependent increases in IR shown in Fig. 2C
arise because increasing the number of binding sites increases
the upper sharpness limit both at and away from equilibrium,
(SI Appendix, Fig. S2 A and C and Appendix O; (17, 18)).

More surprisingly, we find that increasing the number of
molecular conformations (NA) while holding the number of
activator binding sites can also increase transcriptional sharpness
in systems operating out of equilibrium. Fig. 3B shows the range
of achievable S values for nonequilibrium systems as a function
of NA. The upper S limit scales linearly with NA, such that
Sneq ≤ NA + 1. This linear scaling is identical to the effect of
adding activator binding sites at equilibrium, where Seq ≤ NB
(SI Appendix, Fig. S2C), providing intuition for why systems with
multiple molecular steps can drive faster decisions: With respect
to transcriptional sharpness, the regulation of multiple activation
steps by a single binding site in a nonequilibrium gene circuit is
functionally equivalent to the effect of having multiple binding
sites at equilibrium (Fig. 3C ).

E. Energy Dissipation Is Required for Rapid Cellular Decisions
at High Noncognate Factor Concentrations. In real biological
settings, cells do not contain only a single species of transcription
factor, but many. Therefore, to drive timely biological decisions,
a gene circuit must not only sense and respond to its cognate
transcription factor, but also efficiently filter out “irrelevant”
signals from noncognate factors. This process is inherently
challenging in eukaryotes, where short DNA-binding footprints
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Fig. 3. Increased transcriptional sharpness drives increased information transmission away from equilibrium. (A) Scatter plot of parameter sweep results
showing the normalized sharpness and precision for equilibrium and nonequilibrium gene circuits. The absence of gene circuits in the upper right quadrant
indicates that nonequilibrium circuits cannot simultaneously maximize sharpness and precision. (B) Plot of achievable nonequilibrium sharpness levels for
models with 1 to 4 molecular activation steps and one activator binding site. Each circle represents a single gene circuit model. Normalized sharpness is bound
by the number of locus conformations. (C) Cartoon illustrating functional equivalence between three binding sites at equilibrium and two activation steps out
of equilibrium. The plot shows input–output functions for maximally sharp realizations of each case, demonstrating the equivalent sharpness levels driven by
the two strategies.
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lead to modest energetic differences between specific (correct) and
nonspecific (incorrect) transcription factor binding events on the
order of 4.6 kBT (40), meaning that noncognate transcription
factors unbind from gene loci approximately 100-fold faster than
cognate factors (see Box 1 for further discussion).

To examine how interference impacts the timescale of bi-
ological decisions, we must extend our gene circuit model to
incorporate interference from noncognate activator binding.
Drawing inspiration from ref. (41), we add a second “wrong”
activation cycle to our original four-state model (Fig. 1C ),
wherein the binding of a noncognate factor to the gene locus
can also induce transitions to the active conformation. This
leads to the six-state model shown in Fig. 4A, where, for
simplicity, we have grouped all noncognate activators into a
single concentration term: W . Here, states 5 and 4 are identical

to states 1 and 2, except that a noncognate activator species
(blue circle) is bound rather than the cognate activator (green
square). For notational convenience, we write the unbinding
rates of the noncognate activator kwu as the unbinding rate of the
cognate factor ku multiplied by an affinity factor α = kwu /ku,
with α = 100.

We employed parameter sweeps to examine the upper limits on
information transmission as a function of the ratio of wrong-to-
right activator concentrations (w/c). We held the cognate factor
concentration at C = c∗, such that W was the only variable
concentration parameter. Fig. 4B presents the range of achievable
information rates as a function of the relative wrong factor
concentration. Our results reveal that the rate of information
transmission at equilibrium drops precipitously oncew/c exceeds
α (blue circles in Fig. 4B). Away from equilibrium, the upper

Box 1. Modeling transcription factor competition

In eukaryotes, transcription factors tend to have short DNA-binding footprints, which means that cognate factors stay bound
to their target sites only about 100 times longer than noncognate factors (40). To gain intuition for whether a 100-fold difference
in binding kinetics is sufficient to drive biological decisions, we can examine a stripped-down scenario in which cognate and
noncognate activators must compete to bind a single binding site. We quantify the severity of noncognate factor interference
by calculating the fraction of total binding interactions that reflect the action of cognate (rather than noncognate) factors, which
is given by

pc =
�c

�c + �w
=

f
f + w

c
. [B.1]

Here, w/c is the ratio of noncognate to cognate factor concentrations and f is the transcriptional specificity, which is defined as
the (average) ratio of the probability of having cognate (�c) and noncognate (�w ) factors bound, normalized by the concentration,
namely

f =
w
c
�c
�w
. [B.2]

We note that Eq. B.2, which considers competition between two activator species to bind and activate a single gene, is distinct
from and complements specificity definitions employed in previous works, which examine the problem for a single activator
species that regulates a cognate and a noncognate locus (14, 18) (SI Appendix, P.1 for details). From Eq. B.1, we see that f
sets the scale for the severity of noncognate factor interference. At equilibrium, f is constrained to be equal to the ratio of
wrong-to-right unbinding rates, � = kwu /ku (SI Appendix, Appendix P.2), such that

pc =
�

� + w
c
. [B.3]

Eq. B.3 indicates that cognate factor binding will dominate when w/c < �, while noncognate factors dominate when w/c > �.
For concreteness, we set � = 100 throughout this work.

Where do actual biological systems fall? The dashed lines on the plot above indicate where actual biological systems fall
along the w/c axis. A recent study pursuing synthetic enhancer design in the early fly embryo cited 47 pertinent regulatory
factors that were accounted for to avoid off-target binding (22), leading to an estimate of w/c = 47 (see also ref. 42). Inserting
this value into Eq. B.3, we find that pc ≈ 2/3 in the fly embryo. To survey the other end of the spectrum, we can use the
genomic abundance of transcription factor proteins to estimate upper bounds on w/c values for adult nematode and mouse
cells, yielding estimates of w/c ≤ 698 and w/c ≤ 1,426, respectively (43). In this case, Eq. B.3 predicts that cognate binding
accounts for only a small fraction of total binding interactions—as little as 1/8 in worms and 1/15 in mice—suggesting that
equilibrium affinity differences alone may be insufficient in these cases.
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A B

DC

Fig. 4. Energy dissipation is key to driving cellular decisions in the presence of noncognate factor interference. (A) Incorporating noncognate activator binding
leads to a six-state model that features both a right and a wrong activation pathway. (B) Numerical results for the maximum achievable information rate for
equilibrium (blue circles) and nonequilibrium (red circles) gene circuits with one activator binding site and one activation step (illustrated in A) as a function of
the relative concentration of noncognate activators w/c. The inset panel shows the nonequilibrium performance gain (the upper bound of red divided by the
upper bound of blue) as a function of w/c. (C) Shaded regions indicate parameter sweep results for the range of achievable decision times for equilibrium gene
circuits with 1 to 5 activator binding sites as a function of w/c. The dashed gray line indicates the lower bound for decision times driven by nonequilibrium gene
circuits with five binding sites and one activation step. SI Appendix, Fig. S3B for corresponding information rate ranges. (D) Decision times for nonequilibrium
gene circuits with 1 to 4 activation steps. SI Appendix, Fig. S3C for corresponding information rate ranges. (All decision time quantities assume " = 0.32.)

information limit likewise decreases with w/c; however, we find
that nonequilibrium gene circuits are significantly more robust to
high noncognate factor concentrations than equilibrium systems.
The relative IR gain from energy dissipation with respect to
equilibrium increases from a factor of 4 when w/c ≈ 1 to a
factor of 1,000 when w/c ≈ 105 (Fig. 4 B, Inset). This shift in
information gain suggests that a qualitative change occurs in how
energy is used once w/c > α (vertical dashed line in Fig. 4B ).

We next used Eq. 3 to calculate the amount of time required
for a cell to decide between concentrations c0 and c1 of the
cognate activator species for different values of w/c, starting
with gene circuits constrained to operate at equilibrium. As in
Fig. 2B, we compared our model’s performance to the decision
time limits for different biological systems, this time with each
organism placed appropriately along thew/c axis. In all organisms
considered, gene circuits generally have a few tens of burst cycles
over which to transmit information, with no organism exceeding
100 bursts (black error bars in Fig. 4C ). This decision time limit
is significantly faster than can be achieved by our six-state model
with one binding site and one activation step at equilibrium,
even with negligible amounts of noncognate transcription factor
(w/c = 1, purple shaded region corresponding to NB = 1 in
Fig. 4C ).

Next, we investigated the effect of having equilibrium gene
circuits with multiple sites. Fig. 4C indicates that equilibrium
gene circuits with three or more activator binding sites (red,
blue, and gray regions) are sufficient to drive timely decisions
in “low-interference” systems such as the early fruit fly embryo.
However, we again observe a precipitous decline in performance
once w/c > α. Indeed, the best equilibrium model (NB = 5)

can drive decisions in no fewer than 1,100 burst cycles—the
equivalent of at least 550 h (3 wk) for mouse cells—when
w/c ≈ 1, 400 (the upper limit for mice). This finding is over
an order of magnitude too slow for the mouse system’s decision
time limit of 86 burst cycles (Fig. 4C ). Moreover, our analysis
suggests that at least 17 activator binding sites are needed to
reach this limit at equilibrium (SI Appendix, Fig. S3A). Such
a number is conceivable for eukaryotic enhancers, but this
analysis emphasizes that equilibrium systems—even those with
biologically salient numbers of binding sites—struggle to achieve
realistic decision times in the presence of significant noncognate
factor interference.

How do nonequilibrium gene circuits fare? The dashed gray
line in Fig. 4C indicates the lower decision time limit for
nonequilibrium gene circuits with five binding sites and one
activation step. We observe a substantial improvement relative
to the equilibrium case; however, the performance nonetheless
suffers at large values of w/c, falling short of the decision time
limit for the mouse system (209 vs. 86 burst cycles).

We used our parameter sweep algorithm to examine the impact
of increasing the number of molecular activation steps (NA > 1)
in nonequilibrium gene circuits with a single activator binding
site. This revealed substantial improvements, particularly at large
w/c values. The nonequilibrium NA = 1 system required at
least 1,500 burst cycles when w/c = 1,400, whereas gene circuits
with two activation steps can drive decisions between c0 and
c1 in as little as 104 bursts (Fig. 4D). Adding a third step
further improves this bound to 83 burst cycles, below the 86-
burst limit for the mouse system. Moreover, this NA = 3 system
exhibits remarkable robustness to noncognate factor interference,
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sustaining the same level of performance up to w/c ≈ 104

(Fig. 4D).
These results suggest that, in biological contexts where the ratio

of wrong-to-right activator concentrations exceeds the intrinsic
binding affinity difference (α), energy dissipation increasingly
becomes a necessary precondition for driving cellular decisions
within biologically salient timescales.

F. Noncognate Factor Concentration Defines Performance
Tradeoffs Between Sharpness and Specificity. Next, we investi-
gated how much sharpness and precision each contribute to the
IR gain depicted in Fig. 4 B, Inset. Fig. 5A shows the relative
nonequilibrium gains in S and P (S/Seq and P/Peq) as a function
of w/c for information-maximizing realizations of the six-state
gene circuit model shown in Fig. 4A. The plot reveals that
IR-maximizing gene circuits consistently utilize energy to drive
sharpness above its equilibrium limit (S/Seq > 1), while precision
is maintained at or below its equilibrium limit (P/Peq . 1).
Moreover, the degree to which nonequilibrium gene circuits
amplify S increases dramatically as w/c increases, from a factor of
2 when w/c ≈ 1 to a factor of 100 when w/c ≈ 104 (Fig. 5A).
Thus, the key to understanding how energy increases IR at large
w/c values lies in understanding transcriptional sharpness.

We find that the upper nonequilibrium S limit is given by

S ≤
f

w
c + f

× S0︸︷︷︸
intrinsic
sharpness

, [4]

where the transcriptional specificity, f , is defined as the ratio
of the probability of having cognate versus noncognate factors
bound at the locus (Box 1), and where the intrinsic sharpness
(S0) is a gene circuit’s normalized sharpness absent noncognate
factor binding (i.e., w = 0; SI Appendix, Appendix Q).

To probe the interplay between intrinsic sharpness and
specificity, we employed parameter sweeps for the six-state system
in Fig. 4A. At equilibrium, this analysis indicated that intrinsic
sharpness is constrained such that S0 ≤ 1 (consistent with
Fig. 3A) and that specificity is fixed at α (Fig. 5B). Indeed,
we find that f eq = α for all models considered that operate
at equilibrium (SI Appendix, Appendix P.3), irrespective of the

number of binding sites or activation steps, placing strict limits
on information transmission at equilibrium when w/c is large.

Away from equilibrium, systems can overcome these con-
straints, achieving up to a two-fold increase in S0 and increasing
specificity by up to an additional factor of α (100) to reach an
upper limit of α2 (Fig. 5B). The observed 100-fold increase in f is
comparable to the gain in the observed sharpness (S) in Fig. 5A,
suggesting that the S gain at highw/c arises from nonequilibrium
increases in specificity, rather than in intrinsic sharpness. Why not
spend energy to simultaneously increase S0 by two-fold and f by
100-fold to achieve S/Seq = 2× α = 200? Our analysis reveals
a steep tradeoff between specificity and intrinsic sharpness away
from equilibrium, with the maximum value of S0 = 2 realizable
only when specificity is at its equilibrium level (f = α) and vice
versa (Fig. 5B and SI Appendix, Appendix Q for further details).
We find similar nonequilibrium tradeoffs between f and S0 for
more complex molecular architectures (SI Appendix, Fig. S4A).

The inexorable tradeoff between the intrinsic sharpness S0
and specificity f illustrated in Fig. 5B means that gene loci
must “choose” between allocating energy to maximize intrinsic
sharpness and allocating energy to maximize specificity. To
examine how the concentration of noncognate factors shapes this
tradeoff, we took IR-maximizing nonequilibrium gene circuits
spanning the relevant range of w/c values for systems with 1 to
4 activation steps and calculated S0 and f . Fig. 5C illustrates
the relative nonequilibrium gains in intrinsic sharpness and
specificity for these circuits as a function of w/c.

Fig. 5C reveals that the relative noncognate factor concen-
tration, w/c, defines a shifting optimality landscape. At low
noncognate factor concentrations, maximally informative gene
circuits spend energy exclusively to maximize intrinsic sharpness
(S0/NB > 1 for all systems on the left-hand side of Fig. 5C ) at
the cost of equilibrium specificity levels (f /α = 1). However,
once w/c surpasses the affinity factor α, IR maximization starts
to disfavor sharpness (see decreasing S0 near w/c = 102 in
Fig. 5C ) and increasingly depends on enhancing specificity to
nonequilibrium levels. We also find that the presence of multiple
activation steps dramatically increases the upper nonequilibrium
specificity limit, such that f neq ≤ αNA+1, (SI Appendix, Fig.
S4B). Together, these results indicate that the optimal molecular
strategy for transmitting information changes according to a scale
set by the relative amount of noncognate factor interference,

A B C

Fig. 5. A shifting optimality landscape for information transmission. (A) Nonequilibrium gains in sharpness and precision as a function of w/c for six-state
(NB = 1,NA = 1; Fig. 4A) gene circuits found to drive maximum information rates. IR−maximizing gene circuits are drawn from optimal systems uncovered in the
parameter sweeps from Fig. 4D. Values above 1 indicate that the system is dissipating energy to enhance performance. The black line indicates a “break-even”
point where the nonequilibrium value is equal to the equilibrium maximum. SI Appendix, Fig. S4A for results for systems with NA > 2. (B) Tradeoffs between
intrinsic sharpness (S0) and specificity (f ) for equilibrium and nonequilibrium networks. Note that equilibrium gene circuits have no horizontal dispersion
because all are constrained to have f eq = �. The black dashed line indicates the bound predicted by SI Appendix, Eq. S101. (C) Nonequilibrium gains in intrinsic
sharpness and specificity for IR-maximizing gene circuits as a function ofw/c. Values above 1 indicate that the system is dissipating energy to enhance sharpness
or specificity. Note that the left and right axes have different scales.
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w/c, and the kinetic binding differences between cognate and
noncognate factors, α.

G. Predicting Experimental Signatures of Nonequilibrium Pro-
cesses in Transcriptional Regulation. In this section, we examine
how simple experiments can identify signatures of nonequilib-
rium performance in real biological systems. For simplicity, we
focused on the gene circuit in Fig. 4A with one binding site and
one molecular activation step.

Recent works have shown that strict equilibrium limits on
transcriptional sharpness can be calculated if the number of
activator binding sites is known, suggesting that sharpness might
serve as an accessible signature of nonequilibrium regulatory
mechanisms (11, 17). However, these studies did not consider
off-target activation from noncognate activator species. What
happens when we account for noncognate factor binding? As
illustrated in Fig. 6A, numerical parameter sweeps of S vs.
w/c indicate that the upper S limit decreases dramatically
with increasing w/c for both equilibrium (blue circles) and
nonequilibrium gene (red circles). Thus, the upper sharpness
limit is not absolute but instead depends on the concentration
of noncognate factors in the cell. This w dependence must be
considered to accurately interpret experimental measurements.

For instance, consider the case where w/c = 103 (black
dashed vertical line in Fig. 6A), a plausible value for mammalian
systems (41, 43, 44). Our model predicts that the maximum
achievable S for nonequilibrium gene circuits is 0.91. This
far exceeds the true equilibrium sharpness limit of 0.09 when
noncognate interference is accounted for (blue dashed line in
Fig. 6A). However, S = 0.91 falls below the “naive” equilibrium
bound of S = 1 that one would predict if w were not accounted
for (see blue bound on far-left-hand side of Fig. 6A and SI
Appendix, Fig. S5A). Thus, failing to account for noncognate
factor interference could mask strong nonequilibrium signatures.
However, accurately measuring w/c may be challenging in many
settings sincew comprises the aggregate activity of all noncognate
activator species.

In light of this challenge, we propose a complementary
experimental approach that is more robust to uncertainty
regarding the precise value of w/c. As illustrated in Fig. 6B,
this method involves measuring changes in gene expression at
C = c∗ that result from point mutations to the activator binding

site, which thereby leads to a higher unbinding rate, kmut
u , for

cognate activators (kmut
u /ku > 1). Although w/c may be difficult

to estimate in many biological contexts, robust algorithms can
predict changes in binding energies from the DNA sequence of
transcription factor binding sites (45). We employ two metrics
to quantify the resulting change in gene expression: fold changes
in the mRNA production rate (rmut/r) and in the normalized
sharpness (Smut/S), each defined as the quantity corresponding
to the mutated binding site divided by the wild-type value
(Fig. 6B).

To illustrate the method, we used our model to predict
outcomes for the case where the wild-type gene circuit is
expressing at half its maximum rate (r = 0.5r0). Overall, we
find that IR-optimized nonequilibrium gene circuits are highly
sensitive to changes in cognate activator specificity and that this
sensitivity can be used to probe for nonequilibrium behavior.
At low w/c levels (w/c . 103), mutated nonequilibrium circuits
exhibit larger shifts in their transcription rate than can be achieved
at equilibrium (SI Appendix, Fig. S5B). Meanwhile, when
w/c > 103, IR-optimized nonequilibrium systems experience a
substantially larger sharpness decrease than even maximally sharp
equilibrium circuits (SI Appendix, Fig. S5C). Consequently, when
combined, Smut/S and rmut/r define a perturbation response
space in which nonequilibrium gene circuits that transmit
information at optimal (or near-optimal) levels are completely
disjoint from equilibrium systems. This is illustrated in Fig.
6C , which compares our model’s predictions for Smut/S vs.
rmut/r for maximally informative nonequilibrium gene circuits
to the full range of achievable values for equilibrium gene
circuits (circles and squares, respectively). Despite the fact that
we examine three binding site perturbation strengths and a wide
range of noncognate factor concentrations, we find that optimal
nonequilibrium systems never cross the equilibrium boundary
(dashed line). Thus, by measuring Smut/S and rmut/r, we can
obtain clear-cut signatures on nonequilibrium regulation, even
when w/c is unknown.

2. Discussion

In this work, we employed simple kinetic models of transcription
to investigate how energy dissipation within the transcriptional
cycle impacts the rate at which a gene circuit drives cellular

A B C

Fig. 6. Experimental signatures of nonequilibrium processes in transcriptional regulation. (A) Observed sharpness as a function of w/c for equilibrium (blue
circles) and nonequilibrium (red) gene circuits. Dashed blue and red lines indicate analytic sharpness bounds predicted by SI Appendix, Eq. S101 in Appendix
Q. The black dashed line indicates the point where w/c = 103. (B) Illustration of proposed binding site perturbation experiments. Reducing site specificity
is predicted to reduce both the observed sharpness, S, and the mRNA production rate, r. The strongest possible perturbation would entail a conversion
from cognate specificity (ku) to noncognate specificity (�ku). (C) Phase-space plot of predicted sharpness shift versus rate shift for equilibrium (squares) and
nonequilibrium (circles) gene circuits at three binding site perturbation strengths. Note that we normalize the sharpness fold change by ku/kmut

u , which
allows us to plot results for different mutation strengths on the same y-axis. Shading indicates the w/c value (darker shades correspond to higher values).
Additionally, the circle size indicates the w/c magnitude for nonequilibrium circuits. We see that, regardless of noncognate concentration and perturbation
strength, nonequilibrium systems do not cross the equilibrium boundary (dashed line). Results assume the initial transcription rate of the wild-type gene is at
half-maximum (r = 0.5r0).
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decisions. We found that biologically plausible rates of energy
dissipation can drive significant gains in the information trans-
mission rate and discovered that the regulatory mechanisms
underlying these nonequilibrium gains change from increased
sharpness to increased specificity depending on the level of
interference from noncognate factor binding.

Performance Tradeoffs Dictate Limits of Information Transmis-
sion Away from Equilibrium. We have established that although
energy dissipation can increase transcriptional sharpness, preci-
sion, and specificity individually, these gains cannot be realized
simultaneously. For negligible noncognate factor binding, we
showed that IR is dictated by a tradeoff between sharpness (S)
and precision (P). For all models considered, we discovered that
the information rate was maximized by systems that boosted
transcriptional sharpness (not precision) above its equilibrium
limit (Fig. 3A and SI Appendix, Fig. S2 A and B).

Similarly, our analysis revealed that nonequilibrium gains in
specificity and sharpness cannot occur simultaneously (Fig. 5B
and SI Appendix, Fig. S4B). This incompatibility arises from
the fact that intrinsically sharp systems are tuned to amplify
concentration-dependent activator binding rates, whereas specific
systems amplify differences in unbinding rates between cognate
and noncognate activator species. Our model predicts that w/c
defines a shifting optimality landscape, wherein nonequilibrium
gene circuits that maximize intrinsic sharpness drive the fastest
decisions when w/c ≤ α, but the optimal strategy begins to
shift from increasing sharpness to activator proofreading when
w/c > α (Fig. 5C ). A recent study reported the potential for
this kind of context-dependent shift from sharp to specific gene
circuits (18), although sharpness was only investigated at its equi-
librium limit. Here, we provide quantitative predictions for how
gene circuits navigate this sharpness-specificity tradeoff far from
equilibrium.

Activation Steps Amplify Nonequilibrium Performance Gains.
Another key finding of this work is that the presence of
multiple activation steps, wherein multiple molecular com-
ponents must engage to achieve transcription, can amplify
nonequilibrium gains in transcriptional sharpness (Fig. 3B).
Our result is evocative of a recent study (46) demonstrating
that equilibrium systems with multiple conformational degrees
of freedom can achieve sharper, more flexible transcriptional
input–output functions. Notably, however, the systems in this
work still adhered to the fundamental equilibrium limitation
that sharpness cannot exceed the number of activator binding
sites (S ≤ NB). Thus, our findings further emphasize potential
benefits of the conformational complexity of the eukaryotic gene
cycle.

Consistent with previous results in the kinetic proofreading
literature (47), we also found that gene circuits with multiple
activation steps can realize dramatic increases in transcriptional
specificity out of equilibrium, such that the specificity (f ) scales
exponentially with NA (f ≤ αNA+1; SI Appendix, Fig. S4B). This
result extends the findings of a recent work examining specificity
in systems with up to two activation steps (14). Yet there
exists an important asymmetry between sharpness and specificity:
Although the addition of activator binding sites can increase the
sharpness S at equilibrium, energy dissipation constitutes the only
route (short of altering activator binding sequences) for increasing
specificity f above the intrinsic affinity factor α. Thus, for large
w/c, energy dissipation overcomes a fundamental limitation of
eukaryotic gene circuits—the lack of binding specificity—that
no equilibrium mechanism can address.

Equilibrium Regulatory Schemes May Be Sufficient in Many
Real Biological Systems. While activator proofreading may be
critical whenw/c is large, our analysis suggests that it is unlikely to
constitute a universal constraint on gene regulatory architectures.
Indeed, even relatively simple equilibrium architectures with 3 to
5 binding sites should suffice to drive timely cellular decisions in
“low-interference” systems such as the fruit fly embryo (Fig. 4C ).
Moreover, while simple estimates based on genomic transcription
factor abundances suggest that many eukaryotic systems may
exceed the w/c = α interference limit, these estimates likely
represent upper bounds on w/c, since different cell types
selectively express distinct subsets of transcription factors (48).
In addition, we note that the relative size of the concentration
difference between c1 and c0 (δc/c)—which we assumed to be
0.1—plays a key role in dictating the information transmission
rate, Eq. 2 and will vary across different biological contexts.

Different Frameworks for Examining the Impact of Noncognate
Factor Binding. In considering the impact of noncognate factor
binding, we drew inspiration from a previous study examining
competition between cognate and noncognate transcription
factors to bind and activate a single gene locus (41). This
formulation of the problem is distinct from the approach taken in
two recent works, which addressed the problem of specificity from
the perspective of a single activator species that interacts with two
different gene loci: a cognate (with specific binding sites) and a
noncognate locus (without specific binding sites) (14, 18). While
both approaches have proven fruitful, we favor the “single-locus”
approach, since it captures the effects of competitive binding
between different species, which is an unavoidable reality of
crowded cellular environments.

Moreover, this shift in perspectives has meaningful conse-
quences. A previous study found that the equilibrium limit
of f = α could only be achieved at the cost of high levels
of transcriptional noise (14). Yet, we find that this tradeoff
evaporates once competition between cognate and noncognate
factors is considered since f becomes fixed at α in this case (Fig.
5B). Additionally, previous studies have reported transcriptional
sharpness as a potential indicator of nonequilibrium optimization
(11, 17). Our analysis reaffirms this idea but, crucially, reveals
that one must consider the relative concentration of noncognate
factors (w/c) to accurately assess whether a system is performing
above the equilibrium limit since this limit decreases as w/c
increases (Fig. 6 A and B).

Future directions. While we have considered gene loci with
varying numbers of specific activator binding sites, real enhancers
also contain significant stretches of “neutral” DNA with no
binding sites, as well as weak activator sites that fall below typical
thresholds used to identify specific sites (22, 49). This focus on
specific sites is widespread in theoretical studies of transcription
(3, 11, 17, 41), despite the well-established importance of weak
binding sites in the context of certain genes (49–51). We propose
that the kinetic models utilized herein could readily be extended
to feature some combination of specific and neutral sites. More
ambitiously, the field would benefit from the introduction
of nonequilibrium models that account for the reality that
transcription factors interact with a continuum of sites along
enhancer DNA.

On the experimental side, we advocate for the expanded use
of theoretically tractable synthetic enhancer systems in which the
number and identity of binding sites can be well established.
Several recent studies constitute promising steps in this direction
(11, 22, 52, 53). Additionally, synthetic transcription factor
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systems that can act orthogonally to endogenous regulatory
networks represent an intriguing platform for investigating
transcriptional specificity (54). Lastly, statistical methods that
infer how transcription factors impact the kinetics of burst-
ing (30, 31, 55) hold promise for connecting macroscopic
experimental measurements to microscopic theoretical models
of transcription. Looking ahead, holistic research that integrates
cutting-edge experiments, statistical methods, and theory will
be key to bridging the as yet yawning gap between enhancer
sequence and gene regulatory function.

Methods

Gene circuits were modeled as stationary Markov processes (SI Appendix).
Calculations where performed using Mathematica and Matlab.

Data, Materials, and Software Availability. Codebase containing scripts for
calculations and simulation results used in the main text and appendices,
data have been deposited in https://github.com/nlammers371/noneq-gene-
regulation.git (NA).
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global crosstalk. Nat. Commun. 7, 1–12 (2016).
45. D. D. Le et al., Comprehensive, high-resolution binding energy landscapes reveal context

dependencies of transcription factor binding. Proc. Natl. Acad. Sci. U.S.A. 115, E3702–E3711
(2018).

46. J. W. Biddle, R. Martinez-Corral, F. Wong, J. Gunawardena, Allosteric conformational ensembles
have unlimited capacity for integrating information (2020).

47. A. Murugan, D. A. Huse, S. Leibler, Speed, dissipation, and error in kinetic proofreading. Proc. Natl.
Acad. Sci. U.S.A. 109, 12034–12039 (2012).

48. M. Choudhury, S. A. Ramsey, Identifying cell type-specific transcription factors by integrating
ChIP-seq and eQTL data-application to monocyte gene regulation. Gene Regul. Syst. Biol. 10, 105
(2016).

49. A. Shahein et al., Systematic analysis of low-affinity transcription factor binding site clusters in vitro
and in vivo establishes their functional relevance. Nat. Commun. 13, 5273 (2021).

50. J. Crocker et al., Low affinity binding site clusters confer hox specificity and regulatory robustness.
Cell 160, 191 (2015).

51. E. K. Farley et al., Suboptimization of developmental enhancers. Science (New York, N.Y.) 350, 325
(2015).

52. S. Alamos et al., Minimal synthetic enhancers reveal control of the probability of transcriptional
engagement and its timing by a morphogen gradient. Cell Syst. (2023), https://doi.org/10.1016/j.
cels.2022.12.008.

53. Y. J. Kim et al., Predictive modeling reveals that higher-order cooperativity drives transcriptional
repression in a synthetic developmental enhancer. eLife 11, 1–35 (2022).

54. J. Crocker, D. L. Stern, TALE-mediated modulation of transcriptional enhancers in vivo. Nat. Methods
10, 762–767 (2013).

55. J. R. Bowles, C. Hoppe, H. L. Ashe, M. Rattray, Scalable inference of transcriptional kinetic
parameters from MS2 time series data. Bioinformatics 38, 1030–1036 (2022).

12 of 12 https://doi.org/10.1073/pnas.2211203120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 D
IG

IT
A

L
 L

IB
R

A
R

Y
 o

n 
M

ar
ch

 3
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

13
6.

15
2.

14
3.

21
5.

https://www.pnas.org/lookup/doi/10.1073/pnas.2211203120#supplementary-materials
https://github.com/nlammers371/noneq-gene-regulation.git
https://github.com/nlammers371/noneq-gene-regulation.git
https://doi.org/10.1016/j.cels.2022.12.008
https://doi.org/10.1016/j.cels.2022.12.008

	Results
	A Simple Model for Probing the Interplay Between Energy and Information in Transcription
	Calculating Energy Dissipation Rates and Decision Times
	Energy Dissipation Increases the Rate of Information Transmission
	Increases in Nonequilibrium Sharpness Improve Information Transmission
	Energy Dissipation Is Required for Rapid Cellular Decisions at High Noncognate Factor Concentrations
	Noncognate Factor Concentration Defines Performance Tradeoffs Between Sharpness and Specificity
	Predicting Experimental Signatures of Nonequilibrium Processes in Transcriptional Regulation

	Discussion

