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Abstract

The ability to regulate gene expression is of central importance for the adaptability

of living organisms to changes in their external and internal environment. At the

transcriptional level, binding of transcription factors (TFs) in the promoter region can

modulate the transcription rate, hence making TFs central players in gene

regulation. For some model organisms, information about the locations and

identities of discovered TF binding sites have been collected in continually updated

databases, such as RegulonDB for the well-studied case of E. coli. In order to

reveal the general principles behind the binding-site arrangement and function of

these regulatory architectures we propose a random promoter architecture model

that preserves the overall abundance of binding sites to identify overrepresented

binding site configurations. This model is analogous to the random network model

used in the study of genetic network motifs, where regulatory motifs are identified

through their overrepresentation with respect to a ‘‘randomly connected’’ genetic

network. Using our model we identify TF pairs which coregulate operons in an

overrepresented fashion, or individual TFs which act at multiple binding sites per

promoter by, for example, cooperative binding, DNA looping, or through multiple

binding domains. We furthermore explore the relationship between promoter

architecture and gene expression, using three different genome-wide protein copy

number censuses. Perhaps surprisingly, we find no systematic correlation between

the number of activator and repressor binding sites regulating a gene and the level

of gene expression. A position-weight-matrix model used to estimate the binding

affinity of RNA polymerase (RNAP) to the promoters of activated and repressed

genes suggests that this lack of correlation might in part be due to differences in
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basal transcription levels, with repressed genes having a higher basal activity level.

This quantitative catalogue relating promoter architecture and function provides a

first step towards genome-wide predictive models of regulatory function.

Introduction

One of the most impressive accomplishments in molecular biology over the past

half-century has been the mapping of thousands of gene interactions to create

genetic networks for a broad collection of organisms. Such maps have made it

possible to qualitatively understand how groups of genes can together provide

important functionality. Still, the genetic network descriptions leave us with a

picture of the regulatory landscape that is not quantitatively predictive. Although

impressive, genetic networks do not provide us with all the information necessary

to make concrete predictions, such as the number of proteins produced of a given

kind under particular environmental conditions, not the least because the notions

of ‘activation’ and ‘repression’ are often inherently verbal rather than quantitative.

The amount of activation or repression achieved by transcription factors (TFs)

can vary by many orders of magnitude, depending on how tightly TFs bind to the

promoter of interest [1] and many other factors. Moreover the resulting response

curves depend on promoter architecture, i.e. the particular configuration of TF

binding sites. For example, a repressor that blocks a promoter through DNA

looping (e.g. LacI) has been shown to have a steeper response curve than its

unlooped counterpart [2]. Furthermore, genetic networks do not tell if the TF that

is supposed to regulate a gene is actually present in the cell at all, which might not

be the case if it is inactivated through nucleosomal organization or by chromatin

remodeling complexes [3, 4].

For genetic networks to be predictive tools in biology they need to be be

augmented with quantitative descriptions of the census of regulatory players. Our

goal with the present paper is to take a step in this direction by studying the role

of promoter architectures in transcriptional regulation, from a genome-wide

point of view. No organism offers a better opportunity to do so than E. coli, which

after more than half a century of intense study demonstrates the most well

understood regulatory network. Through ambitious efforts many cold and hard

facts about transcriptional regulation in E. coli have been collected and made

easily accessible in databases like RegulonDB [5] and EcoCyc [6]. These contain

information including, but not limited to, which TFs regulate different operons,

where they bind to promoters, and their regulatory effect (activation or

repression). All of these features play an important role in transcriptional

regulation. A TF which binds cooperatively to multiple binding sites, either

through direct contact or DNA looping, provides a steeper regulatory response,

typically reported by Hill coefficients, than TFs binding just a single site [7]. The

position of binding sites play an equally important role. In experiments where a
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single repressor binding site has been systematically moved along the promoter

region [8–11], the repression shows a clear dependence on position, interestingly

featuring a 10–11 bp modulation following the periodicity of the DNA helix.

In this paper we study both the positions and multiplicities of TF binding sites

in E. coli, for the 2500 or so known TF-DNA interactions in RegulonDB 8.5. A

challenge inherent in using RegulonDB, EcoCyc, or any other biological database

as primary information source is that the data is inevitably incomplete. More than

half of the genes in E. coli still lack any regulatory annotation, including important

genes such as those responsible for mechanosensation. We must therefore be

cautious when interpreting our results. Whereas there is no obvious reason that,

for example, binding site positions are biased, the absolute number of binding

sites is almost certainly underestimated. This assertion is supported by the fact

that the rate of newly discovered TF binding sites does not show any sign of

slowing down, thanks to the advent of powerful techniques such as ChIP-seq [12]

and Sort-Seq [13]. A healthy skepticism from the reader is thereby encouraged

and the results should be viewed as provisional until more of the underlying

regulatory facts are in hand.

We view the work presented here as a step towards using promoter

architectures to give a more detailed understanding of transcriptional regulation

than can be given by a genetic network map alone. Hopefully these findings can

also provide valuable input for the theoretical dissection of transcription

regulation, which has shown increasing capability to make distinct predictions for

the response function of different promoter architectures [14–17]. Perhaps most

importantly, the analysis presented here shows how far short the current factual

understanding of regulatory architectures and measured expression levels falls

from serving as a predictive framework, and thus should be seen as a call for

higher predictive expectations and a more rigorous treatment of the relation

between regulatory architecture and input-output functions.

Models

Random promoter architecture model

Following the classic method of random graphs [18], biological networks have

been compared to randomly constructed networks to find network motifs,

corresponding to recurring patterns in the connections between genes, which are

overrepresented compared to a random graph [19]. One well-studied network

motif is the feed-forward loop, where a single gene is regulated by two TFs, and in

addition one of the TFs regulates the other. Network motifs are presumedly

selected for in biological systems because of functionality they provide, for

example, robustness against concentration fluctuations of regulatory molecules.

We similarly use a random assignment of TFs to create a null model of promoter

architecture, and identify overrepresented promoter architectures motifs deviating

from this expectation. For this we need to introduce a random promoter
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architecture model, to be used as reference for identifying overrepresented reported

promoter architectures.

TF binding sites can be both lost and gained due to the steady pace of

mutations across the genome. If we assume that these mutations occur randomly

and uniformly across the genome, then in the absence of selection any specific

distribution of a given number of TF binding sites over a set of operons would be

as probable as any other. If a certain class of promoter architecture occurs more

frequently in real regulatory networks than in this null model, we expect them to

encode biological functions which are advantageous. The simple approach we will

adopt to implement a random promoter architecture is therefore to imagine all

binding sites reported in RegulonDB as being ‘‘sprinkled’’ over all operons with

uniform probability. The mathematical implications of this simple postulate will

be developed here, saving for the Results section the task of identifying promoter

architecture motifs and how they differ from this simple null model.

As a first application of the random promoter architecture model we will look

at the distribution of number of binding sites per operon. Throughout this work

we will consider binding sites for a given TF as indistinguishable even if they have

a different DNA sequence. Additionally, we define an operon as a cluster of

transcriptional units, containing one or more protein coding sequences and one

or more promoters which initiate transcription in the same direction to create

mRNAs which carry the protein coding sequences. While some transcriptional

units express RNA with no protein coding sequences, we ignore these cases for the

time being. For this model we also explicitly neglect cases where one binding site

can regulate more than one operon. In fact, only a small number of binding sites

are known to regulate multiple operons (9% in RegulonDB 8.5). With these

assumptions we can describe the random model of promoter binding site

architecture.

There are 2871 TF binding sites listed in RegulonDB 8.5, and Nop~2642
operons. We first consider the distribution of a single type of TF binding site with

Nbs copies. The probability Pbs(m; Nbs) of a given operon to have exactly m
binding sites assigned is described by the binomial distribution

Pbs(m; Nbs)~
Nbs

m

� �
1

Nop

� �m

1{
1

Nop

� �Nbs{m

ð1Þ

(m~0, 1, 2, . . . )

Here
Nbs

m

� �
is the number of ways to choose a set of m binding sites from the

pool of Nbs sites, (1=Nop)m is the probability that they are all assigned to a given

operon, and (1{1=Nop)Nbs{m is the probability that the rest of the bindings sites

are assigned to the other operons.
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Since the probability is small for a binding site to be assigned a particular

operon, namely 1=Nop, the binomial distribution can be approximated by a

Poisson distribution with mean l~
Nbs

Nop
. For the numbers of Nbs and Nop given by

RegulonDB 8.5 the Poisson approximation is valid to within 1% for m *v 10,

which covers 98% of the operons in the dataset. However, for very highly

regulated operons the Poisson approximation should not be used.

We can generalize the distribution in to incorporate several types of binding

sites [see Eq. (2)], say activators or repressors, or different particular TFs. Since all

binding sites are assumed to be independently distributed, the probability

distribution P2 bs(m1,m2; N (1)
bs ,N (2)

bs ) for an operon to end up with m1 binding sites

(from a total of N (1)
bs ) of one type and m2 binding sites (from a total of N (2)

bs ) of a

second type will be given by an independent product of two binomial

distributions

P2 bs(m1,m2; N (1)
bs ,N (2)

bs )~Pbs(m1; N (1)
bs )Pbs(m2; N (2)

bs ) ð2Þ

~
N (1)

bs

m1

 !
N (2)

bs

m2

 !
1

Nop

� �m1zm2

1{
1

Nop

� �N(1)
bs

zN(2)
bs

{m1{m2

: ð3Þ

Several TFs in E. coli preferentially bind to multiple binding sites at a given

promoter, for example NarP binds to two sites or more at 10 out of 11 regulated

operons according to RegulonDB 8.5. Such examples of operator multiplicity can

occur due to cooperative contacts between the protein copies, or due to other

reasons such as multiple transcription start sites and other TF interactions. How

can we rigorously define the level at which binding sites of a TF cooccur around a

promoter? Simply looking at the absolute number of operons with multiple

binding sites is not a good measure of clustering of a TF at a promoter, as it does

not take into account the total number of binding sites available. A global TF

[20, 21] with hundreds of binding sites will likely bind at multiple sites at several

promoters simply by chance.

We use the random promoter architecture model to derive the probability

Pco(M; Nbs) for M operons to be regulated by at least two binding sites for the

same TF, as a function of the total number of binding sites Nbs for that TF

(Nbs§2M). To find the number of ways Nbs binding sites can be distributed over

Nop operons, with two or more sites at M of these, we first choose M operons, in

any of
Nop

M

� �
ways, and assign two binding sites to each of them. See illustration

Fig. 1(A) for a schematic description of the model. Next we put k of the remaining

Nbs{2M binding sites into k of the remaining Nop{M operons (i.e. one binding

site per operon), which we can choose in
Nop{M

k

� �
ways. Finally we put the
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remaining Nbs{2M{k binding sites into the M operons, which already have two

binding sites, however we want. The number of ways this can be done equals the

number of nonnegative integer solutions to the equation x1zx2z � � �zxM~

Nbs{2M{k, a famous problem from combinatorics which is equivalent to the

number of ways of placing (Nbs{2M{k) identical balls into M bins, with

Nbs{M{k{1
M{1

� �
solutions. To find the probability Pco(M; Nbs) we sum over k

and divide by the total number of ways to distribute Nbs binding sites over Nop

operons, which according to the same argument as above is given by

NbszNop{1
Nbs

� �
, resulting in (for Mƒ min (Nop,tNbs=2s))

Fig. 1. Combinatorics for distribution of binding sites across the genome. (A)M operons with at least two
binding sites, and k operons with exactly one binding site. The remaining Nop{M{k operons are empty. (B)
M operons with at least one binding site of each kind, and k operons with at least one binding site of first kind
but none of the second. The remaining NopMk operons are either empty or have only binding sites of the
second kind.

doi:10.1371/journal.pone.0114347.g001
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Pco(M; Nbs)~
1

NbszNop{1

Nbs

� � X
0ƒkƒ min (Nop{M,Nbs{2M)

ð4Þ

|
Nop

M

� �
Nop{M

k

� �
Nbs{M{k{1

M{1

� �
: ð5Þ

By using the continuous definition of binomial coefficient
x
y

� �
~

C(xz1)

C(yz1)C(x{yz1)
where C(x) is the gamma function [22], Eq. (5) gives us the

right probability also for M~0, namely Pco(0; Nbs)~
Nop

Nbs

� �
=

NbszNop{1
Nbs

� �
when Nop§Nbs, and Pco(0; Nbs)~0 when NopvNbs.

We can generalize this problem and analyze whether binding sites of a pair of

TFs tend to cluster together. TF pairs which coregulate operons more frequently

than suggested by the random promoter architecture model are more likely to

have related biological function. Let N (1)
bs and N (2)

bs be the number of binding sites

for two different types of TFs. As above we start by choosing M operons where we

put one binding site of each kind. Next we put the remaining N (1)
bs {M binding

sites of first type into the M ‘‘shared’’ operons plus an additional of k operons,

which we can choose in
Nop{M

k

� �
ways, with at least one binding site in each.

Fig. 1(B) gives a schematic of this procedure. The number of ways this can be

done equals the number of integer solutions to the equation below with the given

constraints

x1z . . . zxM|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
xi§0

z xMz1z . . . zxMzk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
xi§1

~N (1)
bs {M: ð6Þ

After subtracting k from both sides one realizes that the number of solutions to

this equation equals the number of nonnegative integer solutions to the simpler

Eq. (7), with ~xi~xi{1,

x1z . . . zxMz~xMz1z . . . z~xMzk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
xi§0

~N (1)
bs {M{k, ð7Þ

which is given by
N(1)

bs {1
Mzk{1

� �
. Next we distribute the remaining N (2)

bs {M

binding sites of the second kind onto any of the operons, except from the k
operons dedicated for binding sites of the first kind only. This can be done in
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Nop{kzN (2)
bs {M{1

N (2)
bs {M

 !
ways. We find the probability P2 co(M; N (1)

bs ,N (2)
bs ) for M

operons (Mƒ min (Nop,N (1)
bs ,N (2)

bs )) to be regulated by at least one binding site of

each type by summing over k and dividing by the total number of binding site

arrangements, which is given by
NopzN (1)

bs {1

N (1)
bs

 !
NopzN (2)

bs {1

N(2)
bs

 !
, resulting in

P2 co(M; N (1)
bs ,N (2)

bs )~
1

NopzN (1)
bs {1

N (1)
bs

 !
NopzN (2)

bs {1

N (2)
bs

 !|

Xmin (N(1)
bs

{M,Nop{M)

k~0

Nop

M

� �
Nop{M

k

� �
N (1)

bs {1

Mzk{1

 !

|
Nop{kzN(2)

bs {M{1

N (2)
bs {M

 !
: ð8Þ

As a sanity check we use MATHEMATICA to see that the probabilities add up to

one.

We can also compare with earlier work, which solved essentially the same

problem but under the assumption that binding sites, even of the same kind, are

distinguishable [23]. However, as long as the probability is small that two binding

sites regulate the same operon the two methods will give similar results, just like

Fermi-Dirac statistics approaches Boltzmann statistics in dilute systems [24].

A different method to identify TF cooperativity based on mutual information

from ChIP data was used in [25]. The advantage of the random promoter

architecture model is that it resolves biasing due to differences in number of TF

binding sites, and allows us to determine both the expected number of

coregulated operons and also the associated p-value of any given observation: i.e.

the probability of an equal or more extreme outcome with respect to the random

promoter architecture model. This will become useful in the Results section where

we want to identify TF binding motifs in the reported distributions from

RegulonDB.

Linear energy model of RNAP-DNA binding

The binding affinity of RNAP to the promoter of a gene is determined by the

nucleotide sequence of the promoter and has a strong influence on the

transcription rate of the gene [17]. The more effectively a promoter can recruit

Promoter Architectures and Escherichia coli Gene Expression
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RNAP and initiate open complex formation, the higher the transcription rate of

the gene will be. Creating a predictive map between DNA sequence and RNAP

binding affinity is a problem which has received much attention [13, 26–29]. One

of the simplest but yet most successful approaches to the modeling of RNAP-DNA

(or TF-DNA) interactions is to assume independent energy contributions from

each individual nucleotide in the binding sequence. Under this linear assumption

the total binding energy of a sequence S can be expressed as a simple matrix trace

E(S)~
XL

i~1

X
j~A,C,T,G

Mi,jSj,i~Tr(MS), ð9Þ

where SA=C=T=G,i~1 if the identity of the base at nucleotide position i in the

sequence is given by A=C=T=G and otherwise SA=C=T=G,i~0, Mi,A=C=T=G represents

the energy contribution at position i for base A=C=G=T respectively, and L is the

length (in base pairs) of the binding sequence.

Despite having considered all promoter types up until this point, we now focus

our attention on promoters associated with the sigma factor s70, which is called

the ‘‘housekeeping’’ sigma factor of E. coli. The RNAPs70 complex has two

binding domains which may interact with the promoter at the 235 and 210

signals upstream of the transcription start site (+1) [30]. In this study we compute

the binding energy from these two signals separately using the energy matrix Mi,j

of Brewster et al. [26]. Starting with two position weight matrices for the two

signals, we place the ‘‘210 box’’ signal at the 29, 210, or 211 position and the

‘‘235 box’’ signal 22–24 bp upstream from the 210 box. Thus we allow 9 possible

configurations for each pair of 210 and 235 boxes, and choose the one with the

lowest binding energy according to the reference energy matrix [26].

The commonly used occupancy hypothesis [9, 14], states a linear relationship

between the transcription rate of a gene and the probability of its promoter being

occupied by RNAP. This probability is, according to the Boltzmann distribution,

proportional to e{E(S)=kBT for systems in (quasi)equilibrium, an approximation

which can be made if RNAP homogenizes throughout the cell at a much higher

rate than that at which they are being produced. Despite its simplicity in ignoring

details of open complex formation and promoter escape rate, the occupancy

hypothesis has proved surprisingly successful in many different settings [1, 9, 26].

Results

How many genes do TFs regulate?

Genes of related biological function are often coregulated. For example a flagellum

in E. coli consists of roughly forty different proteins [31] present at precise copy

number ratios. Not all the flagellar genes are contained within the same operon,

but instead these forty coding regions are transcribed from roughly ten different

operons [6] (Fig. 2(A)). Coregulation of these operons allows the flagellar
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proteins to be expressed at precise ratios, a task which is handled by the TFs FlhC

and FlhD in E. coli. However, other biological functions correlate with the

production of flagella. For example production of sugar receptors in the cell

membrane such as MglBAC, necessary for chemotaxis, are also regulated by FlhC

and FlhD.

In general we expect ‘‘correlated genes’’ to be regulated by the same TFs, and

the question we will address in this section is: How many correlated genes are

typically regulated by the same TFs? In Fig. 2(B) we show the number of operons

that are regulated by the same TF as reported by RegulonDB 8.5. By counting the

number of coding sequences within each operon we also display the number of

regulated genes per TF. Finally, in Fig. 2(B) we show the number of binding sites

for each TF. The numbers provide a lower estimate of the actual E. coli regulatory

network, acknowledging the fact that not all binding sites have yet been

discovered. The figure reveals two almost separate groups of TFs: a large number

of specific TFs which regulate only a few operons, and a mere handful of global TFs

[20, 21] regulating up to a hundred operons [see Table 1] each. Half of all TFs

regulate two operons or less, suggesting that, unlike the construction of flagella,

many operons in E. coli are not strongly correlated and encode all of the proteins

necessary for a particular phenotype. For example, in response to varying levels of

copper in the cytoplasm ComR reportedly regulates only one single gene, bhsA,

which alters the outer cell membrane permeability for copper [32]. Global TFs,

Fig. 2. Number of operons, genes and binding sites regulated per TF (RegulonDB 8.5.) (A) Schematic of operons regulated by the FlhCD TFs
according to RegulonDB 8.5. (B) The TFs have been sorted by increasing number of interactions, and the dark shaded area highlights the TFs responsible
for 50% of all regulatory interactions in E. coli, which we denote as global TFs. The median number of operons, genes (coding sequences) and binding sites
regulated per TF is 3, 4 and 6.5, respectively. The number of regulated genes is calculated by taking into account how many coding sequences are
contained within each operon.

doi:10.1371/journal.pone.0114347.g002
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which regulate core activities in the cell, for example metabolic pathways (e.g.

CRP) or the rRNA of the translational machinery (e.g. Fis), are the exceptions to

this rule. Despite the small number of global TFs, these are involved in roughly

half of all reported regulatory interactions.

To evaluate the regulatory complexity of a promoter, we can conversely

consider the number of TFs regulating each operon. The more TFs regulating an

operon, the more specific its response might be to various cellular conditions.

Note that here we will consider operons regulated by any of the E. coli s subunits.

As a result, the numbers below are certain to change if restricting the analysis to

s70. In Fig. 3 we show the number of TF interactions and number of different TF

types regulating operons as reported by RegulonDB 8.5. The average number of

TF binding sites per operon is only 1.1, but climbs to 3.5 when excluding operons

without known regulatory interactions. This observation suggests that data in

RegulonDB is, to some extent, collected ‘‘one operon at a time’’ where the

attention of the research community is focused on one operon before moving to

the next one. There is an approximately exponential decrease (see fit) in the

reported number of operons as a function of the number of their regulatory

interactions. To see if the binding site multiplicity profiles differ between global

TFs and specific TFs we show in S2 Fig. the profiles for these two groups

separately, but find no significant differences. It is perhaps surprising that even for

such a well studied organism as E. coli more than half of the genes still lack any

regulatory annotation. Among these unannotated genes we find important

examples such as the genes responsible for mechanosensation mscS, mscL, mscK,

ynal, ybio and ybdG. Preliminary results from our lab based on the method of

Sort-seq [13] show that at least some of these genes might in fact be regulated.

Other notable genes lacking regulatory annotation include: lpp, a lipoprotein

believed to be one of the most abundant proteins in E. coli [33]; rep, a helicase

required for genomic replication [34]; kdpD and nhaB, genes related to regulation

of potassium [35] and sodium [36] levels in the cell. Nevertheless, it is still clear

that many genes in E. coli do not strictly depend on TFs to be transcribed. This is

Table 1. Global TFs and their associated number of binding sites, the number of operons regulated, and the total number of genes (coding sequences)
regulated by each TF (RegulonDB 8.5).

TF Operons Genes Binding sites

CRP 221 495 320

FNR 108 296 131

Fis 96 225 237

IHF 76 219 114

H-NS 70 179 105

ArcA 64 172 118

Fur 63 129 122

Lrp 41 103 103

See S1 Table for a corresponding table that includes specific TFs. The notion of global TF is not unambiguously defined, and the list presented here might
therefore differ slightly from that used in other works [90, 91].

doi:10.1371/journal.pone.0114347.t001
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in contrast with eukaryotic transcription where general TFs are necessary for the

promoter recognition and transcription initiation process.

We can compare the observed distribution of number of TF interactions per

operon with the random promoter architecture model [see Models]. Looking at

Fig. 4(A) we see some notable differences between the random promoter

architecture model and the observed distribution. A larger number of operons are

reported as unregulated in RegulonDB 8.5 than expected from the random

promoter architecture model. Some TFs tend to bind to multiple sites per operon,

which could result in a higher number of unregulated operons as compared to the

random architecture model. We will address this in more detail below. Another

explanation for the high number of unregulated operons could simply be that

RegulonDB 8.5 is inherently biased and reports a higher fraction of unregulated

operons than the actual value. The logic behind this hypothesis is that those

operons for which there are known binding sites correspond in general to those

that have been studied carefully, whereas many operons with no annotated

binding sites simply have not been studied in detail. To consider the later

possibility we modified the random promoter architecture model to exclude

operons with no known regulatory interactions. In this case we update the

prediction of the random promoter architecture model [Eq (2)] by first assigning

one binding site to each of N (reg)
op regulated operons. Then we randomly distribute

the remaining Nbs{N (reg)
op binding sites on the N (reg)

op operons, as in Eq (2), leading

to

Fig. 3. Number of binding sites and TF types regulating each operon (RegulonDB 8.5). The mean
number of binding sites per operon is 1.1 (3.5 for operons with at least one known binding site). The best
exponential fits (in log-space) are shown in the figure as dashed lines. These fits are expected to change as
more binding sites are discovered.

doi:10.1371/journal.pone.0114347.g003
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In Fig. 4(A) we now observe an overrepresentation of operons regulated from a

single binding site, compared to the random promoter architecture model

(compare black and blue dashed lines). This supports the idea that E. coli generally

favors simple regulatory strategies when possible. In S3 Fig. we show that this

conclusion holds separately for both global TF and specific TF binding sites. There

is also a small group of highly regulated operons. For example gadAXW, coding

for genes in the acid resistance system [37], is regulated by 35 TF binding sites.

The operon csgDEFG, coding for genes that regulate the assembly and transport of

extracellular amyloid fibres (known as Curli) [38], is regulated by 33 TF binding

sites. Finally the operon glpTQ, shown schematically in Fig. 4(B), coding for genes

responsible for the uptake and processing of glycerol-3-phosphate [39–41], is

regulated by 21 binding sites for five different TFs. These promoter architectures

Fig. 4. Number of TF binding sites per operon. (A) Distribution of number of TF binding sites per operon in
RegulonDB 8.5 and the random promoter architecture model. Shown separately are distributions after
excluding unregulated operons (‘‘regulated only’’). (B) The glpTQ operon is regulated by 21 binding sites for
five different TFs.

doi:10.1371/journal.pone.0114347.g004
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could virtually never (Pv10{20, Eq. (2)) occur in the random promoter

architecture model, and might as such be of interest for further study.

We can also use the random promoter architecture model to study the number

of TF interactions per operon for particular TFs. We expect this number to be

higher than suggested by the random promoter architecture model since a TF can,

for example, regulate an operon cooperatively from multiple sites. As an example

the well-studied Lac repressor has three known binding sites in E. coli [2], all

regulating the same operon (lacZYA). Had these three sites been randomly

distributed over all operons, it would have been an unlikely outcome for them all

to regulate the same operon. In Table 2 we show the number of operons regulated

at multiple binding sites for a given TF, both in RegulonDB 8.5 and as predicted

by the random promoter architecture model [Eq. (5)]. Many of these TFs differ

very significantly from the random promoter architecture model, which could be

indicative of multiple TF binding domains (e.g. OxyR [42], ArgR [43]),

cooperative binding (e.g. TyrR [44]), TFs which repress operons by DNA looping

(e.g. NagC [45]), or chromosomal restructuring through repeated TF binding

(e.g. Fis [46]). In Fig. 5 we show the specific example of OxyR regulating the fhuF

gene at four different binding sites. Interesting exceptions include Rob and MarA,

which despite being common regulators do not bind to multiple binding sites at a

single operon. Thus the random promoter architecture model allows us to identify

TFs of special interest.

With a large number of targets we expect global TFs to be more abundantly

expressed in the cell, to avoid running the risk of depleting the reservoir of TFs

and hence the TF losing its ability to function effectively [47, 48]. In Fig. 6, we

explore the relationship between TF copy number and corresponding number of

binding sites, using three different genome-wide protein copy number censuses

Table 2. TFs which are significantly enriched for multiple binding sites per operon, compared to the random promoter architecture model.

TF
Total number of
binding sites

Operons regulated by
multiple binding sites
(RegulonDB)

Operons regulated by multiple
binding sites (random promoter) p-value

OxyR 44 19 0.69 1.9610231

ArgR 34 15 0.41 3.4610227

NarP 21 10 0.16 7.7610222

NarL 98 25 3.3 1.4610219

Fis 237 52 18 2.7610217

TyrR 19 8 0.13 2.0610216

FlhDC 30 10 0.32 1.0610215

IHF 114 25 4.5 1.5610215

CRP 320 67 31 3.5610214

CytR 23 8 0.19 4.8610214

NagC 23 8 0.19 4.8610214

The p-value for data in RegulonDB 8.5 is given by the probability of an equal or more extreme outcome in the random promoter architecture model. The
particular example of OxyR regulating the fhuF at four binding sites is shown in Fig. 5. An extended version of Table 2, covering 115 TFs, is available in S2
Table.

doi:10.1371/journal.pone.0114347.t002
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based on fluorescence measurements [49], mass spectrometry [50], and ribosomal

profiling [51]. We find a statistically significant positive correlation in the data set

based on ribosomal profiling (log-log slope50:61+0:085), but not in the data sets

based on fluorescence measurements (log-log slope50:14+0:18) or mass

spectrometry (log-log slope50:01+0:17). Here, we estimate the uncertainty in

the linear fit parameter using the method of bootstrapping [52]. Large systematic

deviations in the protein censuses [S1 Fig.] makes them difficult to use as means

for model testing.

Naively one could also imagine highly expressed genes to be subject to more

regulation, because expressing too many of these would be energetically costly and

expressing too few could have serious consequences to the fitness of the cell. By

combining binding site multiplicities from RegulonDB 8.5 with the same protein

copy number censuses [49–51] we can explore the possible relationship between

these two quantities. In Fig. 7 we show the number of protein copies of a gene

product as a function of the number of TF binding sites regulating the gene’s

expression (RegulonDB 8.5). The fluorescence based census shows a weak positive

relation (log-log slope50:20+0:13) between these two magnitudes, the mass

Fig. 5. fhuF regulation. The TF OxyR is enriched for regulating genes at multiple binding sites as shown in
Table 2. For example fhuF is regulated by four binding sites for OxyR.

doi:10.1371/journal.pone.0114347.g005

Fig. 6. TF copy number plotted as a function of the total number of TF binding sites (RegulonDB 8.5)
for that particular TF. The TF copy number is measured in [49–51]. The two lines mark the critical boundary
where the number of binding sites is large enough to deplete TFs binding as monomers (solid) or dimers
(dashed). Updated version of figure published in [47].

doi:10.1371/journal.pone.0114347.g006
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spectrometry census shows no significant relation (log-log slope50:02+0:08),

while the census based on ribosomal profiling presents a statistically significant

negative relation ({0:17+0:072). Again, the disagreement between the three

protein censuses, shown in S1 Fig., makes it difficult to draw any definite

conclusion regarding the relationship between gene regulation and protein

expression and demonstrates a need for more rigor in the quantitative analysis of

these problems.

How are activator and repressor binding sites configured?

Many genes need to be expressed only under conditions satisfying some

‘‘combinatorial rule’’. For example the b-galactosidase enzyme LacZ in E. coli,

which cleaves lactose, is only highly expressed if lactose is present and glucose, the

more favored energy source, is not present [53]. A general combinatorial

promoter is regulated by one or more activators and repressors. Such

combinatorial control requires multiple TFs to either activate and repress a gene,

and the configuration of the two types of interactions determines the regulatory

response. In this section we will study promoter architectures in more detail and

their influence on gene expression.

To classify promoter architectures we adopt the notation (A,R) for a promoter

regulated by A activator and R repressor binding sites. Using RegulonDB we can

easily find the distribution P(A,R) for (A,R) with respect to all known regulatory

interactions in E. coli. We show the most dominant promoter architectures and

some specific examples in Fig. 8, along with their expected frequency in the ‘‘two-

TF’’ random promoter architecture model described in Models [Eq. (3)]. We see

an almost equal use of repressors and activators, 53% vs. 47% interactions, and for

each promoter architecture (m,n) shown in Fig. 8(A) its symmetric counterpart

(n,m) is almost equally present, both in absolute numbers and compared to the

random promoter architecture model. Using the random promoter architecture

model we can identify TF pairs which coregulate operons more frequently than

Fig. 7. Measured protein copy number vs. number of TF binding sites regulating the transcription of the protein. The boxes show median, upper and
lower quartiles, and the dashed lines show the range of the data. Protein data based on (A) fluorescence measurements [49], (B) mass spectrometry [50],
and (C) ribosomal profiling [51].

doi:10.1371/journal.pone.0114347.g007
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one would expect by chance, a possible sign of TF-TF interactions or two TFs with

otherwise related biological function [25]. In Table 3 we list the ten most such

overrepresented TF pairs. The top pairs are all possible pairwise combinations of

the MarA, SoxS and Rob TFs. These TFs are all paralogous proteins, having

around 45% identical amino acid sequence at their N-terminals [54], responsible

for regulating various stress responses. Note that some TFs might recognize

similar or identical DNA sequences. In fact, this is the case of SoxS, Rob and MarA

[55], and GalR and GalS [56]. FNR and ArcA are both global regulators

responding to the availability of oxygen [57] in the cellular environment. NarL

Fig. 8. Frequency of promoter architectures. (A) Frequency of the most dominant promoter architectures listed in RegulonDB 8.5, and their
corresponding frequency in the random promoter architecture model. Binding site configurations with A activator and R repressor binding sites are denoted
by (A,R). (B) Examples of some of the architectures featured in (A).

doi:10.1371/journal.pone.0114347.g008

Table 3. TF pairs which show significant enrichment for coregulation of operons, compared to the random promoter architecture model.

TF 1 TF 2
Total binding sites
(TF 1)

Total binding sites
(TF 2)

Coregulated
operons
(RegulonDB)

Coregulated operons
(random promoter) p-value

MarA SoxS 24 29 18 0.26 5.5610234

MarA Rob 24 17 14 0.15 1.2610228

SoxS Rob 29 17 14 0.18 4.6610227

FNR ArcA 131 118 30 5.3 6.4610216

FNR NarL 131 98 27 4.5 3.0610215

NarP NarL 21 98 11 0.75 1.7610211

FNR Fur 131 122 24 5.5 2.8610210

FNR IHF 131 114 23 5.2 4.3610210

GalR GalS 12 12 5 0.054 5.5610210

GadX GadW 37 20 6 0.27 1.561027

The p-value for data in RegulonDB 8.5 is given by the probability of an equal or more extreme outcome in the random promoter architecture model. An
extended version of Table 3, covering over 900 TF pairs, is available in S3 Table.

doi:10.1371/journal.pone.0114347.t003
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and NarP are homologous proteins responding to availability of nitrate and nitrite

[58], and have been shown to act (anti)cooperatively with FNR [59, 60]. Fur and

IHF are also global regulators, whose interplay with FNR has been investigated in

[61–63]. GalR-GalS are homologous proteins responding to galactose [64], and

GadX-GadW are homologous proteins responding to variations in pH level [37].

Even though TF pairs like Fis-CRP are more frequent coregulators (at 38 operons)

in absolute numbers than any of the TF pairs listed in Table 3, this pair is not

particularly overrepresented when compared to the random promoter architec-

ture model (p-value ‘‘only’’ 10{3), and their frequent coregulation can simply be

attributed to the large number of CRP and Fis binding sites. Hence the random

promoter architecture model allows us to find the most interesting TF pairs

[Table 3].

Having identified the most common promoter architectures we are curious to

find out how these relate to gene expression. Is there any relationship between

promoter architecture and gene expression level for steady-state growth? To

answer this question we identify all genes corresponding to a certain promoter

architecture (A,R) in RegulonDB and acquire the protein copy number

distribution of these genes from the three E. coli protein censuses [49–51] [see

Fig. 9]. Perhaps surprisingly, we find no systematic correlation between the

number of activator and repressor binding sites, and gene expression in the three

sets covering thousands of genes. The only exception is the promoter architecture

with one activator and one repressor binding site each (1,1), whose median

expression level is higher than the upper quartile of the other five studied

promoter architectures, indicating that genes with this architecture might be more

abundantly expressed. Still, the figure shows that even for a given promoter

architecture there is a vast spread in protein copy number, spanning up to three

orders of magnitude. It seems likely that all promoter architectures in Fig. 9

would be capable of producing proteins across the full range of biologically

relevant concentrations. The main purpose of activators appears not to be

increasing the maximum possible expression of a gene but rather, together with

Fig. 9. Protein copy number as a function of promoter architecture for the most common architectures. The notation (A,R) represents a promoter
with A activator and R repressor binding sites. Protein data based on (A) fluorescence measurements [49], (B) mass spectrometry [50], and (C) ribosomal
profiling [51].

doi:10.1371/journal.pone.0114347.g009
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repressors, modulating it around a certain mean level. This mean level can on the

other hand be achieved through other mechanisms, such as the ribosomal binding

sequence (RBS) or promoter strength, which we will discuss in a later section.

Where are TF binding sites located?

There are many different ways in which TFs can regulate the transcription rate of a

gene. Perhaps most intuitively TFs can facilitate or block RNAP from interacting

with a promoter of interest, to either activate or repress transcription of a gene

[14]. However, TFs can modulate basically any step in the chain of events

preceding promoter escape [65], or modify the DNA methylation or

compactification states [66]. In eukaryotes, where the latter regulatory strategies

are common, TF binding sites can be located hundreds of thousands of base pairs

away from the transcription start site, which means that DNA needs to ‘‘loop’’ to

establish a contact between TF and RNAP (if necessary for regulation) [66]. Hence

each class of transcriptional regulation will have its own TF binding profile, and in

this section we will investigate these profiles in more detail for E. coli.

After aligning all known promoters with respect to their transcription start site

we can make a histogram [see Fig. 10] over the number of binding sites

overlapping each nucleotide position. In eukaryotes, particularly in metazoans,

DNA compaction through architectural complexes such as nucleosomes can bring

TF binding sites in close physical proximity to promoters located millions of base

pairs downstream [67]. As bacteria lack many of these architectural complexes, we

hypothesize that binding sites in bacteria are constrained to be located closer to

the promoter, leading to a narrower distribution of binding sites around the

promoter as compared to eukaryotes. In fact 75% of all reported TF interactions

in RegulonDB 8.5 take place within 100 bp of the transcription start site.

Activator and repressor binding sites have fundamentally different profiles;

whereas repressors overlap the RNAP binding site for maximum repression,

activators typically facilitate transcription initiation from upstream of the 235

region. TFs binding significantly upstream of 235 bp would, to a larger extent,

need to loop DNA to interact directly with RNAP, or regulate expression of genes

through other long range mechanisms. An interesting difference between specific

activators [Fig. 10(C)] and global activators [Fig. 10(A)], is that the latter have

two separate peaks, located at 270 bp and 245 bp respectively, rather than one.

The TFs whose contribution dominates these two peaks, which should correspond

to class I and class II activation [65, 68], are CRP and Fis (shown separately in

Fig. 10(A)). Class I activators interact with the a-CTD domain, whereas class II

activators interact directly with the sigma factor.

Although most repressors function by blocking RNAP from binding the

promoter, still roughly 25% of the repressors bind upstream of 270 bp, i.e.

without the possibility of blocking RNAP [69–72]. Additional mechanisms

through which an upstream repressor could block transcription is by forming

DNA loops to contact the transcriptional machinery as well as downstream

operators [9, 73]. Another possible way these upstream repressors could function
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is by preventing activators from binding the promoter, or inhibiting an activator

from accessing its binding site without overlapping it via DNA allostery [10] or

DNA bending [74, 75]. To test this hypothesis we show in Fig. 11 the probability

of a repressor binding site overlapping an activator binding site as a function of

position, using the probability for two activators to overlap as comparison. The

results show that around 30% of the repressors binding upstream of 270 bp

overlap with an activator, compared to 15–20% for two different activators. This

suggests that blocking of activators is an important regulatory strategy for

upstream repressors but not the only one, as a large fraction of upstream

repressors inhibit transcription through other means.

Fig. 10. Distribution of activating and repressing binding sites bound by global TFs and specific TFs, respectively. The y-axis shows number of
binding sites overlapping each nucleotide position, after aligning all promoters with respect to their transcription start site (TSS) for the different kinds of TFs.
Similar figures were reported in [20] and [89] using earlier versions of RegulonDB.

doi:10.1371/journal.pone.0114347.g010
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In total, almost half of all binding sites reported in RegulonDB 8.5 overlap with

other binding sites, which leads us to believe that this constitutes an important

regulatory strategy. As more binding sites are discovered, the number of

overlapping binding sites will likely increase, just as the probability of two

students in a class having birthday on the same day goes up rapidly with the

number of students. Interestingly, TFs often (37% of the reported overlapping

interactions) overlap with themselves. For example, out of the 88 known Fur

binding sites, 75% of them are reported to overlap with other Fur binding sites

[76].

Since the regulatory region of a gene is of limited size, TFs need to compete for

space at promoters with other binding sites, in particular TFs which interact

directly with RNAP. To study this ‘‘real estate’’ problem we first collect the DNA

binding site size of all TF-DNA interaction sites reported in RegulonDB 8.5 [see

Fig. 12]. A similar figure is reported in [77] using an earlier version of Regulon

DB. Some of the notable peaks in Fig. 12 correspond mainly to binding of global

TFs: Fis (15 bp), ArcA (15 bp) and CRP (22 bp). Most bacterial TFs interact with

DNA along a contiguous region of around 15 bp (although outliers exist) which

means that one could theoretically fit three nonoverlapping binding sites within

50 bp. Since the majority of operons reportedly have fewer than this number of

binding sites [see Fig. 3], the size of the regulatory region does not in general seem

to be a major constraining factor. However, for promoters with a larger number

of binding sites, of which we saw some examples in Fig. 3, TFs would either need

to bend DNA to access RNAP, or overlap with other TFs. To further study the real

Fig. 11. Probability of TF binding site overlap. Binding sites are defined as an interval of nucleotides from
the 56106 bp E. coli genome covered by a TF upon binding. Two binding sites sharing one or more
nucleotides are considered to be overlapping, independently of which strand the TFs bind. Binding sites
overlapping more than one binding site are classified according to the site with the most overlap. Notice that
the probabilities of ‘‘Repressor overlaps activators’’ and ‘‘Activator overlaps repressor’’ are not identical
despite the number of overlapping activator and repressor binding sites in a region being fixed. For example,
there are many more activators than repressors binding upstream of 2100 bp, which results in a higher
probability for a repressor to overlap with an activator in this region than vice versa.

doi:10.1371/journal.pone.0114347.g011
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estate of the promoter we look at the separation between binding sites [see

Fig. 13], which shows the the edge-to-edge distance for nonoverlapping adjacent

binding sites. The majority of binding sites in this set are separated by less than

15 bp from their neighbors. Hence for an operon with three binding sites the

regulatory region would be expected to take up around 3|15z2|15~75 bp,

around the same as observed in Fig. 10.

Fig. 13. Edge to edge distance between adjacent binding sites (RegulonDB 8.5). Figure does not include
binding sites separated by more than 150 bp, which would likely correspond to regulation of different operons.

doi:10.1371/journal.pone.0114347.g013

Fig. 12. DNA binding site size (in base pairs) for all TF-DNA interactions (RegulonDB 8.5). Mean DNA
binding site size size: 17.3 bp. Also see figure published in [77].

doi:10.1371/journal.pone.0114347.g012
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How does promoter architecture relate to promoter strength?

Many prokaryotic genes do not rely on TFs for regulation, and will be

constitutively expressed independently of the cellular environment. The produc-

tion of these genes will, at our current best understanding, only be affected by the

global availability of RNAP, sigma factors, ribosomes and the interaction strengths

with these different complexes [78]. For proteins which are in constant demand,

constitutive expression provides a simple and efficient choice of promoter

architecture. Despite its simplicity, constitutive expression allows for an

impressive dynamic range in protein production [26], as is also suggested by

Fig. 9. This demonstrates the power of the basal production machinery, whose

transcriptional component we will study further in this section. In particular we

will be interested in the relationship between basal promoter strength and

regulation by TFs.

In E. coli the transcription rate of a gene can vary by up to three orders of

magnitude due to differences in the promoter strength alone [26], not taking TFs

into account. To illustrate this point we use the linear RNAP-DNA interaction

model introduced in Models to predict the binding energy to all known s70

promoters along with the corresponding distribution for nonspecific binding [see

Fig. 14]. As expected we get two separate distributions, where RNAP binds on

average 2.4 kBT more strongly to known promoters than sequences chosen

randomly from the E. coli genome. The predicted RNAP binding energy

distribution spans roughly 8 kBT from the strongest to the weakest promoter,

corresponding to a predicted 3000-fold difference in RNAP binding affinity. This

difference is similar to that found between the most abundantly expressed TFs

(e.g. CRP) and scarcely expressed TFs (e.g. LacI) [79, 80] in E. coli, suggesting that

Fig. 14. Predicted RNAP binding energy [26] for promoters in RegulonDB 8.5 and DNA sequences
randomly chosen from the E. coli genome. The spacer region is allowed to range from 16–18 bp, and the
210 box is allowed to deviate by one base pair upstream or downstream from its consensus position. The
RNAP binding energy is taken as the minimum binding energy of these 36359 possible binding
configurations.

doi:10.1371/journal.pone.0114347.g014
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promoter strength alone might be a powerful enough tool to set the mean level of

gene expression to most biologically relevant values. Analysis of promoter

sequences has revealed that functional transcriptional start sites are surrounded by

noninitiating pseudopromoters [86]. A discomforting observation from Fig. 14,

however, is that 200,000 sites or so in the 5|106 bp E. coli background interact

more strongly with RNAP than the typical promoter. This raises several important

questions [81–83]: Is the linear energy model missing key information, or can all

the predicted promoters in principle produce transcripts? Do weak promoters

need to be activated by TFs to function? Although trying to solve these important

questions falls outside the scope of the current paper, we note that the paradox

might originate from the fact that the promoter sequence encodes detailed

information about both RNAP binding affinity, open complex formation rate and

promoter escape rate [84, 85] in a way that likely cannot be captured in a simple

linear model. Powerful new methods such as RNA-seq [87] could provide further

insight into which of the 200,000 predicted promoters are actually transcrip-

tionally active. In Fig. 9 we learned that the number of activator or repressor

binding sites did not seem to have any systematic effect on the average gene

expression in three sets covering thousands of genes. Since activators, by

definition, increase the expression of a gene and repressors reduce it, the only

possible explanation for this observation (if true) is that repressed genes have a

higher basal level of expression. This could, for example, be the result if repressed

genes have a higher affinity (promoter strength) for RNAP to their promoters.

Since stronger promoters recruit RNAP more easily they would hence become

transcriptionally more active. To investigate the relationship between promoter

strength and promoter architecture we show in Fig. 15 the RNAP binding energy

distribution for genes which according to RegulonDB 8.5 are regulated from a

Fig. 15. Predicted RNAP binding energy to promoters in the simple activation (1,0) and simple
repression architecture (0,1). These calculations represent the basal state in which no TFs are present.
Operons whose transcription is initiated from multiple promoters are excluded.

doi:10.1371/journal.pone.0114347.g015
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single activator or repressor binding site. For these promoters our data suggest,

though not conclusively, that RNAP binds more strongly to the promoters of

repressed genes, �Erepressed~{2:0+0:17 kBT , than promoters of activated genes,
�Eactivated~{1:1+0:23 kBT . The reported uncertainty in the means are estimated

using the method of bootstrapping [52]. Our results suggest that repressed genes

have a higher basal rate of transcription, providing a possible explanation as to

why we do not see a significant difference in gene expression as compared to

activated genes. Conversely, weak promoters are more likely to be activated by

TFs, suggesting that these promoters might not work effectively without TF

activation.

Discussion

After more than half a century of intense study E. coli remains one of the most

important model organisms in biology. In order to make the vast pool of

knowledge obtained from these studies publicly available and directly accessible,

ambitious initiatives such as RegulonDB have curated thousands of references to

collect information relating to TF binding site locations, organization of

transcriptional units, and more. Although this annotation process is far from

complete, as more than half of the E. coli genes still lack any known regulation, we

now have a better opportunity than ever to study regulatory interactions in detail.

In this study we have analyzed TF-DNA interactions reported in RegulonDB

8.5. We find distinct differences in binding site location trends depending on TF

type: activator or repressor, global or specific TFs. To study promoter

architectures in greater depth we created a random promoter architecture model.

This random model makes it possible to generate ‘‘null hypotheses’’ for promoter

architectures which can then be compared to real regulatory architectures from

RegulonDB data. Our findings can be summarized as follows:

1. We find that most promoters in E. coli are less heavily regulated than expected

from the random promoter architecture model. The majority of operons in

RegulonDB 8.5 have fewer than three known associated TF binding sites, and

most specific TFs regulate fewer than three operons, suggesting that many E.

coli genes are expressed with little ‘‘oversight’’ from TFs. Some interesting

exceptions include operons such as gadAXW (acid resistance), csgDEFG (Curli

amyloid fibers), and glpTQ (glycerol-3-phosphate uptake) which are

controlled by up to 30 binding sites.

2. The random promoter architecture model allows us to identify, with well

defined statistical significance, pairs of TFs which frequently coregulate

operons, e.g. due to cooperative interactions or recognition of similar

consensus sequences. Examples include the stress regulators MarA/Rob/SoxS,

and the oxygen responding TFs FNR/ArcA. The random model further allows

us to recognize TFs such as OxyR and Fis, which frequently bind to multiple

binding sites per operon, e.g. due to cooperative binding, DNA looping, or

through multiple binding domains. Our method of comparing promoter
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architectures to a null hypothesis provides a new approach for detecting

coregulation and allows us to formulate experimentally testable hypotheses

using only a list of known TF binding sites regulating each operon.

3. We find no systematic correlation between the number of activating or

repressing TF interactions and the mean expression of a gene, as measured by

three different genome-wide protein censuses covering thousands of genes. A

position-weight-matrix model used to estimate the binding affinity of RNAP

to promoters of activated and repressed genes, suggested that this lack of

correlation might in part be due to differences in basal transcription rates of

promoters. In this scenario, promoters that are being repressed have a higher

basal level than promoters that are being activated.

One of the grand challenges of physical biology is to be able to construct

predictive maps between promoter nucleotide sequence and gene expression.

Increasingly accurate promoter architecture data, found e.g. using powerful

techniques like ChIP-Seq, allow predictive maps to be both tested and refined. A

difficulty with mapping promoter architecture and gene expression, apart from

lacking complete knowledge of the regulatory network, is a substantial

disagreement on protein concentrations as measured using different experimental

methods and under different experimental conditions. The protein copy numbers

measured using mass spectrometry [50] are for example on average at least one

order of magnitude higher than for the same proteins measured with fluorescence

based techniques [49], though these kinds of effects can be due to different growth

conditions for the cells [78, 88]. As TF copy number plays a central role in

regulatory function, we believe resolving these discrepancies will be a necessary

step for a deeper understanding of several important aspects of gene regulation.

To become quantitatively predictive, gene regulatory maps must come to relate

gene expression data with precise promoter architecture data such as binding site

locations and binding energies. These will allow for an accurate in silico

description of global promoter activity, and provide quantitative predictions for

genome-scale experiments.

Supporting Information

S1 Fig. Comparison of different E. coli protein censuses. Measured protein copy

number using mass spectrometry [50], fluorescence [49], and ribosomal profiling

[51]. Note how all measurements show a systematic deviation with respect to each

other. This deviation can be up to two orders of magnitude, corresponding to

comparing mass spectrometry and fluorescence.

doi:10.1371/journal.pone.0114347.s001 (EPS)

S2 Fig. Number of binding sites and TF types regulating each operon

(RegulonDB 8.5) shown separately for global TF binding sites (black) and

specific TF binding sites (red).

doi:10.1371/journal.pone.0114347.s002 (EPS)
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S3 Fig. Number of TF binding sites per operon. Distribution of number of TF

binding sites per operon in RegulonDB 8.5 for (A) Global TF binding site and (B)

Specific TF binding sites. Shown separately are distributions after excluding

unregulated operons (‘‘regulated only’’).

doi:10.1371/journal.pone.0114347.s003 (EPS)

S1 Table. All TFs and their associated number of binding sites, the number of

operons regulated, and the total number of genes (coding sequences) regulated

by each TF (RegulonDB 8.5).

doi:10.1371/journal.pone.0114347.s004 (CSV)

S2 Table. TFs which are significantly enriched for multiple binding sites per

operon, compared to the random promoter architecture model.

doi:10.1371/journal.pone.0114347.s005 (CSV)

S3 Table. TF pairs which show significant enrichment for coregulation of

operons, compared to the random promoter architecture model.

doi:10.1371/journal.pone.0114347.s006 (CSV)
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