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Abstract A challenge in quantitative biology is to predict output patterns of gene expression 
from knowledge of input transcription factor patterns and from the arrangement of binding sites 
for these transcription factors on regulatory DNA. We tested whether widespread thermodynamic 
models could be used to infer parameters describing simple regulatory architectures that inform 
parameter- free predictions of more complex enhancers in the context of transcriptional repression 
by Runt in the early fruit fly embryo. By modulating the number and placement of Runt binding 
sites within an enhancer, and quantifying the resulting transcriptional activity using live imaging, 
we discovered that thermodynamic models call for higher- order cooperativity between multiple 
molecular players. This higher- order cooperativity captures the combinatorial complexity under-
lying eukaryotic transcriptional regulation and cannot be determined from simpler regulatory 
architectures, highlighting the challenges in reaching a predictive understanding of transcriptional 
regulation in eukaryotes and calling for approaches that quantitatively dissect their molecular 
nature.

Editor's evaluation
The work by Kim et al., used synthetic constructs in Drosophila to examine the relationship 
between regulators and transcription initiation. By measuring regulator concentrations and the 
corresponding RNA polymerase initiation rates in different synthetic constructs and using a thermo-
dynamic model, the authors concluded that higher- order cooperativities between the repressor on 
adjacent binding sites, and that between the repressor and RNA polymerase are needed to explain 
the observed response curves in RNA polymerase loading rate. This work targets a challenging 
question in eukaryotic transcription regulation, where higher- order cooperativity between different 
molecular components, in addition to simple transcription factor binding and unbinding, is often 
necessary to account for observed promoter behaviors when multiple elements (repressors, media-
tors, activators) exist.
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Introduction
During embryonic development, transcription factors bind stretches of regulatory DNA termed 
enhancers to dictate the spatiotemporal dynamics of gene expression patterns that will lay out the 
future body plan of multicellular organisms (Spitz and Furlong, 2012; Small and Arnosti, 2020). 
One of the greatest challenges in quantitative developmental biology is to predict these patterns 
from knowledge of the number, placement, and affinity of transcription factor binding sites within 
enhancers. The early embryo of the fruit fly Drosophila melanogaster has become one of the 
main workhorses in this attempt to achieve a predictive understanding of cellular decision- making 
in development due to its well- characterized gene regulatory network and transcription factor 
binding motifs, and the ease with which its development can be quantified using live imaging 
(Garcia et al., 2020; Small and Arnosti, 2020; Rivera et al., 2019).

Predictive understanding calls for the derivation of theoretical models that generate quantita-
tive and experimentally testable predictions. Thermodynamic models based on equilibrium statis-
tical mechanics have emerged as a widespread theoretical framework to achieve this goal (Ackers 
et al., 1982; Vilar and Leibler, 2003; Bolouri and Davidson, 2003; Bintu et al., 2005b; Bintu 
et al., 2005a; Segal et al., 2008; Fakhouri et al., 2010; Sayal et al., 2016; Phillips et al., 2019; 
Eck et al., 2020). For instance, over the last decade, a dialogue between these thermodynamic 
models and experiments demonstrated the capacity to quantitatively predict bacterial transcrip-
tional regulation from knowledge of the DNA regulatory architecture (He et al., 2010; Garcia and 
Phillips, 2011; Brewster et al., 2014; Garcia et al., 2012; Sepúlveda et al., 2016).

The predictive power of these models is evident when inferring model parameters from simple 
regulatory architectures and using those parameters to make parameter- free predictions of more 
complex architectures (Boedicker et al., 2013a; Boedicker et al., 2013b, Razo- Mejia et al., 2018; 
Phillips et al., 2019). Consider, for example, that RNA polymerase II (RNAP)—which we take as a 
proxy for the whole basal transcriptional machinery—binds to a promoter with a dissociation constant 

 Kp . When RNAP is bound, transcription is initiated at a rate  R  (Figure 1A). In the absence of any regu-
lation, a thermodynamic model will only have  Kp  and  R  as its free parameters which can be experi-
mentally determined by, for example, measuring mRNA distributions (Razo- Mejia et al., 2020). Now, 
we assume that the parameters  Kp  and  R  inferred in this step do not just enable a fit to the data, but 
that their values represent physical quantities that remain unaltered as more complex regulatory archi-
tectures are iteratively considered. As a result, when we consider the case where a single repressor 
molecule can bind, our model calls for only two new free parameters: a dissociation constant for 
repressor to its binding motif  Kr , and a negative cooperativity between repressor and RNAP,  ωrp , that 
makes the recruitment of RNAP to the DNA less favorable when the repressor is bound to its binding 
site (Figure 1B). Once again, after determining  Kr  and  ωrp  experimentally (Phillips et al., 2019), we 
consider the case where two repressors can bind simultaneously (Figure 1C). If the repressors interact 
with RNAP independently of each other, then our model has no remaining free parameters such 
that we will have reached complete predictive power. However, protein- protein interactions between 
repressors could exist or even higher- order interactions giving rise to a repressor- repressor- RNAP 
ternary complex might be present. This extra complexity would require yet another round of experi-
mentation to quantify these interactions represented by  ωrr  and  ωrrp  in Figure 1C, respectively. Even 
after quantifying these parameters, predictive power might not be reached if, after adding yet another 
repressor binding site, a complex between all three repressors and RNAP can be formed (Figure 1D).

While protein- protein cooperativity captured by  ωrr  has been studied both in bacteria (Ackers 
et al., 1982; Ptashne and Gann, 2002) and eukaryotes (Giniger and Ptashne, 1988; Ma et al., 
1996; Lebrecht et  al., 2005; Parker et  al., 2011; Fakhouri et  al., 2010; Sayal et  al., 2016), 
the necessity of accounting for higher- order interactions such as those described in our example 
by the  ωrrp  and  ωrrrp  terms had only been demonstrated in archeae (Peeters et al., 2013) and 
bacteria (Dodd et  al., 2004). The need to invoke this higher- order cooperativity in eukaryotes 
only became apparent in the last few years (Estrada et  al., 2016b; Park et  al., 2019; Biddle 
et al., 2020). These higher- order cooperativities might be necessary in order to account for the 
complex interactions mediated by, for example, the recruitment of co- repressors (Courey and 
Jia, 2001; Walrad et  al., 2011), mediator complex (Park et  al., 2019), or any other element 
of the transcriptional machinery. As a result, while posing a challenge to reaching a parameter- 
free predictive understanding of transcriptional regulation, higher- order cooperativity provides an 
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avenue for quantifying the complexity of the molecular processes underlying eukaryotic cellular 
decision- making.

In this paper, we sought to test whether an iterative and predictive approach, such as that 
outlined in Figure 1, was possible for transcriptional repression in the early embryo of the fruit 
fly Drosophila melanogaster or whether it is necessary to invoke higher- order cooperativities that 
challenge the reach of our predictive models as we add more complexity to the system. To make 
this possible, we engineered binding sites for the Runt repressor into the Bicoid- activated hunch-
back P2 minimal enhancer. We systematically varied the number and placement of Runt binding 
sites within this enhancer (Chen et al., 2012) in order to determine whether model fits to real- time 
transcriptional measurements from the enhancer constructs containing only one- Runt binding site 
could accurately predict repression in two- and three- Runt binding site constructs (Figure 1). We 
found that a thermodynamic model can recapitulate all our data. However, we also discovered 
that, while the model could describe repression by a single Runt repressor, protein- protein and 
higher- order cooperativities had to be invoked in order to quantitatively account for regulation 
by two or more repressor molecules. While these higher- order cooperativities limit the iterative 
bottom- up discourse between theory and experiment that has been successful in bacteria (Phillips 
et al., 2009), they also provide a concrete theoretical framework for quantifying the complexities 
behind eukaryotic transcriptional control, and call for the development of new theories and exper-
iments specifically conceived to uncover the the molecular underpinnings of this complexity.
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Figure 1. Building up predictive models of transcriptional repression. (A) In the absence of repressor binding, gene expression can be characterized 
by a dissociation constant between RNAP and the promoter  Kp  and the rate of transcription initiation when the promoter is bound by RNAP  R . (B) In 
the presence of a single repressor binding site, models need to account for two additional parameters describing the repressor dissociation constant 

 Kr  and a repressor- RNAP interaction term  ωrp . (C) For two- repressor architectures, parameters accounting for repressor- repressor interactions  ωrr  and 
for interactions giving rise to a repressor- repressor- RNAP complex could also have to be incorporated. (D) For the case of three repressor binding sites, 
additional parameters  ωrrr  and  ωrrrp  capturing the higher- order cooperativity between three repressor molecules and between three Runt molecules 
and RNAP, respectively, could be necessary. Note the nomenclature shown below each construct, which indicates which Runt binding sites are present in 
each construct.
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Results
Predicting transcription rate using a thermodynamic model of Bicoid 
activation and Runt repression
Inspired by the theory- experiment dialogue leading to predictive understanding of the lac operon 
in E. coli over the last four decades (Phillips et al., 2019; Razo- Mejia et al., 2018; Garcia and 
Phillips, 2011; Garcia et al., 2012; Ackers et al., 1982; Buchler et al., 2003), we built a predic-
tive model of Runt repression on the Bicoid- activated hunchback P2 enhancer using the thermo-
dynamic model framework (Phillips et al., 2019; Bintu et al., 2005b; Bintu et al., 2005a) with 
the goal of predicting the rate of transcription initiation as a function of input transcription factor 
concentration, and the number and placement of Runt repressor binding sites. Our model rests on 
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Figure 2. Thermodynamic model of transcriptional regulation by Bicoid activator and Runt repressor. (A) States and statistical weights for the 
regulation of hunchback P2 with one Runt binding site in the limit of strong Bicoid- Bicoid cooperativity. Here, we use the dimensionless parameters 

 b = [Bicoid]/Kb ,  r = [Runt]/Kr , and  p = [RNAP]/Kp , where  Kb ,  Kr , and  Kp  are the dissociation constants of Bicoid, Runt, and RNAP, respectively. 

 ωbp  represents the cooperativity between Bicoid and RNAP,  ωrp  captures the cooperativity between Runt and RNAP, and  R  represents the rate of 
transcription when the promoter is occupied by RNAP. The top two rows correspond to states where only Bicoid and RNAP act, while the bottom 
two rows represent repression by Runt. (B) Representative prediction of RNAP loading rate as a function of Bicoid and Runt concentrations for 

 ωbp = 3,ωrp = 0.001, p = 0.001, R = 1(AU/min) .
The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. General thermodynamic model for a hunchback P2 enhancer with six Bicoid binding sites.

Figure supplement 2. General thermodynamic model for an enhancer with six- Bicoid binding sites and one Runt binding site.
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the ‘occupancy hypothesis’ that states that the rate of mRNA production,  d[mRNA]/dt , is propor-
tional to the probability of the promoter being bound by RNA polymerase II (RNAP),  pbound  , such 
that

 
d [mRNA]

dt = R pbound,  (1)

where  R  is the rate of mRNA production when the promoter is occupied by RNAP. Note that, throughout 
this study, we treat the rate of transcription initiation and the rate of RNAP loading interchangeably.

To generate intuition, we start by modeling the case of hunchback P2 with one Runt binding site. 
Figure 2A illustrates the possible states the system can be found in. Each state has an associated 
statistical weight which can be calculated as prescribed by equilibrium statistical mechanics (Bintu 
et al., 2005b; Bintu et al., 2005a). Here, we assume that there are six Bicoid binding sites with the 
same dissociation constant given by  Kb , one Runt binding site with a dissociation constant specified by 
 Kr , and a promoter with a dissociation constant for RNAP prescribed by  Kp . In the absence of Runt, we 
consider four states as shown in the top two rows of Figure 2A. Here, we assume that Bicoid- Bicoid 
cooperativity is so strong that the enhancer can either be unoccupied or completely bound by Bicoid 
molecules (Gregor et  al., 2007; Park et  al., 2019). Further, we consider an interaction between 
Bicoid and RNAP given by  ωbp . For simplicity, we use the dimensionless parameters  b = [Bicoid]/Kb , 

 r = [Runt]/Kr  and  p = [RNAP]/Kp . These assumptions lead to a functional form reminiscent of a Hill 
function that explains the sharp step- like expression pattern along the embryo’s anterior- posterior 
axis of the hunchback gene (Gregor et al., 2007; Park et al., 2019; Driever and Nüsslein- Volhard, 
1988; Driever et al., 1989). A full thermodynamic model in which we do not make this assumption 
of high Bicoid- Bicoid cooperativity is discussed in detail in Section ‘Derivation of the general thermo-
dynamic model for the hunchback P2 enhancer’ and Section ‘Derivation of the general and simpler 
thermodynamic model for the hunchback P2 enhancer with one Runt binding site’.

The molecular mechanism by which Runt downregulates transcription of its target genes remains 
unclear (Chen et  al., 2012; Hang and Gergen, 2017; Koromila and Stathopoulos, 2017; Koro-
mila and Stathopoulos, 2019). Here, we assume the so- called ‘direct repression’ model (Gray et al., 
1994) that posits that Runt operates by inhibiting RNAP binding to the promoter through a direct 
Runt- RNAP interaction term given by  ωrp < 1  independently of Bicoid. As a result, in the presence of 
Runt, we consider four additional states as shown in the bottom two rows of Figure 2A. Other poten-
tial mechanisms of Runt repression are further discussed in Supplementary Section ‘Comparison of 
different modes of repression’, where we also show that the choice of specific mechanism does not 
change our conclusions.

Given these assumptions, we arrive at the microstates and corresponding statistical weights shown 
in Figure 2A. The probability of finding RNAP bound to the promoter,  pbound , is calculated by dividing 
the sum of all statistical weights featuring RNAP by the sum of the weights of all possible microstates. 
The calculation of  pbound  combined with Equation 1 leads to the expression

 
Rate = Rpbound = R p+b6pωbp+rpωrp+b6rpωbpωrp

1+b6+r+b6r+p+b6pωbp+rpωrp+b6rpωbpωrp
,
  (2)

which makes it possible to predict the output rate of mRNA production as a function of the input 
concentrations of Bicoid and Runt (Figure 2B). With this theoretical framework in hand, we experi-
mentally tested the predictions of this model.

Measuring transcriptional input-output to test model predictions
The transcriptional input- output function in Figure 2B indicates that, in order to predict the rate of 
RNAP loading and to test our theoretical model, we need to first measure the concentration of the 
input Bicoid and Runt transcription factors. In order to quantify the concentration profile of Bicoid, 
we used an established eGFP- Bicoid line (Gregor et al., 2007) and measured mean Bicoid nuclear 
concentration dynamics along the anterior- posterior axis of the embryo over nuclear cycles 13 and 14 
(nc13 and nc14, respectively) as shown in Movie Figure 3—video 1 (Eck et al., 2020). An example 
snapshot and time trace of Bicoid nuclear concentration dynamics at 40% of the embryo length 
appear in Figure 3A and B.

Quantification of the Runt concentration using standard fluorescent protein fusions is not possible 
due to the slow maturation times of these proteins (Bothma et al., 2018). We therefore measured 
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Figure 3. Measurement of input transcription factor concentrations and output rate of transcription to test model predictions. (A) Snapshot of an 
embryo expressing eGFP- Bicoid spanning 20–60% of the embryo length. (For a full time- lapse movie, see Movie Figure 3—video 1) (B) Bicoid nuclear 
fluorescence dynamics taken at 40% of the embryo. (C) Snapshot of an embryo expressing eGFP:LlamaTag- Runt spanning 20–60% of the embryo length. 
(For a full time- lapse movie, see Movie Figure 3—video 2) (D) Runt nuclear concentration dynamics in males and females. (E) Measured transcription 
factor concentration profiles along the anterior- posterior axis of the embryo. The concentration profiles are averaged over the gray shaded regions 
shown in (B) and (D) which corresponds to a time window between 5 and 10min into nc14. (F) Predicted RNAP loading rate for hunchback P2 with 
one Runt binding site over the anterior- posterior axis generated for a reasonable set of model parameters  Kb = 30  AU,  Kr = 100  AU,  ωbp = 100 , 

 p = 0.001 , and  R = 1  AU/min for varying values of the Runt- RNAP interaction term  ωrp = [10−2, 1] . (G) Schematic of the MS2 system where 24 

repeats of the MS2 loop sequence are inserted downstream of the promoter followed by the lacZ gene. The MS2 coat protein (MCP) fused to GFP 
binds the MS2 loops. (H) Example snapshot of an embryo expressing MCP- GFP and Histone- RFP. Green spots correspond to active transcriptional loci 
and red circles correspond to nuclei. Spot intensities are proportional to the number of actively transcribing RNAP molecules. (I) Representative MS2 
fluorescence averaged over a narrow window (2.5% of the embryo length) along the anterior- posterior axis of the embryo. The initial rate of RNAP 
loading was obtained by fitting a line (brown) to the initial rise of the data and the x- intercept is defined as the onset of transcription ( TON  ). (J) Measured 
initial rate of RNAP loading (over a spatial bin of 2.5% of the embryo length) across the anterior- posterior axis of the embryo, from the hunchback P2 
enhancer. (B, D, E, and J, error bars represent standard error of the mean over  ≥ 3  embryos; I, error bars represent standard error of the mean over the 
spatial averaging corresponding to roughly ten nuclei; A, C, and H, white scale bars represent 20 μm.).

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure supplement 1. Comparison of the predicted rate of transcription using dynamic and time- averaged transcription factor concentration profiles as 
inputs.

Figure supplement 2. Initial rate of RNAP loading in nuclear cycle 14 across the anterior- posterior axis for different constructs, with or without Runt 
protein.

Figure supplement 3. Duration of transcription over nuclear cycle 14.

Figure 3 continued on next page
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Runt concentration dynamics using our recently developed LlamaTags, which are devoid of such matu-
ration dynamics artifacts (Bothma et al., 2018). Specifically, we generated a new fly line harboring 
a fusion of a LlamaTag against eGFP to the endogenous runt gene using CRISPR/Cas9- mediated 
homology- directed repair (Materials and Methods; Harrison et al., 2010, Gratz et al., 2015).

Using this LlamaTag fusion, we measured the mean Runt nuclear fluorescence along the anterior- 
posterior axis of the embryo over nc13 and nc14 (Materials and Methods; Figure 3B; Movie Figure 3—
video 2). As expected due to the location of the runt gene on the X chromosome (Lott et al., 2011), 
there is a sex dependence in the nuclear concentration levels in nc13, with males displaying lower 
Runt levels than females; this difference is compensated by early nc14 (Figure 3C and D). As a result, 
for ease of analysis, we focused subsequent quantitative dissection on nc14.

We used the measured input protein concentration profiles to predict the output transcription rate. 
To make this possible, we invoked previous observations stating that the concentration dynamics of 
input transcription factors does not significantly affect the initial rate of RNAP loading (Garcia et al., 
2013; Eck et al., 2020). As a result, we decided to use the time- averaged concentration dynamics 
of Bicoid and Runt over a time window spanning 5 min after the 13th anaphase to 10 min after this 
anaphase (gray shaded region in Figure 3B and D) as inputs to our model, resulting in the static 
spatial concentration profiles shown in Figure 3E. We then used these time- averaged concentration 
profiles of input transcription factors to calculate the time- averaged rate of transcription initiation 
over the same time window. In the Supplementary Information Section ‘Comparing using static versus 
dynamic transcription factor concentrations as model inputs’ we compare this methodology with one 
that acknowledges input transcription factor concentration dynamics and show that the prediction 
stemming from both approaches leads to equivalent theoretical predictions. Specifically, the time- 
averaged rate of transcription predicted by the dynamic inputs was similar to the rate of transcription 
predicted by the static inputs.

Along the anterior- posterior axis of the embryo, the measured Bicoid and Runt concentration 
profiles define a trajectory through the input- output function (Figure 2B). Given a set of parameters, 
this trajectory predicts the initial rate of RNAP loading. This quantitative prediction can be directly 
compared with experimentally measured transcription initiation rates. For example, given the concen-
tration profiles shown in Figure 3E, we calculate the RNAP loading rate as a function of the position 
along the embryo for different values of the Runt- RNAP interaction, captured by  ωrp . Figure 3F illus-
trates how  ωrp  shapes the predicted profiles for the RNAP loading rate. As expected, the prediction 
shows that the rate of transcription decreases as the strength of the Runt- RNAP interaction decreases.

Next, we sought to experimentally test these predictions by measuring the rate of RNAP loading 
using the MS2 system (Bertrand et al., 1998; Lucas et al., 2013; Garcia et al., 2013). Here, we 
inserted 24 repeats of the MS2 loop sequence following the hunchback P2 enhancer and even- skipped 
promoter in our reporter construct, which leads to the fluorescent labeling of sites of active transcrip-
tion in living embryos (Figure 3G and H; Movie Figure 3—video 3). The fluorescence intensity of each 
MS2 spot is proportional to the number of actively transcribing RNAP molecules (Garcia et al., 2013). 

Figure supplement 4. Fraction of competent loci in nuclear cycle 14 along the anterior- posterior axis for each synthetic enhancer construct in the 
presence and absence of Runt protein.

Figure supplement 5. Accumulated mRNA during nuclear cycle 14 along the anterior- posterior axis for each synthetic enhancer construct in the 
presence and absence of Runt protein.

Figure supplement 6. Accumulated mRNA during nuclear cycle 14 versus Runt concentration for each synthetic enhancer construct in the presence 
and absence of Runt protein.

Figure supplement 7. Snapshots of an embryo expressing eGFP:LlamaTag- Runt and the Histone- iRFP signal used for nuclear segmentation.

Figure supplement 8. Correlation between the initial RNAP loading rate and accumulated mRNA during nuclear cycle 14.

Figure 3—video 1. eGFP- Bicoid confocal movie.

https://elifesciences.org/articles/73395/figures#fig3video1

Figure 3—video 2. eGFP:LlamaTag- Runt confocal movie.

https://elifesciences.org/articles/73395/figures#fig3video2

Figure 3—video 3. [001]-MS2V5:MCP- GFP (+Runt) confocal movie.

https://elifesciences.org/articles/73395/figures#fig3video3

Figure 3 continued

https://doi.org/10.7554/eLife.73395
https://elifesciences.org/articles/73395/figures#fig3video1
https://elifesciences.org/articles/73395/figures#fig3video2
https://elifesciences.org/articles/73395/figures#fig3video3
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In order to quantify the transcriptional activity reported by MS2, we measured the mean MS2 spot 
fluorescence over nuclei in a narrow spatial window (Figure 3I; Garcia et al., 2013; Eck et al., 2020). 
To measure the initial rate of RNAP loading, we obtained the slope of the initial rise in the number 
of actively transcribing RNAP molecules over the same time window used to average input transcrip-
tion factor concentration (Figure 3I, brown line). The resulting RNAP loading rate plotted over the 
anterior- posterior axis is in qualitative agreement with the classic pattern driven by the hunchback P2 
minimal enhancer (Figure 3J; Garcia et al., 2013, Chen et al., 2012, Park et al., 2019).

While we chose the initial rate of transcription as the experimental measurable to confront against 
our model predictions, the MS2 technique can also report on other dynamical features of transcrip-
tion such as the time window over which transcription occurs and the fraction of loci that engage in 
transcription at any point over the nuclear cycle. Although these two quantities have been shown to 
be relevant in shaping gene expression patterns in other regulatory contexts (Garcia et al., 2013; 
Lammers et al., 2020; Eck et al., 2020; Dufourt et al., 2018; Reimer et al., 2021), we found that the 
transcription time window was not significantly regulated in the presence of Runt (Figure 3—figure 
supplement 3). As described in Section ‘Quantitative interpretation of MS2 signals’, we did find some 
modulation of the fraction of transcriptionally engaged loci for a subset of our synthetic enhancer 
constructs but, as we could not detect a clear trend in how this fraction of active loci was modulated, 
we did not pursue a theoretical dissection of the control of this quantity by Runt.

Enhancer sequence dictates unrepressed transcription rates by 
determining RNAP-promoter interactions
With these theoretical models and our experimental platform in hand, we designed a set of synthetic 
enhancer constructs with differing number and placement of Runt binding sites as shown in Figure 4A 
(top) , and Figure 4—figure supplement 1. Our enhancer sequences are identical to those created 
and validated by Chen et al., 2012, which kept the length of the enhancer sequence consistent and 
inserted experimentally validated Runt binding sites (Melnikova et al., 1993; Lewis et al., 1999; Chen 
et al., 2012; Koromila and Stathopoulos, 2017) by mutating the base pairs within the enhancer that 
are not mapped to binding sites for any known transcripiton factor in the early fruit fly embryo (Hertz 
et al., 1990; Hertz and Stormo, 1999).

A major assumption of our theoretical approach is that the model parameters obtained from 
simple regulatory architectures can be used as inputs for more complex constructs. For instance, we 
assume that the Runt- independent model parameters for Bicoid and RNAP action— Kb ,  ωbp ,  p  and  R  
(Figure 2A)—are conserved for all constructs containing Runt binding sites regardless of their number 
and placement in the enhancer. If model parameters can be shared across constructs, then our model 
should predict the same profile for the rate of transcription across all synthetic enhancer constructs.

To test this assumption, we measured the initial rate of RNAP loading in all of our reporter constructs, 
in runt null embryos (Materials and Methods). Notably, unrepressed transcription rates varied signifi-
cantly across synthetic enhancers (Figure 4A). For example, despite no Runt being present, the [001] 
construct had almost twice the unrepressed rate of [000].

This large construct- to- construct variability in unrepressed transcription rates likely originates from 
the Runt binding site sequences interfering with some combination of Bicoid and RNAP function. 
To uncover the mechanistic effect of these Runt binding sites sequences on unrepressed activity, we 
sought to determine which parameters in our thermodynamic model varied across constructs. In the 
absence of Runt repressor, only four states remain corresponding to the two top rows of Figure 2A. 
In this limit, the predicted rate of transcription is given by

 

Rate = R
p +

(
[Bicoid]

Kb

)6
pωbp

1 + p +
(

[Bicoid]
Kb

)6
+
(

[Bicoid]
Kb

)6
pωbp

,

  

(3)

where we have invoked the same parameters as in Figure 2 and Equation 2. For clarity, the free 
parameters in this equation are marked using the red color.

To obtain the model parameters for each construct measured in Figure  4A, we invoked the 
Bayesian inference technique of Markov Chain Monte Carlo (MCMC) sampling that has been widely 
used for inferring the biophysical parameters from theoretical models (Liu et al., 2021, Razo- Mejia 

https://doi.org/10.7554/eLife.73395
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Figure 4. Enchancer- to- enhancer variability in the unrepressed transcription level stems from unique RNAP- dependent parameters. (A) Measured initial 
rates of RNAP loading across the anterior- posterior axis of the embryo for all synthetic enhancer constructs in the absence of Runt protein. (The [111] 
synthetic enhancer construct with the position of Bicoid (red) and Runt (green) binding sites is shown in genomic length scale on top as a reference.) 
(B) Representative best MCMC fit and (C) associated corner plot for the [001] construct in the runt null background. (D) Inferred model parameters for 
all synthetic enhancers in the absence of Runt repressor. Note the large spread in  ωbp , consistent with the corner plot shown in (C), which indicates 
that our model does not constrain this parameter well compared to the other parameters. (E) Coefficient of variation of inferred parameters. (A, B), 
shaded regions represent the standard error of the mean over>3 embryos; (B) error bars from MCMC fit represent 95% confidence interval; (D) error 
bars represent standard deviations calculated from the MCMC posterior chains; (E) error bars are calculated by propagating the standard deviation of 
individual parameters from their MCMC chains.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Bioinformatically predicted architecture of major transcription factor binding sites in the hunchback P2 minimal enhancer with 
three Runt (Run) binding sites.

Figure supplement 2. Initial rate of RNAP loading in nuclear cycle 14 across the anterior- posterior axis for different constructs in individual embryos in 
the absence of Runt protein.

https://doi.org/10.7554/eLife.73395
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et al., 2018, Geyer and Thompson, 1992; Supplementary Section ‘Markov Chain Monte Carlo infer-
ence protocol’). A representative comparison of the MCMC fit to the experimental data reveals a 
good agreement between theory and experiment (Figure 4B). MCMC sampling also gives the distri-
bution of the posterior probability for each parameter as well as their cross- correlation (Figure 4C). 
These corner plots reveal relatively unimodal posterior distributions, suggesting that a unique set of 
parameters can explain the data.

Note that, while the Bicoid dissociation constant  Kb  and the Bicoid- RNAP interaction term  ωbp  
remain largely unchanged regardless of enhancer sequence, there is considerable variability in the 
inferred mean RNAP- dependent parameters  p  and  R  (Figure 4D). This variability can be further quan-
tified by examining the coefficient of variation,

 CV = σ
µ ,  (4)

where  σ  and μ are the standard deviation and the mean of each parameter, respectively, calculated 
over all constructs. The coefficients of variation for the RNAP and promoter- dependent parameters 
are much higher than those for Bicoid- dependent parameters (≈ 40% versus < 10%; Figure 4E). This 
suggests that the variability in unrepressed transcription rates due to the presence of Runt binding 
sites stems from differences in the behavior of RNAP at the promoter rather than differences in Bicoid 
binding or activation. As a result, as we consider increasingly more complex regulatory architectures, 
we associated each construct with its own specific Bicoid- and RNAP- dependent parameters as 
inferred in Figure 4D. In contrast, as we will show below, we will conserve Runt- dependent parame-
ters as we consider increasingly more complex constructs featuring more Runt binding sites.

The thermodynamic model recapitulates repression by one Runt 
binding site
Next, we asked whether our model recapitulates gene expression for the hunchback P2 enhancer with 
a one- Runt binding site in the presence of Runt repressor as predicted by Equation 2. We posited 
that, since the binding site sequence remains unaltered throughout our constructs (Figure 4—figure 
supplement 1), the value of the Runt dissociation constant  Kr  would also remain unchanged across 
these enhancers regardless of Runt binding site position; however, we assumed that, as the distance 
between Runt and the promoter varied, so could the Runt- RNAP interaction term  ωrp .

We measured the initial rate of transcription along the embryo for all our constructs containing one 
Runt binding site in the presence of Runt protein. In this case of a single Runt binding site, Equation 
2 predicts that the initial rate of RNAP loading will be given by

 
Rate = Rpbound = R

p+b6p ωbp+ [Runt]
Kr

p ωrp+b6 [Runt]
Kr

p ωbpωrp

1+b6+ [Runt]
Kr

+b6r+p+b6p ωbp+ [Runt]
Kr

p ωrp+b6 [Runt]
Kr

p ωbp ωrp
.
  

(5)

Here, we have have rewritten Equation 2 to clarify which parameters are fixed and which parameters 
are inferred using color coding. Specifically, we took Runt- independent parameters ( Kb ,  ωbp ,  p  and 
 R ), shown in black, as given by the inference from our previous experiments in the absence of Runt 
(Figure 4). Further, Runt- dependent parameters ( Kr  and  ωrp ) which we will infer, are shown in red. We 
then used MCMC sampling to infer these Runt- dependent parameters for each of our constructs while 
retaining the mean values of Runt- independent parameters.

The resulting MCMC fits show significant agreement with the experimental data (Figure  5A), 
confirming that, within our model, the same dissociation constant  Kr  can be used for all Runt binding 
sites regardless of their position within the enhancer. Further, the corner plot yielded a unimodal distri-
bution of posterior probability of the inferred parameters (Figure 5B), indicating the existence of a 
unique set of most- likely model parameters. We challenged our assumption of constant  Kr  across our 
constructs in Section Figure 5—figure supplement 3, where we show that, even if we posit that each 
construct has a different Runt dissociation constant, the obtained  Kr  values are comparable.

The observed trend in the Runt- RNAP interaction captured by  ωrp  qualitatively agrees with the 
“direct repression” model. Specifically, because the model assumes that Runt interacts directly with 
RNAP, it predicts that, the farther apart Runt and the promoter are, the lower this interaction should 
be (Gray et al., 1994). In agreement with this prediction, the mean value of  ωrp  obtained from our 
fits changes from high repression ( ωrp ≈ 0.1 ) in the [001] construct to almost no repression ( ωrp ≈ 1 ) 
in the [100] construct as the Runt site is moved away from the promoter (Figure 5C). Thus, the direct 

https://doi.org/10.7554/eLife.73395
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repression model recapitulates repression by a single Runt molecule using the the same dissociation 
constant regardless of Runt binding site position, and displays the expected dependence of the Runt- 
RNAP interaction term on the distance between these two molecules.

Predicting repression by two-Runt binding sites requires both Runt-
Runt and Runt-Runt-RNAP higher-order cooperativity
Could the parameters inferred in the preceding section be used to accurately predict repression in 
the presence of two Runt binding sites? An extra Runt binding site enables new protein- protein inter-
actions between Runt molecules and RNAP (Figure 6A). First, we considered individual Runt- RNAP 
interaction terms,  ωrp1  and  ωrp2 , whose values were already inferred from the one- Runt binding site 
constructs as  ωrp[001] , ωrp[010] , and ωrp[100]  (Figure 5D). Second, we considered protein- protein interac-
tions (positive or negative) between two Runt molecules,  ωrr . Third, following recent studies of Bicoid 
activation of the hunchback P2 minimal enhancer (Estrada et al., 2016a; Park et al., 2019), we also 
posited the existence of simultaneous Runt- Runt- RNAP higher- order cooperativity  ωrrp . Given these 
different cooperativities, and as shown in detail in Figure 6—figure supplement 6B, the predicted 
rate of transcription is
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Figure 5. Testing the direct repression model in the presence of one Runt binding site. (A) Initial transcription 
rate as a function of position along the embryo for the three constructs containing one Runt binding site in 
the presence and absence of Runt repressor, together with their best MCMC fits. (B) Corner plots from MCMC 
inference for all constructs with one Runt binding site. (C) Inferred  ωrp  value as a function of distance between 
the promoter and the Runt binding site. (A, data points represent mean and standard error of the mean over the 
embryos and shaded error bars represent 95% confidence intervals for the best MCMC fits for Runt WT datasets; 
C, data and error bars represent the mean and standard deviation of the posterior chains, respectively.).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Thermodynamic models for different modes of repression.

Figure supplement 2. MCMC fitting to the hunchback P2 with one Runt binding site constructs using different 
models of repression.

Figure supplement 3. Assessment of alternative models for the one- Runt binding site case.

https://doi.org/10.7554/eLife.73395
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Figure 6. Prediction for the transcription initiation rate of hunchback P2 with two- Runt binding sites under different models of cooperativity. (A) Direct 
repression model for hunchback P2 with two Runt binding sites featuring Runt- RNAP interaction terms given by  ωrp1  and, ωrp2  Runt- Runt cooperativity 
captured by  ωrr , and Runt- Runt- RNAP higher- order cooperativity accounted for by  ωrrp . (B) Parameter- free model prediction for two Runt binding 
sites when the two Runt molecules bind the DNA and interact with RNAP independently of each other. (C,D,E) Best MCMC fits for the data for two- 
Runt binding site constructs for models with various combinations of cooperativity parameters. (C) Model incorporating Runt- Runt cooperativity. (D) 
Model incorporating Runt- Runt- RNAP higher- order cooperativity. (E) Model accounting for both Runt- Runt cooperativity and Runt- Runt- RNAP higher- 
order cooperativity. (F) Fixed or inferred parameters  ωrr  and  ωrrp  for all two- Runt binding site constructs. Note that  ωrr  is fixed to 1 for [011] and [101] 
constructs due to the fact that no Runt- Runt cooperativity is necessary to quantitatively describe the expression driven by these constructs; only the [110] 

Figure 6 continued on next page
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Rate = R
(

p + b6pωbp + rp(ωrp1 + ωrp2) + r2pωrp1ωrp2ωrrωrrp + b6rpωbp(ωrp1 + ωrp2)+

b6r2pωbpωrp1ωrp2ωrrωrrp
)(

1 + b6(1 + 2r + pωbp) + 2r + p + rp(ωrp1 + ωrp2) + r2(ωrr

+pωrp1ωrp2ωrrωrrp) + b6rpωbp(ωrp1 + ωrp2) + b6r2ωrr + b6r2pωbpωrp1ωrp2ωrrωrrp
)−1

.
  

(6)

Here, once again, we have color- coded parameters to be inferred in red to differentiate them from 
fixed parameters that were already inferred in previous sections. Despite the complexity of this equa-
tion, note that its only free parameters are the cooperativity parameters  ωrr  and  ωrrp . As a result, 
we sought to determine whether the Runt- RNAP cooperativity terms,  ωrp1  and  ωrp2 , are sufficient to 
predict repression by two Runt molecules, or whether the cooperativities given by  ωrr  and  ωrrp  also 
need to be invoked.

Consider the simplest case where two Runt molecules bind and interact with RNAP independently 
from each other. Here,  ωrr = 1 , and  ωrrp = 1 . This model has no free parameters; all parameters have 
already been determined by the inferences performed on Runt null datasets and one- Runt binding 
site constructs (Figure  4 and Figure  5, respectively). While there was some agreement between 
the model and the data for the [101] construct (Figure 6B, center), significant deviations from the 
prediction occurred for the other two constructs. These deviations ranged from less repression than 
predicted for [011] (Figure 6B, left) to more repression than predicted for [110] (Figure 6B, right). 
Thus, this simple model of Runt independent repression is not supported by the experimental data, 
suggesting additional regulatory interactions between the Runt molecules and RNAP.

A first alternative to the independent repression model is the consideration of Runt- Runt coop-
erative interactions such as those that characterize many transcription factors (Park et  al., 2019; 
Estrada et  al., 2016b; He et  al., 2010; Segal et  al., 2008; Ptashne, 2004). However, adding a 
Runt- Runt cooperativity term,  ωrr , was insufficient to account for the observed regulatory behavior 
(Figure 6C; Figure 6—figure supplement 4 more thoroughly analyzes this discrepancy). A second 
alternative consists in incorporating a Runt- Runt- RNAP higher- order cooperativity term,  ωrrp . While 
the best MCMC fits revealed significant improvements in predictive power, important deviations still 
existed for the [110] construct (Figure 6D, right; Figure 6—figure supplement 5 more thoroughly 
analyzes the MCMC inference results).

Not surprisingly, given the agreement of the higher- order cooperativity model with the data for 
the [011] and [101] constructs (Figure 6D, left and center), this agreement persisted when both Runt- 
Runt cooperativity and Runt- Runt- RNAP higher- order cooperativity were considered (Figure 6E, left 
and center). However, including these two cooperativities also significantly improved the ability of the 
model at explaining the [110] experimental data (Figure 6E, right). Thus, while higher- order cooper-
ativity is the main interaction necessary to quantitatively describe repression by two Runt repressors, 

construct is used to infer both  ωrr  and  ωrrp . The horizontal line of  ω = 1  denotes the case of no cooperativity. (G) Akaike Information Criterion (AIC) 
for all four scenarios of different free parameters shown throughout (B–E). (B- E, data points represent mean and standard error of the mean over the 
embryos. C- E, shaded error bars represent 95% confidence intervals for the best MCMC fits for the Runt WT datasets; F, data and error bars represent 
the mean and standard deviation of the posterior chain, while the standard deviation for the fixed  ωrr  is set to 0.).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Prediction for two- Runt binding sites constructs based on the inferred parameters from the one- Runt binding site cases for 
different modes of repression for the (A) [011], (B) [101], and (C) [110] constructs.

Figure supplement 2. Prediction for hunchback P2 transcription initiation rate with two- Runt binding sites under the competition scenario for different 
combinations of cooperativities.

Figure supplement 3. Prediction for hunchback P2 transcription initiation rate with two- Runt binding sites under the quenching mechanism for different 
combinations of cooperativities.

Figure supplement 4. Invoking Runt- Runt cooperativity in the thermodynamic model is not sufficient to explain the experimental data from hunchback 
P2 with two Runt binding sites.

Figure supplement 5. Statistical mechanics model incorporating Runt- Runt- RNAP higher- order cooperativity.

Figure supplement 6. Invoking Runt- Runt cooperativity and higher- order cooperativity can explain the experimental data from hunchback P2 with two 
Runt binding sites.

Figure supplement 7. Sensitivity test for  Kr  by repeating the MCMC inference for different scenarios of cooperativities with different values of  Kr .

Figure 6 continued
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pairwise cooperativity also needs to be invoked. This conclusion is supported by our MCMC sampling: 
posterior distributions for the Runt- Runt cooperativity term are not well constrained for the [011] or 
[101] constructs, whereas Runt- Runt- RNAP higher- order cooperativity is constrained very well across 
all constructs (Figure 6—figure supplement 6D; Figure 6—figure supplement 6 more thoroughly 
analyzes the MCMC inference results). As a result, accounting for both pairwise and higher- order 
cooperativity is necessary for the model to explain the observed rate of RNAP loading of all three 
constructs.

The higher- order cooperativity revealed by our analysis can lead to more or less repression than 
predicted by the independent repression model, motivating us to determine the magnitude of this 
cooperativity across constructs. To make this possible, we inferred the magnitude of the Runt- Runt 
cooperativity  ωrr  and the Runt- Runt- RNAP higher- order cooperativity  ωrrp . As shown in Figure 6F, 
depending on the spatial arrangement of Runt binding sites, the Runt- Runt- RNAP higher- order coop-
erativity term  ωrrp  can be below or above 1. Note that, in doing these fits, we first set the Runt- Runt 
cooperativity,  ωrr , values for [011] and [101] to 1 because, as we had demonstrated in Figure 6D, only 
the higher- order Runt- Runt- RNAP cooperativity was necessary. Thus, different placements of Runt 
molecules on the enhancer lead to distinct higher- order interactions with RNAP which, in turn, can 
result in less or more repression than predicted by a model where Runt molecules act independently 
of each other.

Repression by three-Runt binding sites also requires higher-order 
cooperativity
Building on our success in deploying thermodynamic models to explain repression by one- and two- 
Runt binding sites, we investigated repression by three- Runt binding sites. First, we accounted for 
pairwise interactions between Runt and RNAP, which were inferred from measurements of the one- 
Runt binding site constructs (Figure 1B), yielding  ωrp[001] , ωrp[010] , and  ωrp[100]  from [001], [010], and [100]. 
Second, we considered pairwise protein- protein interactions between Runt molecules (Figure 1C), 
which were inferred from the two- Runt binding sites constructs through the parameters  ωrr[011] , ωrr[101] , 
and  ωrr[110] . Finally, we incorporated Runt- Runt- RNAP higher- order cooperativity acquired from the 
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Figure 7. Prediction for hunchback P2 with three- Runt binding sites and multiple sources of cooperativity. (A) 
Prediction using previously inferred Runt- RNAP, Runt- Runt, and Runt- Runt- RNAP cooperativity parameters. (B) Best 
MCMC fit obtained by incorporating an additional Runt- Runt- Runt- RNAP higher- order cooperativity parameter of 

 ωrrrp = 857 , corresponding to roughly  7 kBT   of free energy. (A,B, data points represent mean and standard error 
of the mean over>3 embryos; B, shaded regions represent 95% confidence intervals for the best MCMC fit.).
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two- Runt binding sites constructs (Figure 1C) captured by  ωrrp[011] , ωrrp[101] , and  ωrrp[110] . we tested our 
model predictions using a similar scheme to that described in the previous section: we generated a 
parameter- free prediction for the initial rate of transcription by using the inferred parameters from 
the one- and two- Runt binding sites constructs, including the pairwise and higher- order interactions 
described above.

Figure 7A shows the resulting parameter- free prediction. As seen in the figure, our model could not 
qualitatively recapitulate the experimental data as it predicted too much repression. Such disagree-
ment suggests that additional regulatory interactions are at play. Building on the need for higher- order 
cooperativity in the two- Runt binding site case, we propose the existence of higher- order cooperativ-
ities necessary to describe regulation by three Runt molecules—Runt- Runt- Runt higher- order coop-
erativity,  ωrrr  and Runt- Runt- Runt- RNAP higher- order cooperativity,  ωrrrp  (Figure 1D). The resulting 
expression for the predicted rate of transcription in the presence of all these sources of cooperativity 
is shown in Equation S10 in Section ‘Derivation of the general and simpler thermodynamic model 
for the hunchback P2 enhancer with one Runt binding site’. For simplicity, we assumed that the Runt- 
Runt- Runt cooperativity is one, and only determined the Runt- Runt- Runt- RNAP higher- order coop-
erativity. By including only a Runt- Runt- Runt- RNAP higher- order cooperativity parameter, our model 
recapitulated the experimental data (Figure 7B). Thus, our results further support the view in which 
the addition of Runt repressor binding motifs in an enhancer calls for the incorporation of cooperativ-
ities of increasingly higher- order.

Discussion
One of the challenges in generating predictions to probe thermodynamic models is that, often, these 
models are contrasted against experimental data from endogenous regulatory regions (Segal et al., 
2008; Sayal et al., 2016; Park et al., 2019). Here, the presence of multiple binding sites for several 
transcription factors—known and unknown (Vincent et al., 2016)—leads to models with a combina-
torial explosion of free parameters. Like the proverbial elephant that can be fit with four parameters 
(Mayer et al., 2010), experiments with endogenous enhancers typically contain enough parameters 
to render it possible to explain away apparent disagreement between theory and experiment (Garcia 
et al., 2020).

To close this gap, synthetic minimal enhancers have emerged as an attractive alternative to endog-
enous enhancers (Fakhouri et al., 2010; Sayal et al., 2016; Park et al., 2019; Crocker et al., 2016). 
Here, the presence of only a handful of transcription factor binding sites and the ability to systemat-
ically control their placement and affinity dramatically reduce the number of free parameters in the 
model (Garcia et al., 2020). Inferences performed on these synthetic constructs could then inform 
model parameters that would make it possible to quantitatively predict transcriptional output of de 
novo enhancers (Sayal et al., 2016).

Building on these works, we sought to predict how the Runt repressor, which counteracts activa-
tion by Bicoid along the anterior- posterior axis of the early fly embryo (Chen et al., 2012), dictates 
output levels of transcription. To dissect repression, a strong and detectable level of expression in the 
absence of the repressor was needed, prompting us to choose a simple system of synthetic enhancers 
based on the strong hunchback P2 minimal enhancer (Garcia et al., 2013; Chen et al., 2012). This 
enhancer has been carefully studied in terms of its activator Bicoid and the pioneer- like transcription 
factor Zelda in the early embryo (Driever and Nüsslein- Volhard, 1988; Garcia et al., 2013; Park 
et al., 2019; Eck et al., 2020), making it easier to identify neutral sequences within the enhancer for 
introducing Runt binding sites (Chen et al., 2012). Further, when inserted into hunchback P2, Runt 
binding site number determines the level of transcription incrementally (Chen et al., 2012). Thus, 
hunchback P2 provided an ideal scaffold for quantitatively and systematically dissecting repression 
by Runt.

Previous studies using synthetic enhancers relied on measurements of input transcription factor 
patterns using fluorescence immunostaining, and of cytoplasmic mRNA patterns using fluorescence in 
situ hybridization (FISH) or single- molecule FISH. These fixed- tissue techniques have key differences 
from the live- imaging approach adopted here. First, given the dynamical nature of development, it 
is necessary to know when data were acquired. Doing so with high temporal resolution using FISH 
is challenging, although it can be accomplished to some degree by synchronizing embryo deposi-
tion before fixation (Park et al., 2019). Second, while most transcription factors directly dictate the 
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rate of RNAP loading, and hence the rate of mRNA production (Spitz and Furlong, 2012; Garcia 
et al., 2013; Eck et al., 2020), typical FISH measurements report on the accumulated mRNA in the 
cytoplasm, which is a convolution of all processes of the transcription cycle—initiation, elongation, 
and termination (Liu et al., 2021; Alberts et al., 2015)—as well as mRNA nuclear export dynamics, 
diffusion, and degradation. These processes could be modulated in space and time, potentially 
confounding measurements. Here, we overcame these challenges by using the MS2 technique to 
precisely time our embryos and acquire the rate of transcription initiation. Of course, despite the 
ease of measuring the rate of transcription initiation using MS2, the accumulated mRNA is presum-
ably a more relevant quantity for predicting downstream cellular decision making. Previous studies 
have shown that the MS2- MCP technique can also be used to quantify such patterns of accumulated 
mRNA, and that this quantification leads to results comparable to those obtained by smFISH (Garcia 
et al., 2013; Lammers et al., 2020). Following the same quantification method, we assessed the 
relationship between the initial rate of RNAP loading and the accumulated mRNA (Figure 3—figure 
supplement 5, Figure 3—figure supplement 6) by plotting them against each other. Reassuringly, as 
shown in Figure 3—figure supplement 8, our analysis revealed a strong correlation (with Pearson’s 
correlation coefficient of 0.90), supporting our claim that higher- order cooperativity is essential for 
explaining the action of multiple transcription factors during the development.

Interestingly, our initial dissection of constructs containing various combinations of Runt binding 
sites, but in the absence of Runt protein, revealed that unrepressed gene expression levels depend 
strongly on the number and placement of the binding sites within the enhancer (Figure 4A). These 
results challenge previous assumptions that unregulated gene expression levels stay unchanged as 
enhancer architecture is modulated (Sayal et al., 2016; Fakhouri et al., 2010; Barr et al., 2017), but 
they are in accordance with observations in bacterial systems (Garcia et al., 2012). As a result, our 
measurements call for accounting for unregulated levels in future quantitative dissections of eukary-
otic enhancers, or to study relative magnitudes such as the fold- change in gene expression that has 
driven the dissection of bacterial transcriptional regulation (Phillips et al., 2019).

Using the thermodynamic model shown in Equation 3, we determined that the Bicoid- dependent 
parameters remain constant while RNAP- dependent parameters vary across these synthetic enhancer 
constructs. We speculate that the overall enhancer sequence, which changed as a result of the place-
ment of different combinations of Runt binding sites within it, might affect the binding of the tran-
scriptional machinery. Specifically, since the enhancer is proximal to the promoter, the transcriptional 
machinery might see slightly different DNA sequences in the vicinity of the promoter as suggested 
by published structures of the transcriptional machinery assembled on DNA (Louder et al., 2016).

Table 1. Interaction energies for the Runt- related cooperativity parameters from one-, two-, and 
three- Runt sites constructs.
Note that we used the Boltzmann relation of  ω = exp(−E/(kBT)) , where the  E  is the interaction 
energy,  kB  is the Boltzmann constant, and  T   is the temperature.

Interaction energies for the Runt- related cooperativity parameters

model parameter construct interaction energy (KBT)

Runt-RNAP interaction, ωrp 

[001] 2.34 ± 0.63

[010] 1.36 ± 0.36

[100] 0.18 ± 0.24

Runt-Runt interaction, ωrr 

[011] 0 (manually set)

[110] -0.95 ± 0.12

[101] 0 (manually set)

Runt-Runt-RNAP interaction, ωrrp 

[011] -2.09 ± 0.27

[110] 4.15 ± 1.14

[101] 1.12 ± 0.51

Runt-Runt-Runt-RNAP interaction, ωrrrp [111] -2.12 ± 0.14
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Once we accounted for this difference in unrepressed gene expression levels, we determined that 
the repression profiles obtained for constructs bearing one- Runt binding site could be described by a 
simple thermodynamic model (Figure 2). Specifically, we showed that the same dissociation constant 
described Runt binding regardless of the position of its binding site along the enhancer (Figure 5A). 
Further, the Runt- RNAP interaction terms describing repressor action decreased as the binding site 
was placed farther from the promoter (Figure 5C), qualitatively consistent with a ‘direct repression’ 
model in which Runt needs to physically contact RNAP in order to realize its function (Jaynes and 
O’Farrell, 1991; Gray et al., 1994; Hewitt et al., 1999).

Although our model recapitulated repression by a one- Runt binding site, the inferred parameters 
were insufficient to quantitatively predict repression by two- Runt binding sites (Figure 6B). These 
results suggest that multiple repressors do not act independently of each other. Instead, new param-
eters describing both Runt- Runt cooperativity and Runt- Runt- RNAP higher- order cooperativity had to 
be incorporated into our models to quantitatively describe Runt action in these constructs (Figure 6—
figure supplement 1C–E). An examination of the various cooperativity values inferred in the language 
of interaction energies (Table 1) revealed that these energies were of a magnitude comparable to 
protein- protein interaction energies previously measured in bacterial systems (Dodd et  al., 2004; 
Bintu et al., 2005a; Amit et al., 2011). Interestingly, these interaction energies were both positive and 
negative, suggesting that both cooperativity or anti- cooperativity are at play depending on enhancer 
architecture (Amit et al., 2011). Additionally, the [101] construct showed a closer agreement with the 
parameter- free prediction, without invoking higher- order cooperativity, than the other two constructs 
([110] or [011]). This further supports a picture where higher- order cooperativity is sensitive to the 
placement and orientation of transcription factor binding sites within regulatory regions.

While we have long known about protein- protein cooperative interactions (Ackers et al., 1982), 
in the last few years it has become clear that higher- order cooperativity can also be at play in eukary-
otic systems (Estrada et al., 2016a; Park et al., 2019; Biddle et al., 2020) as well as in bacteria 
(Dodd et  al., 2004) and archaea (Peeters et  al., 2013). The existence of this higher- order coop-
erativity suggests that, to predict gene expression from DNA sequence, it might be necessary to 
build an understanding of the many simultaneous interactions that precede transcriptional initiation. 
Our discovery of higher- order cooperativity in the action of multiple Runt molecules opens up new 
avenues to uncover the molecular nature of this phenomenon. For example, following an approach 
developed in Park et al., 2019, it could be possible to determine whether and how these coopera-
tivity parameters are modulated upon perturbation of molecular players such as the Groucho or CtBP 
co- repressors, Big- brother, a co- factor facilitating the Runt binding to DNA, and components of the 
mediator complex (Park et al., 2019; Courey and Jia, 2001; Walrad et al., 2011). Indeed, Park 
et al., 2019 recently showed that co- activators and mediator units are involved in dictating the magni-
tude of similar higher- order cooperativity terms in activation by Bicoid. Thus, our thermodynamic 
models provide a lens through which to dissect the molecular underpinnings of Runt interactions with 
itself and with the transcriptional machinery.

Notably, the need to invoke cooperative interactions as more Runt binding sites are being added 
opposes our goal of predicting complex regulatory architectures from experiments with simpler archi-
tectures without the need to invoke new parameters. However, it will be interesting to determine 
whether more parameters need to be invoked as the number of Runt binding sites increases beyond 
three, or whether the parameters already inferred are sufficient to endow our models with parameter- 
free predictive power.

Importantly, while our model adopted a ‘direct repression’ view of the mechanism of Runt action, 
other mechanisms of repression such as ‘quenching’ could also describe the data. While all such 
models call for higher- order cooperativity to describe the data (Supplementary Section ‘Comparison 
of different modes of repression’), our data cannot differentiate among those models. Thus, we did 
not attempt to distinguish different molecular mechanisms of Runt transcriptional repression.

Finally, even though the work presented here has relied exclusively on thermodynamic models, 
it is important to note that a much more general approach based on kinetic models that are not in 
thermodynamic equilibrium could also be appropriate for describing our data. Indeed, an increasing 
body of work over the last few years has provided evidence for the necessity of invoking these more 
complex models in the context of transcriptional regulation in eukaryotes (Estrada et al., 2016a; Li 
et al., 2018; Park et al., 2019; Eck et al., 2020). In future work, it will be interesting to determine 
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whether, when our data is viewed through the lens of these non- equilibrium models, invoking higher- 
order cooperativity is still necessary or whether, instead, simple pairwise protein- protein interactions 
suffice to reach an agreement between theory and experiment.

Overall, the work presented here establishes a framework for systematically and quantitatively 
studying repression in the early fly embryo. As showcased here, synthetic enhancers based on the 
hunchback P2 minimal enhancer constitute an ideal scaffold for the study of other repressors in early 
fly embryos. For example, we envision that this approach could be used to dissect repression by other 
transcription factors such as Capicua or Krüppel (Löhr et al., 2009; Sauer and Jäckle, 1991; Papa-
gianni et al., 2018; Chen et al., 2012), and to probe observations of multiple repressors working 
together to oppose activation by Bicoid in establishing gene expression patterns along the anterior- 
posterior axis (Chen et al., 2012; Briscoe and Small, 2015). We anticipate that a similar approach 
could be used to dissect repression along the dorso- ventral axis of the embryo, by for example, adding 
repressor binding sites to well- established reporter constructs that are only regulated by the Dorsal 
activator (Jiang and Levine, 1993). Critically, we need to understand not only how one species of 
repressor works in concert with an activator, but also how multiple species of repressors work together 
as a system. The approach presented here provides a way forward for predictively understanding the 
complex gene regulatory network that shapes gene expression patterns in the early fly embryo.

Materials and methods
Generation of synthetic enhancers with MS2 reporter
The synthetic enhancer constructs used in this study are based off of Chen et al., 2012. In summary, 
the hunchback P2 enhancer was used as a scaffold to introduce Runt binding sites at different positions 
that are thought to be neutral (i.e. these Runt binding sites do not interfere with any other obvious 
binding sites for other transcription factors in the early Drosophila embryos as shown in Figure 4—
figure supplement 1). For the three positions chosen to introduce Runt binding sites in Chen et al., 
2012, the Gene Synthesis service from Genscript was used to generate synthetic enhancers with all 
possible configurations of zero-, one-, two-, and three- Runt binding sites in hunchback P2 as shown 
in Figure 1A. The enhancer sequences were placed into the original plasmid pIB backbone (Chen 
et al., 2012) using the Gene Fragment Synthesis service in Genscript, followed by the even- skipped 
promoter, and 24 repeats of the MS2v5 loop (Wu et al., 2015), the lacZ coding sequence, and the 
 α - Tubulin 3’UTR sequence (Chen et al., 2012) as shown in Table 2. These plasmids were injected 
into the 38F1 landing site using the RMCE method (Bateman et al., 2006) by BestGene Inc Flies 

Table 2. List of plasmids used to create the transgenic fly lines used in this study.

Plasmids

Name (hyperlinked to Benchling) Function

pIB-hbP2-evePr-MS2v5-LacZ-Tub3UTR [000]-MS2v5 reporter construct

pIB-hbP2+r1-far-evePr-MS2v5-LacZ-Tub3UTR [100]-MS2v5 reporter construct

pIB-hbP2+r1-mid-evePr-MS2v5-LacZ-Tub3UTR [010]-MS2v5 reporter construct

pIB-hbP2+r1-close-evePr-MS2v5-LacZ-Tub3UTR [001]-MS2v5 reporter construct

pIB-hbP2+r2-2+3-evePr-MS2v5-LacZ-Tub3UTR [011]-MS2v5 reporter construct

pIB-hbP2+r2-1+3-evePr-MS2v5-LacZ-Tub3UTR [101]-MS2v5 reporter construct

pIB-hbP2+r2-1+2-evePr-MS2v5-LacZ-Tub3UTR [110]-MS2v5 reporter construct

pIB-hbP2+r3-evePr-MS2v5-LacZ-Tub3UTR [111]-MS2v5 reporter construct

pHD-scarless-LlamaTag-Runt
Donor plasmid for LlamaTag- Runt CRISPR knock- in fusion for 
the N- terminal

pU6:3-gRNA(Runt-N-2)
gRNA plasmid for LlamaTag- Runt CRISPR knock- in fusion for 
the N- terminal

pCasper-vasa-eGFP
vasa maternal driver for ubiquitous eGFP expression in the early 
embryo
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were screened by selecting for white eye color and made homozygous. The orientation of the inser-
tion was determined by genomic PCR to ensure a consistent orientation across all of our constructs. 
Specifically, we used two sets of primers that each amplified one of these two possible orientations: 
‘Upward’, where the forward primer binds to a genomic location outside of 38F1 ( TTCT  AGTT  CCAG  
TGAA  ATCC  AAGC A) and the reverse primer binds to a location in our reporter transgene (ACGC 
CAGG GTTT TCCC AG), and ‘Downward’, where the forward primer remains the same as the ‘Upward’ 
set and the reverse primer binds to a location in our reporter transgene ( CTCT  GTTC  TCGC  TATT  ATTC  
CAAC C) when the insertion is the opposite orientation to the ‘Upward’ orientation. As a result, only 
amplicons from either one of the orientations of insertion in the 38F1 landing site can be obtained. 
We chose the ‘Downward’ orientation for all our constructs.

CRISPR-Cas9 knock-in of the green LlamaTag in the endogenous runt 
locus
We used CRISPR- Cas9 mediated Homology Directed Repair (HDR) to insert the LlamaTag against 
eGFP into the N- terminal of the runt endogenous locus (Bothma et al., 2018; Gratz et al., 2015). 
The donor plasmid was constructed by stitching individual fragments—PCR amplified left/right 
homology arms from the endogenous runt locus roughly 1 kb in length each, LlamaTag, and pHD- 
scarless vector—using Gibson assembly (Gratz et al., 2015). The PAM sites in the donor plasmid 
were mutated such that the Cas9 only cleaved the endogenous locus, not the donor plasmid, without 
changing the amino acid sequence of the Runt protein. The final donor plasmid contained the 3xP3- 
dsRed marker such that dsRed is expressed in the fly eye and ocelli for screening. Positive transfor-
mant flies were screened using a fluorescence dissection scope and set up for single fly crosses to 
establish individual lines that were then verified with PCR amplification and Sanger sequencing (UC 
Berkeley Sequencing Facility). Importantly, this llamaTag- runt allele rescues development to adult-
hood as a homozygous. Thus we concluded that the LlamaTag- Runt allele can be used to monitor the 
behavior of endogenous Runt protein.

Fly strains
Transcription from the synthetic enhancer reporter constructs was measured by using embryos from 
crossing yw;his2av- mRFP1;MCP- eGFP(2) females and yw;synthetic enhancer- MS2v5- lacZ;+ males as 
described in Garcia et al., 2013; Eck et al., 2020; Lammers et al., 2020.

eGFP- Bicoid measurements were performed using the fly line from Gregor et  al., 2007. The 
LlamaTag- Runt measurements were done using the fly line LlamaTag- Runt; +; vasa- eGFP, His2Av- iRFP 

Table 3. List of fly lines used in this study and their experimental usage.

Fly lines

Genotype Use

LlamaTag- Runt; +; vasa- eGFP, His2Av- iRFP Visualize LlamaTagged Runt protein and label nuclei

LlamaTag- Runt; +; MCP- eGFP(4F), His2Av- 
iRFP

Visualize LlamaTagged Runt protein, nascent transcripts and label 
nuclei

run3/FM6; +; +
Visualize LlamaTagged Runt protein, nascent transcripts and label 
nuclei

yw; His2Av- mRFP; MCP- eGFP Females to label nascent RNA and nuclei

yw; [000]-MS2v5; + Males carrying the MS2 reporter transgene

yw; [100]-MS2v5; + Males carrying the MS2 reporter transgene

yw; [010]-MS2v5; + Males carrying the MS2 reporter transgene

yw; [001]-MS2v5; + Males carrying the MS2 reporter transgene

yw; [011]-MS2v5; + Males carrying the MS2 reporter transgene

yw; [101]-MS2v5; + Males carrying the MS2 reporter transgene

yw; [110]-MS2v5; + Males carrying the MS2 reporter transgene

yw; [111]-MS2v5; + Males carrying the MS2 reporter transgene
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illustrated in Table 3. Briefly, eGFP was supplied by a vasa maternal driver. Females carrying both the 
LlamaTag- Runt and the vasa- driven eGFP were crossed with males carrying the LlamaTag- Runt, the 
progeny from this cross were imaged and then recovered to determine the embryo’s sex using PCR. 
PCR was run with three sets of primers: Y chr1 (Forward:  CGAT  CCAG  CCCA  ATCT  CTCA  TATC  ACTA , 
Reverse:  ATCG  TCGG  TAAT  GTGT  CCTC  CGTA  ATTT ), Y chr2 (Forward:  AACG  TAAC  CTAG  TCGG  ATTG  
CAAA  TGGT , Reverse:  GAGG  CGTA  CAAT  TTCC  TTTC  TCAT  GTCA ), and Auto1 (Forward:  GATT  CGAT  
GCAC  ACTC  ACAT  TCTT  CTCC , Reverse:  GCTC  AGCG  CGAA  ACTA  ACAT  GAAA  AACT ). Two of primers 
in the set (Y chr1 and Y chr2) bind to the Y chromosome while the other one (Auto1) binds to one 
of the autosomes and constitutes a positive control (Lott et al., 2011). The Histone- iRFP fly line was 
from Pan et al., 2022, and was used for nuclei segmentation to extract nuclear flourescence from the 
eGFP channel.

To generate the embryos that are zygotic null for the runt allele, we used a fly cross scheme 
consisting of two crosses. In the first generation, we crossed LlamaTag- Runt;+;+ males with run3/
FM6;+;MCP- eGFP(4 F),his2av- mRFP1 females. run3 is the null allele for runt, missing around 5 kb 
including the coding sequence of the runt locus (Gergen and Butler, 1988; Chen et  al., 2012). 
The MCP- eGFP(4 F) transgene expresses approximately twice the amount of MCP protein than the 
MCP- eGFP(2) (Garcia et al., 2013; Eck et al., 2020) and thus results in similar levels of MCP to those 
of MCP- eGFP(2) in the trans- heterozygotes. The female progeny from this cross, LlamaTag- Runt/
run3;+;MCP- eGFP(4 F),his2av- mRFP1/+ was then crossed with males whose genotype was LlamaTag- 
Runt/Y;synthetic enhancer- MS2v5- lacZ;+ to produce the embryos that we used for live imaging. The 
resulting embryos carried maternally supplied MCP- eGFP and His- RFP for visualization of nascent 
transcripts and nuclei. The X chromosome contained a LlamaTag- Runt allele or run3 null allele. We 
could differentiate between these two genotypes because, when the embryo had the Runt allele, a 
stripe pattern would appear in late nc14. We imaged all embryos until late nc14 to make sure that we 
were capturing the nulls.

Sample preparation and data collection
Sample preparation was done following the protocols described in Garcia et al., 2013. Briefly, embryos 
were collected, dechorionated with bleach for 1–2 min, and then mounted between a semiperme-
able membrane (Lumox film, Starstedt, Germany) and a coverslip while embedded in Halocarbon 27 
oil (Sigma- Aldrich). Live imaging was performed using a Leica SP8 scanning confocal microscope, a 
White Light Laser and HyD dectectors (Leica Microsystems, Biberach, Germany). Imaging settings 
for the MS2 experiments with the presence of MCP- eGFP and Histone- RFP were the same as in Eck 
et al., 2020 except that we used a 1024x245 pixel format to image a wider field of view along the 
anterior- posterior axis. The settings for the eGFP- Bicoid measurements were the same as described 
in Eck et al., 2020.

The settings for the eGFP:LlamaTag- Runt measurements were similar to that of eGFP- Bicoid except 
for the following. To increase our imaging throughput, we utilized the ‘Mark and Position’ functionality 
in the LASX software (Leica SP8) to image 5–6 embryos simultaneously. To account for the decreased 
time resolution, we lowered the z- stack size from 10 μm to 2.5 μm, keeping the 0.5 μm z- step. By 
doing this, we could maintain 1- min frame rate for each imaged embryo. Additionally, these flies 
expressed Histone- iRFP, instead of Histone- RFP as in Eck et al., 2020, so that we used a 670 nm laser 
at 40 μW (measured at a 10x objective) for excitation of the histone channel, and the HyD detector 
was set to a 680 nm- 800 nm spectral window (Figure 3—figure supplement 7).

Image analysis
Images were analyzed using custom- written software (MATLAB, mRNA Dynamics Github repository; 
Garcia Lab @ UC Berkeley, 2022) following the protocol in Garcia et al., 2013 and Eck et al., 2020. 
Briefly, this procedure involved segmentation and tracking of nuclei and transcription spots. First, 
segmentation and tracking of individual nuclei were done using the histone channel as a nuclear mask. 
Second, segmentation of each transcription spot was done based on its fluorescence intensity and 
existence over multiple z- stacks. The intensity of each MCP- GFP transcriptional spot was calculated by 
integrating pixel intensity values in a small window around the spot and subtracting the background 
fluorescence measured outside of the active transcriptional locus. When there was no detectable tran-
scriptional activity, we assigned NaN values for the intensity. The tracking of transcriptional spots was 

https://doi.org/10.7554/eLife.73395
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done by using the nuclear tracking and proximity of transcriptional spots between consecutive time 
points. The nuclear protein fluorescence intensities from the eGFP- Bicoid and LlamaTag- Runt fly lines, 
which we use as a proxy for the protein nuclear concentration, were calculated as follows. Using the 
nuclear mask generated from the histone channel, we performed the same nuclear segmentation and 
tracking as described above for the MS2 spots. Then, for every z- section, we extracted the integrated 
fluorescence over a  2µm  diameter circle on the xy- plane centered on each nucleus. For each nucleus, 
the recorded fluorescence corresponded to the z- position where the fluorescence was maximal. This 
resulted in an average nuclear concentration as a function of time for each single nucleus. These 
concentrations from individual nuclei were then averaged over a narrow spatial window (2.5% of the 
embryo length) to generate the spatially averaged protein concentration reported in the main text. 
For the eGFP:LlamaTag- Runt datasets, we had to subtract the background eGFP fluorescence due 
to the presence of an unbound eGFP population (Bothma et al., 2018). We used the same protocol 
described in Bothma et al., 2018 and in the Supplementary Section ‘Quantifying the nuclear concen-
tration of LlamaTag- Runt’ to extract this background.

Bayesian inference procedure: Markov Chain Monte Carlo sampling
Parameter inference was done using the Markov Chain Monte Carlo (MCMC) method. We used a 
well- established package MCMCstat that uses an adaptive MCMC algorithm (Haario et al., 2006; 
Haario et al., 2001). A detailed description on how we performed the MCMC parameter inference, 
for example setting the priors and bounds for parameters, can be found in Supplementary Section 
‘Markov Chain Monte Carlo inference protocol’.
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Appendix 1
S1 Derivation of the general thermodynamic model for the hunchback 
P2 enhancer
In this section, we rederive the thermodynamic model presented in the main text, now without 
the assumption of strong Bicoid- Bicoid cooperativity. The equilibrium thermodynamic modeling 
framework that we used in this paper is described in more detail in Bintu et al., 2005a; Bintu et al., 
2005b.

We start by modeling the case of hunchback P2 without any Runt binding sites, which is believed 
to have at least six Bicoid binding sites (Park et  al., 2019; Driever et  al., 1989). As shown by 
the states and weights presented in Figure  2—figure supplement 1A, in our thermodynamic 
model, we assume that the six Bicoid binding sites have the same dissociation constant given by 

 Kb , and we posit that RNAP- promoter binding is governed by a dissociation constant given by  Kp . 
We also assume pairwise cooperativity between Bicoid molecules given by  ωb , and cooperativity 
between each Bicoid molecule and RNAP given by  ωbp . For simplicity, we will use the dimensionless 
parameters  b = [Bicoid]/Kb  and  p = [RNAP]/Kp , where  [Bicoid] , and  [RNAP]  are the concentrations of 
Bicoid and RNAP, respectively, and  Kb  and  Kp  are their corresponding dissociation constants.

We factor the total partition function into two categories:  Zb  corresponding to states that only 
have Bicoid bound, and  Zbp  describing states with both Bicoid and RNAP bound. Then, we calculate 
each component separately. The sum of microstates for  Zb  is

 Zb = 1 + 6b + 15b2ωb + · · · + b6ω5
b = 1 +

∑6
i=1

(6
i
)
biωi−1

b .  (S1)

Using the binomial theorem, we can simplify Equation S1 leading to

 
Zb = 1 +

6∑
i=1

(6
i
)
biωi−1

b = 1 + 1
ωb

[
(1 + b ωb)6 − 1

]
.
  

(S2)

Using the same logic, we obtain  Zbp  such that

 
Zbp =

(
p + p

6∑
i=1

(6
i
)
biωi−1

b ωi
bp

)
= p + p

ωb

[
(1 + bωbωbp)6 − 1

]
.
  

(S3)

Using these two partition functions, we then calculate the probability of the promoter being bound 
by RNAP,  pbound  as

 
Pbound = Zbp

Zb+Zbp
=

p+ p
ωb

[
(1+b ωb ωbp)6−1

]

1+ 1
ωb

[
(1+b ωb)6−1

]
+p+ p

ωb

[
(1+b ωb ωbp)6−1

] .
  

(S4)

Following recent work (Gregor et al., 2007; Park et al., 2019), we now assume that the Bicoid- 
Bicoid pairwise cooperativity is very strong ( ωb ≫ 1 ). We can then simplify Equation S4 to obtain

 
Pbound = p+p b6 ω5

b ω6
bp

1+p+b6 ω5
b +p b6 ω5

b ω6
bp

.
  

(S5)

If we now define a new binding constant for Bicoid,  K
′
b = Kb ∗ ( 1

ωb
)

5
6
 , such that  b

′ = b ω
5
6
b  , and a new 

cooperativity term between Bicoid and RNAP given by  ω
′
bp = ω6

bp , we can then rewrite Equation S5 
as

 
Pbound = p+b′6 p ω′

bp
1+p+b′6+b′6 p ω′

bp
,
  

(S6)

which is the expression we use throughout the main text. Thus, strong pairwise cooperativity between 
Bicoid molecules leads to a functional form where only the state with all Bicoid molecules bound 
remain (six in this case). This strong cooperativity can explain the sharp step- like expression pattern 
along the embryo’s anterior- posterior axis of the hunchback gene (Figure 3J; Gregor et al., 2007, 
Park et al., 2019, Driever and Nüsslein- Volhard, 1988; Driever and Nüsslein- Volhard, 1989).

https://doi.org/10.7554/eLife.73395
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S2 Derivation of the general and simpler thermodynamic model for the 
hunchback P2 enhancer with one Runt binding site
Having derived the equation for the strong cooperative binding of Bicoid to the wild- type hunchback 
P2 enhancer, we will now extend that model to the case of hunchback P2 with one Runt binding site. 
The corresponding states and weights of our full model are shown in Figure 2—figure supplement 
2A.

Using a similar logic for calculating the partition functions as described in the previous section, we 
can compute the probability of the promoter being bound by RNAP as

 

pbound =
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(S7)

where, in addition to the parameters defined in the above section for the wild- type hunchback P2 
case in the absence of Runt, we have added two parameters: the dissociation constant for Runt given 
by  Kr , and a Runt- RNAP interaction term (an anti- cooperativity),  ωrp . Using the binomial theorem as 
in Equation S2, we can simplify Equation S7 to obtain

 
pbound =
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[
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)6−1]+rpωrp+ rpωrp

ωb
[
(

1+bωbωbp
)6−1]

.
  

(S8)

We now again assume that Bicoid- Bicoid cooperativity is very strong such that  ωb ≫ 1 . Then, we can 
combine Equation S8 with Equation 1 to obtain

 
Rate = R pbound = R p+b′6 p ωbp+r p ωrp+b′6 r p ω′

bp ωrp

1+b′6+r+b′6 r+p+b′6 p ω′
bp+r p ωrp+b′6 r p ω′

bp ωrp
,
  

(S9)

where the new parameters,  b′  and  ω
′
bp  are defined in the same way as in Equation S6. The effective 

states and weights remaining after taking this limit are shown in Figure 2—figure supplement 2B. 
Similarly, we can derive expressions for  pbound  in the presence of two and three Runt binding sites, 
and in the strong Bicoid- Bicoid cooperativity limit in order to obtain the predictions used throughout 
this text. We show this expression for two Runt binding sites in Equation 6. Further, for the case of 
repression by three Runt binding sites, the rate of transcription is given by

 

Rate = R
(
p + b6pωbp + rp(ωrp1 + ωrp2 + ωrp3) + b6rpωbp(ωrp1 + ωrp2 + ωrp3)+

r2p(ωrp1ωrp2ωrr1ωrrp1 + ωrp2ωrp3ωrr2ωrrp2 + ωrp3ωrp1ωrr3ωrrp3)+

r3pωrp1ωrp2ωrp3ωrr1ωrr2ωrr3ωrrp1ωrrp2ωrrp3ωrrrωrrrp+

b6r2pωbp(ωrp1ωrp2ωrr1ωrrp1 + ωrp2ωrp3ωrr2ωrrp2 + ωrp3ωrp1ωrr3ωrrp3)+

b6r3pωbpωrp1ωrp2ωrp3ωrr1ωrr2ωrr3ωrrp1ωrrp2ωrrp3ωrrrωrrrp
)

(
1 + b6(1 + 3r + pωbp) + 3r + p + rp(ωrp1 + ωrp2 + ωrp3)+

r2p(ωrp1ωrp2ωrr1ωrrp1 + ωrp2ωrp3ωrr2ωrrp2ωrp3ωrp1ωrr3ωrrp3) + b6r2(ωrr1 + ωrr2 + ωrr3)+

b6r3ωrr1ωrr2ωrr3ωrrr + r2(ωrr1 + ωrr2 + ωrr3) + r3ωrr1ωrr2ωrr3+

r3pωrp1ωrp2ωrp3ωrr1ωrr2ωrr3ωrrp1ωrrp2ωrrp3ωrrrωrrrp+

b6rpωbp(ωrp1 + ωrp2 + ωrp3) + b6r2pωbp
(
ωrp1ωrp2ωrr1ωrrp1 + ωrp2ωrp3ωrr2ωrrp2 + ωrp3ωrp1ωrr3ωrrp3

)
+

b6r3pωbpωrp1ωrp2ωrp3ωrr1ωrr2ωrr3ωrrp1ωrrp2ωrrp3ωrrrωrrrp
)−1 ,  

 (S10)

where the parameters are defined as in Figure 1 and Section ‘Repression by three- Runt binding sites 
also requires higher- order cooperativity’.

https://doi.org/10.7554/eLife.73395
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S3 Comparing using static versus dynamic transcription factor 
concentrations as model inputs
In this section, we tested whether using static, time- averaged transcription factor concentration 
profiles yielded comparable theoretical predictions than when instead acknowledging the fact that 
input transcription factor concentration changes over time. Briefly, we compared the predicted rate 
of transcription calculated in two ways: (1) time- averaging the instantaneous rate from the dynamic 
transcription factor concentration profiles over a specified time window (from 5 to 10 minutes from 
the 13th anaphase) and (2) using static input transcription factors already time- averaged over the 
same time window.

As a concrete example, we focused on the hunchback P2 enhancer with one Runt binding 
site. We calculated the predicted rate of transcription using the thermodynamic model given by 
Equation 2. First, we performed this calculation using the dynamic concentration profiles of Bicoid 
and Runt shown in Figure 3B and D, respectively. Briefly, the terns  b  and  r  in Equation 2 now 
become functions of time such that

 
Rate(t) = R p+b6(t) p ωbp+r(t) p ωrp+b6(t) r(t) p ωbp ωrp

1+b6(t)+r(t)+b6(t) r(t)+p+b6(t) p ωbp+r(t) p ωrp+b6(t) r(t) p ωbp ωrp
,
  (S11)

where  b(t) = [Bicoid](t)/Kb  and  r(t) = [Runt](t)/Kr . We choose a set of reasonable values for the model 
parameters to illustrate the calculation of  Rate(t)  at 30% of the embryo length. The resulting dynamic 
rate of transcription profile is shown in Figure 3—figure supplement 1A (blue curve). We then use 
this profile to calculate the time- averaged rate of transcription over the time window of 5–10 minutes 
from the 13th anaphase, resulting in the green area shown in Figure 3—figure supplement 1A.

The predicted average rate of RNAP loading given dynamic input transcription factors can be 
compared to the predicted rate of RNAP loading given the average input concentrations that we 
used throughout the main text (Figure 3E). Specifically, we plug the static concentration profiles of 
Bicoid and Runt shown in Figure 3E into Equation 2 to obtain the red area shown in Figure 3—
figure supplement 1A. As shown in the figure, the predicted rate of transcription obtained by these 
two analysis methodologies are equivalent within error.

Finally, we performed this comparison between different approaches to calcualate the rate of 
transcription as a function of position along the embryo (from 20% to 70% of the embryo length). 
As shown in Figure 3—figure supplement 1B, the resulting spatial profiles are comparable within 
error. Thus, we have shown that our approach of using time- averaged, static transcription factor 
concentrations as inputs to our model yield quantitatively equivalent result as accounting for the 
dynamic concentration profiles of these transcription factors.

S4 Quantitative interpretation of MS2 signals
The MS2 signal reports on three features of transcriptional dynamics: (1) the initial RNAP loading 
rate, (2) the duration of transcription, and (3) the fraction of loci that engage in transcription at any 
time point in the nuclear cycle. In this section, we will explain in further detail how we extract these 
features from the MS2 signal over nuclear cycle 14.

S4.1 Extracting the initial RNAP loading rate
The initial rate of RNAP loading corresponds the average transcription rate observed after 
transcriptional onset and until the MS2 signal reaches its peak value during nuclear cycle 14. In order 
to measure this rate, we followed the protocol described in Garcia et al., 2013. Briefly, as shown in 
Figure 3—figure supplement 2A, we fitted a line to the MS2 time trace (averaged over nuclei within 
a spatial window of 2.5% of the embryo length) within the time window of 5–10 minutes after the 
13th anaphase. The slope of this line reported on the initial rate of RNAP loading (Figure 3G). The 
spatial profiles of this initial rate of RNAP loading across all our synthetic enhancer constructs and 
genotypes are shown in Figure 3—figure supplement 2B.

S4.2 Extracting the duration of transcription
In the main text, we focused on the theoretical prediction of the initial rate of transcription. However, 
the length of the time window over which transcription occurs (Lammers et al., 2020) is another 
regulatory knob that, in principle, Runt could modulate to dictate gene expression patterns. We 
sought to determine the duration of time over which transcription occurs to assess whether Runt 
affects not only the initial rate of transcription, but also the time window over which transcription 
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could initiate. To quantify the effective duration of transcription initiation, we resorted to the analysis 
methodology developed in Garcia et  al., 2013. Briefly, we parametrized the MS2 signal decay 
regime—after transcription reaches its peak and becomes slower than the unloading rate (Garcia 
et al., 2013)—as an exponential decay (Figure 3—figure supplement 3A). Thus, we can describe 
the MS2 spot fluorescence trace in the decay regime as

 Fluo(t) = Fluomaxe−(t−Tpeak)/τ ,  (S12)

where  Tpeak  represents the time point where the MS2 spot fluorescence reaches its peaks,  Fluomax  is 
the maximum level of fluorescence, and  τ   is the decay time.

Given the sometimes noisy MS2 traces (data not shown), we fitted an exponential curve to the 
more robust integral of the MS2 spot fluorescence over time from  Tpeak  to the end of nuclear cycle 14 
as shown in Figure 3—figure supplement 3B. This quantity is proportional to the amount of mRNA 
produced between the integration bounds (Garcia et al., 2013). The resulting accumulated mRNA 
time trace is then fitted to the integrated form of Equation S12, which is given by

 mRNA (t) = mRNAmax(1 − e(t−Tpeak)/τ ),  (S13)

where  mRNAmax  is the accumulated mRNA at the end of nuclear cycle 14.
The resulting profiles of the duration of transcription along the embryo for our all synthetic 

enhancer constructs are illustrated in Figure 3—figure supplement 3C in the presence and absence 
of Runt protein. As shown in the figure, this duration time is not significantly modulated by Runt 
repressor.

S4.3 Calculation of the fraction of competent nuclei
Another quantity that could be modulated by Runt repressor is the fraction of loci that ever engage 
in transcription during a given nuclear cycle, which we termed as the “fraction of competent loci”. 
As demonstrated by Garcia et al., 2013, Dufourt et al., 2018, Lammers et al., 2020 and Eck et al., 
2020, this fraction of transcriptionally competent loci is modulated along the anterior- posterior axis, 
presumably due to the action of transcription factor gradients.

To show a concrete example of how this quantity is calculated, we take data from one construct 
([000]) showing the MS2 spot fluorescence time traces from individual loci of transcription as shown in 
Figure 3—figure supplement 4A. Here, columns represent time points during nuclear cycle 14, and 
rows represent individual transcriptional loci. As shown in the figure, roughly 80% of the loci, labeled 
as “competent loci”, show active transcription during nuclear cycle 14. However, the remaining 20% 
of the loci never engage in transcription, which we termed as “incompetent loci”. Because these two 
populations exhibit wildly different behaviors, we define the fraction of competent loci as

 fraction of competent loci = number of competent loci
number of total loci .  (S14)

Thus, in this example in Figure  3—figure supplement 4A, the fraction of competent loci is 
approximately 0.8.

Figure  3—figure supplement 4B shows the measured fraction of active loci for all synthetic 
enhancer constructs in the presence and absence of Runt repressor. As seen in the figure, although 
this quantity can be modulated by the presence of Runt repressor, this is not always the case (e.g., 
[011] and [111]). Moreover, we could not find a trend for how the fraction of competent loci is 
modulated by different combinations of Runt binding sites. For example, the [100] construct 
alone did show a change in the fraction of active loci in the presence of Runt, whereas the [010] 
construct did not. When these two binding sites were combined as the [110], there was no significant 
modulation of the fraction of competent loci when adding Runt repressor. In another example, 
the [001] construct showed a mild modulation of the fraction of competent loci. However, when 
this Runt binding site was combined with the [010], which did not show any modulation, the [011] 
construct showed a much bigger modulation of the fraction of competent loci than the [001]. Thus, 
the [010] Runt binding site could drive more or less modulation of the fraction of competent loci 
when combined with different Runt binding sites in a context- dependent manner. As a result of our 
failure to uncover an apparent trend in terms of which regulatory architectures lead to a stronger 
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modulation of the fraction of active loci, we did not attempt to theoretically explain the regulation 
of this fraction of active loci in this study.

S5 Design of synthetic enhancer constructs based on the hunchback P2 
enhancer
The Runt binding sites were introduced into the hunchback P2 minimal enhancers at the positions 
determined by Chen et al., 2012. To make this possible, the authors chose positions containing 
presumed neutral DNA sequences, meaning that these DNA locations did not contain obvious 
motifs for Bicoid or Zelda, the major input transcription factors that regulate this enhancer. Then, 
these DNA sequences were mutated to turn them into Runt binding sites.

To ensure that this process did not perturb the binding sites for Bicoid and Zelda we resorted to 
the Advanced PATSER entry form (Hertz et al., 1990; Hertz and Stormo, 1999) which identifies 
the location of transcription factor binding sites from a sequence of DNA based on position weight 
matrices. We used position weight matrices for Bicoid and Zelda from Park et al., 2019. PATSER 
was run with the settings described in Eck et al., 2020 for both the hunchback P2 enhancer and 
the hunchback P2 enchancer with three Runt binding sites (from Chen et al., 2012) for Bicoid and 
Zelda, respectively. The result of this analysis for these two constructs is shown for each transcription 
factor in Figure 4—figure supplement 1A. Here, we took a PATSER score cutoff—for considering a 
given sequence to be a binding site—of 3 as in Eck et al., 2020. We observed that the recognized 
binding motifs for both Bicoid and Zelda were identical between the two constructs, meaning 
that we did not add additional Bicoid or Zelda binding sites by introducing the Runt motifs. The 
resulting synthetic enhancer with three Runt binding sites with mapped binding sites for Bicoid, 
Zelda (Figure 4—figure supplement 1A), and Runt (Chen et al., 2012) is shown in Figure 4—figure 
supplement 1B as a reference. The position of the Runt binding sites are noted from their distance 
from the promoter (which is marked as 0).

S6 Markov Chain Monte Carlo inference protocol
Markov Chain Monte Carlo (MCMC) sampling is a widely used technique for robust parameter 
estimation using Bayesian statistics (Geyer and Thompson, 1992; Sivia and Skilling, 2006). We 
used the MATLAB package MCMCstat, an adaptive MCMC technique, which we could directly 
implement downstream of our data analysis pipeline (Haario et  al., 2006; Haario et  al., 2001). 
Detailed instructions on how to implement the MCMCstat package can be found in https://mjlaine. 
github.io/mcmcstat/, (copy archived at swh:1:rev:ca0cbd288f03c7a29050b3d6698a96b45ccfa4b2; 
Laine, 2021).

MCMC allows for an estimation of the set of parameter values of a model that best explain the 
experimental data along with their associated errors. In this work, we used MCMC to infer the set 
of best fit values of the parameters in our thermodynamic models given the observed profile of the 
rate of transcription initiation along the anterior- posterior axis of the embryo.

MCMC calculates a Bayesian posterior probability distribution of each free parameter given the 
data by stochastically sampling different parameter values. For a given set of observations  D  and a 
model with parameters  θ , the posterior probability distribution of a particular set of values is given 
by Bayes’ theorem

 

p(θ|D)︸ ︷︷ ︸
posterior

∝ p(D|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

.

  
(S15)

The prior function represents the a priori assumption about the probability distribution of parameter 
values  θ . Here, we assumed a uniform prior distribution for all parameters to reflect our ignorance 
about the model parameters within the following intervals:

•  Kb :  [0, 100]  AU
•  ωbp :  [0, 200] 
•  p :  [0, 1] 
•  R :  [0, 400]  AU/min
•  Kr :  [0, 100]  AU
•  ωrp :  [0, 1.2] 
•  ωrr :  [0, 100] 
•  ωrrp :  [0, 100] 

https://doi.org/10.7554/eLife.73395
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These intervals were justified using the following arguments.
First, because we observed a gradual modulation of the rate of transcription by both Bicoid and 

Runt in the middle region of the embryo we reasoned that the binding sites for these transcription 
factors were not saturated. As a result, we posited that the real dissociation constant should be 
between the minimum and maximum measured values of Bicoid and Runt (Figure  3—figure 
supplement 2). Our measurements of Bicoid and Runt concentration yield fluorescence values over 
the 0–100 AU range for the embryo region that we used for contrasting our model and experimental 
data (20–50% of the embryo length), such that the dissociation constants ( Kb  and  Kr ) should not 
exceed the maximum value of the Bicoid or Runt concentration.

Second,  ωbp  represents the cooperativity between Bicoid complex and RNAP. In the statistical 
mechanics framework, this cooperativity can be expressed using the interaction energy between 
Bicoid and RNAP,  ∆ϵbp , such that  ωbp = exp(−β∆ϵbp) , where  β = 1

kB T  ,  kB  is the Boltzmann constant 
and  T   is the temperature. There is not much known about in vivo interaction energies between 
Bicoid and RNAP complex, thus we tried several different bounds until we found a narrow enough 
parameter bound with unimodal distribution of the posterior chain. As we could see from the corner 
plots in Figure 4C, there is a positive correlation between  Kb  and  ωbp . Thus, we constrained the  ωbp  
intervals by finding an interval that gives both well- constrained  Kb  and  ωbp  (Figure 4C).

Third,  R  represents the rate of RNAP loading when the promoter is occupied, thus it is constrained 
by the maximum observed rate of RNAP loading (Figure 3—figure supplement 2).

Fourth,  p = ([RNAP]/Kp)  represents the concentration of RNAP divided by its dissociation 
constant. Recall that the predicted rate of transcription from hunchback P2 in the limit where the 
Bicoid concentration reaches zero is given by

 Rate([Bicoid] → 0) = R p
1+p .  (S16)

This rate of transcription at the posterior region, where Bicoid reaches zero, is much lower than that 
at the anterior region where Bicoid saturates given by  R  (Figure 3—figure supplement 2). As a 
result, we can write the inequality

 R p
1+p ≪ R.  (S17)

such that

 
p

1+p ≪ 1,  (S18)

which holds if  p ≪ 1 .
Finally, we did not have good estimates for the intervals of either Runt- Runt cooperativity,  ωrr , 

or higher- order cooperativity,  ωrrp . Thus, we initially started with an interval of  [0, 100] , of the same 
order as the interval we used  ωbp . We then explored whether this parameter bound was sufficient to 
give us constrained values of  ωrr  and  ωrrp . As we showed in Figure 6—figure supplement 6D, this 
interval gives reasonably constrained values of  ωrr  and  ωrrp . As shown in Figure 6 and Figure 6—
figure supplement 6, we posit that the  ωrr  parameter is not well- constrained not because of its 
width of the interval, but because it is not as essential for the model fit to the data as it is to 
include  ωrrp  into the model. Overall, our MCMC inference results as well as the corner plots shown 
demonstrate that our parameter intervals chosen were reasonable.

S6.1 Calculation of the Akaike Information Criterion
The Akaike Information Criterion (AIC) is a quantitative metric to assess how well a model performs 
compared to other models (Akaike, 1974). AIC is defined by two terms that account for: (1) how well 
the model explains the data (log- likelihood), and (2) how many parameters are used (to penalize the 
model). The AIC is expressed by

 AIC = −2 log(likelihood) + 2p,  (S19)

where  p  is the number of free parameters in the model. As a result, given a set of models, the model 
with minimal AIC value is preferred (Akaike, 1974).
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First, we assume that our measurement error follows a Gaussian probability distribution. As a 
result, we can write down the probability of measuring a k- th datum,  xk  from a Gaussian distribution 
whose mean is  µk  and standard deviation is  σk , termed  prob(xk|µk,σk) (Sivia and Skilling, 2006)

 
prob(xk|µk,σk) = 1

σk
√

2π
exp(− (xk−µk)2

2σ2
k

).
  (S20)

We can write the likelihood  L  of a given set of  N   measurements by multiplying the probabilities of 
each independent measurement such that

 
L = prob({x1, x2, ..., xN}|{µ1,µ2, ...,µN}, {σ1,σ2, ...,σN}) = ΠN

k=1
1

σk
√

2π
exp(− (xk−µk)2

2σ2
k

),
  (S21)

where xk is the k- th datum with standard deviation of  σk  from an expected value of  µk  from a model 
(Sivia and Skilling, 2006).

By taking the logarithm of the likelihood (L) we get

 
log(L) = −

N∑
k=1

log(σk
√

2π) −
N∑

k=1

(xk−µk)2

2σ2
k

.
  

(S22)

We can now plug in this expression for the log- likelihood into the definition of the AIC from Equation 
S19, resulting in

 
AIC = 2k + 2

N∑
k=1

(σk
√

2π) + 2
N∑

k=1

(xk−µk)2

2σ2
k

.
  

(S23)

All of the Akaike Information Criteria values shown in Figure 6—figure supplement 1 and Figure 5—
figure supplement 3 are calculated using Equation S23.

S7 Comparison of different modes of repression
Transcriptional repressors have been classified into two broad categories: short- range and long- 
range, depending on the genomic length scale that they act on Courey and Jia, 2001; Li and 
Gilmour, 2011. Long- range repression is realized by the recruitment of chromatin modifiers. In 
contrast, short- range repressors act within 100–150  bp by interacting with nearby transcription 
factors or with the promoter (Li and Gilmour, 2011). Traditionally, the molecular mechanism of short- 
range repressors, such as Runt, have been further classified into three categories: “direct repression”, 
“competition”, and “quenching” (Gray et al., 1994; Jaynes and O’Farrell, 1991; Arnosti et al., 
1996; Kulkarni and Arnosti, 2005). In “direct repression”, the repressor inhibits the binding of 
RNAP to the promoter (Figure  5—figure supplement 1A). “Competition” denotes a repressor 
that competes with an activator for the same DNA binding location (Figure 5—figure supplement 
1B). This molecular mechanisms has been proposed for the action of Giant and Krüppel repressors 
on the even- skipped stripe 2 enhancer, where some activator and repressor binding sites partially 
overlap (Small et al., 1992). Lastly, “quenching” corresponds to the case where the repressor and 
activator do not interact with each other directly. Instead, the repressor inhibits the activators’ action 
of recruiting the RNAP (Figure 5—figure supplement 1C).

Despite several classic studies of the molecular mechanism of repressors in the early fly 
embryo (Gray et al., 1994; Ip et al., 1992; Bothma et al., 2011; Jaynes and O’Farrell, 1991), 
the mechanisms of many repressors remain unknown. Note that, even for the same repressor, 
the mode of repression might not be the same depending on, for example, its sequence context 
(Koromila and Stathopoulos, 2019; Hang and Gergen, 2017). For example, it has been proposed 
that Runt repressor acts with different mechanisms in different regulatory elements of the sloppy- 
paired gene (Hang and Gergen, 2017). In this section, we derive a thermodynamic model from 
each mode of repression and compare their explanatory power in the context of our data stemming 
from the hunchback P2 enhancer containing one Runt binding site. Note that, in the main text, we 
already developed a thermodynamic model for the “direct repression” scenario (Section ‘Derivation 
of the general and simpler thermodynamic model for the hunchback P2 enhancer with one Runt 
binding site’). As a result, in this section, we focus on deriving the thermodynamic models for the 
“competition” and “quenching” scenarios, but repeat the result of the derivation for the “direct 
repression” here for ease comparison between different models.
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S7.1 Derivation of models for each scenario of repression for hunchback P2 
with one Runt binding site
S7.1.1 Modeling repression for hunchback P2 with one Runt binding site: 
direct repression
For completeness, we repeat the expression for the direct repression scenario as shown in Section 
‘Derivation of the general and simpler thermodynamic model for the hunchback P2 enhancer with 
one Runt binding site’ and Figure  5—figure supplement 1A. The probability of finding RNAP 
bound to the promoter,  pbound , is calculated by dividing the sum of all statistical weights featuring 
RNAP by the sum of the weights of all possible microstates. The calculation of  pbound , combined with 
Equation 1, leads to the expression

 
Rate = R pbound = R p+b6 p ωbp+r p ωrp+b6 r p ωbp ωrp

1+b6+r+b6 r+p+b6 p ωbp+r p ωrp+b6 r p ωbp ωrp
,
  (S24)

where the parameters are as defined in Figure 2.

S7.1.2 Modeling repression for hunchback P2 with one Runt binding site: 
competition
In the competition scenario, Runt binding makes Bicoid binding less likely. This mechanism can be 
captured by an interaction term between Bicoid and Runt given by  ωbr . Building on our assumption 
of strong Bicoid- Bicoid cooperativity, we posit that Runt disfavors the state with six bound Bicoid 
molecules. We can enumerate the states and weights from Figure 5—figure supplement 1B to 
calculate the  Rate  ( ∝ pbound ), which leads to

 
Rate = R p+b6 p ωbp+r p+b6 r p ωbp ωbr

1+p+b6+r+b6 r ωbr+b6 p ωbp+r p+b6 r p ωbp ωbr
.
  (S25)

S7.1.3 Modeling repression for hunchback P2 with one Runt binding site: 
quenching
In the quenching scenario, Runt reduces the magnitude of the cooperativity between the Bicoid 
complex and RNAP by a factor  ωbrp . We can enumerate the states and weights from Figure 5—
figure supplement 1C, leading to a rate of transcription given by

 
Rate = R p+b6 p ωbp+r p+b6 r p ωbp ωbrp

1+p+b6+r+b6 r+b6 p ωbp+r p+b6 r p ωbp ωbrp
.
  (S26)

With these expressions for each repression mechanism in hand, we can now compare how each 
model fares against our experimental data.

S7.2 Comparing the three models of repression with the one-Runt binding 
site data
We used the MCMC sampling to fit each model to our experimentally measured initial rate 
of transcription over the anterior- posterior axis of the embryo. As shown in Figure  5—figure 
supplement 2A, B and C, we see that all three models can explain the [100] and [010] construct 
data relatively well. However, the competition model resulted in a qualitatively poor fit to the [001] 
construct as shown by the lack of saturation in the most anterior region of the embryo (Figure 5—
figure supplement 2C), (ii). The direct repression and quenching models showed equally good fits 
to the data stemming from this construct.

S7.3 Predicting two-Runt binding sites data for each mode of repression
We further tested these different models of repression by using the parameters inferred from the 
one- Runt binding site constructs to predict the rate of initiation for the two- Runt binding sites 
constructs. As reasoned in the main text, we began by assuming that the two Runt molecules act 
independently of each other such that there are no interactions between Runt molecules. Figure 6—
figure supplement 1 shows this parameter- free prediction for our two- Runt binding sites constructs 
for all three modes of repression. As shown in the figure, none of the models can explain the data, 
suggesting the need to invoke additional interactions between the molecular players of our model.

https://doi.org/10.7554/eLife.73395
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Next, we considered whether Runt- Runt pairwise or higher- order cooperativities had to be 
invoked in order to explain the two- Runt binding sites data for both the competition and quenching 
mechanisms. For the competition model, we considered Runt- Runt cooperativity,  ωrr , and Runt- 
Runt- Bicoid higher- order cooperativity,  ωbrr  in addition to the Runt- Bicoid interaction term  ωbr . 
In the quenching scenario, we accounted for Runt- Runt cooperativity,  ωrr , and Runt- Runt- Bicoid- 
RNAP higher- order cooperativity,  ωbrrp . For both the competition (Figure 6—figure supplement 2) 
and quenching (Figure 6—figure supplement 3) mechanisms, we observed a qualitatively similar 
trend to that observed for direct repression (Figure 6). Specifically, as shown in Figure 6—figure 
supplements 2C and 3C, considering pairwise cooperativity did not significantly improve the MCMC 
fits to the data for either model considered. Further, considering only the higher- order cooperativity 
also did not improve the fits for both competition and quenching mechanisms as shown in Figure 6—
figure supplement 2D and Figure 6—figure supplement 3D. Invoking both Runt- Runt cooperativity 
and higher- order cooperativity improved the fits qualitatively for both competition and quenching 
mechanisms as shown in Figure 6—figure supplement 2E and Figure 6—figure supplement 3E.

While the quenching model showed almost equally good MCMC fits to the data as the direct 
repression model, the competition model showed qualitatively poor fits in any combination of 
cooperativities. In particular, there was a significant mismatch in the most anterior region of the 
embryo, where Bicoid is thought to saturate hunchback expression. While we do not view these fits 
as conclusive evidence to support one mechanism over the other, an exercise that would require a 
new round of experimentation, we conclude that higher- order cooperativity is required to explain 
the data from the two- Runt binding sites constructs regardless of the choice of mechanism of Runt.

S8 Quantifying the nuclear concentration of LlamaTag-Runt
The major caveat in the eGFP:LlamaTag- Runt fluorescence measurements is that the raw nuclear 
fluorescence that we measured consists of two populations: eGFP bound to the LlamaTag- Runt, and 
free, unbound eGFP. Thus, in order to measure nuclear Runt concentration, we need to factor out 
the contribution from free eGFP to the overall fluorescence.

We followed the procedure described in Bothma et al., 2018 which consists of using cytoplasmic 
fluorescence to calculate the free nuclear eGFP under two assumptions. First, we posit that most of 
the transcription factors reside in the nucleus such that the cytoplasmic fluorescence mostly reports 
on free cytoplasmic eGFP. Second, we assume that the nucleus- to- cytoplasm ratio of free eGFP is 
kept constant at a measured chemical equilibrium of  KG = GFPC/GFPN = 0.8 , where  GFPC  and  GFPN   
are the eGFP fluorescence in nuclei and cytoplasm in the absence of LlamaTag (Bothma et al., 2018).

As shown in Bothma et al., 2018, the nuclear concentration of the GFP- tagged transcription 
factor,  GFP − TFN  , is given by

 GFP − TFN = FluoN − FluoC
KG

,  (S27)

where  FluoN   and  FluoC  are the eGFP fluorescence in nuclei and cytoplasm, respectively, that we 
measured in the embryos with both eGFP and LlamaTagged Runt. The resulting nuclear concentration 
of LlamaTag- Runt is shown in Figure 3B.

https://doi.org/10.7554/eLife.73395
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