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Transcriptional control is fundamental to cellular function. However, despite4

knowing that transcription factors can act as repressors or activators, how5

these functions are implemented at the molecular level has remained elusive.6

Here we combine optogenetics, single-cell live-imaging, and mathematical mod-7

eling to study how a zinc-finger repressor, Knirps, induces switch-like transi-8

tions into long-lived quiescent states. Using optogenetics, we demonstrate that9

repression is rapidly reversible (∼1 minute) and memoryless. Finally, we show10

that the repressor acts by decreasing the frequency of transcriptional bursts in11

a manner consistent with an equilibrium binding model. Our results provide12

a quantitative framework for dissecting the in vivo biochemistry of eukaryotic13

transcriptional regulation.14

One-sentence summary: Combining optogenetics, single-cell live-imaging, and mathematical15

modeling, we uncovered switch-like, rapidly reversible, and memoryless repression by Knirps16

in the fruit fly and demonstrated that this regulation is achieved by decreasing the frequency of17

transcriptional bursts.18
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Throughout biology, transcription factors dictate gene expression and, ultimately, drive cell-19

fate decisions that play fundamental roles in development (1), immune responses (2), and dis-20

ease (3). Achieving a quantitative understanding of how this process unfolds over time holds the21

potential both to shed light on the molecular mechanisms that drive cellular decision-making22

and to lay the foundation for a broad array of bioengineering applications, including the syn-23

thetic manipulation of developmental processes (4–8) and the development of therapeutics (9).24

In recent years, great progress has been made in uncovering the molecular mechanism of25

transcription factor action through cell culture-based methods thanks to the emergence of a26

wide array of imaging techniques that can query the inner workings of cells in real time, often27

at the single molecule level (see, for example, (10–15)). However, progress has been slower28

in multicellular organisms, where a lack of comparable tools has limited our ability to query29

the dynamics of transcription factor function in their endogenous context within living, devel-30

oping organisms. While fixation-based methods, such as immunofluorescence staining, mRNA31

FISH, and various sequencing-based techniques represent powerful tools for investigating cel-32

lular decision-making in animals (16–21), these methods are mostly silent regarding the single-33

cell and single-gene dynamics of transcriptional control.34

To move beyond these limitations, new experimental techniques are needed that provide the35

ability to quantify and manipulate input transcription factor concentrations over time in multi-36

cellular organisms while simultaneously measuring output transcriptional activity. Recently, we37

and others have developed new technologies to realize this goal through new molecular probes38

that allow for the direct measurement of protein (22), and transcriptional dynamics (23, 24) in39

single cells of living multicellular organisms, as well as optogenetic techniques for the light-40

based modulation of nuclear protein concentration in vivo (25, 26). Here we combine these41

technologies into a single live imaging platform that allows us to measure and perturb single-42

cell transcriptional dynamics in real time, providing a powerful framework for studying causal43

connections between the molecular players that underpin transcriptional control.44

Here, we use this platform to elucidate the single-cell kinetics of repression within a multi-45

cellular organism, focusing our investigation on two key questions regarding the kinetic prop-46

erties of repression. First, despite several studies dissecting repressor action at the bulk level47

(19, 27, 28), it is not clear whether this repression is implemented in a graded or switch-like48

fashion at individual gene loci over time (Figure 1A, left). Second, the adoption of cellu-49

lar fates—often dictated by repressors—has been attributed to the irreversible establishment50

of transcriptional states (29). However, it is unclear whether the action of repressors is itself51

irreversible or whether downstream molecular players, such as chromatin modifiers (14), are52

necessary to establish these cell fates (Figure 1A, right). By providing quantitative answers to53

these questions, we shed new light on the molecular basis of transcriptional control in vivo.54

Specifically, we examine how the zinc-finger repressor Knirps drives the formation of stripes55

4 and 6 of the widely studied even-skipped (eve) pattern during the early development of the fruit56

fly Drosophila melanogaster (Figure 1B) (30–32). We measured Knirps protein concentration57

dynamics by labeling the endogenous knirps locus with a LlamaTag, a fluorescent probe capable58

of reporting on protein concentration dynamics faster than the maturation time of more common59
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fluorescent protein fusions (22). Further, we quantified the target transcriptional response using60

a reporter construct of the eve stripe 4+6 enhancer (30), where the nascent RNA molecules are61

fluorescently labeled using the MCP-MS2 system (23, 24) (Figure 1C). The resulting nuclear62

fluorescence and transcriptional puncta provide a direct readout of Knirps concentration and63

eve 4+6 transcription, respectively, as a function of space and time (Figure 1D; Movie S1). Our64

data recapitulate classic results from fixed embryos (33) in dynamical detail: gene expression65

begins in a domain that spans stripes 4 through 6, subsequently refined by the appearance of the66

Knirps repressor in the interstripe region.67

To enable the precise temporal control of Knirps concentration, we attached the optogenetic68

LEXY domain (25) to the endogenous knirps locus in addition to the LlamaTag (Figure 1C).69

Upon exposure to blue light, the LEXY domain undergoes a conformation change which results70

in the rapid export of Knirps protein from the nucleus (Figure 1E). Export-recovery experiments71

revealed that export dynamics are fast, with a half-time <10 seconds, while import dynamics are72

somewhat slower, with a half-time ∼60 seconds upon removal of illumination (Figure 1F and73

G; Movie S2). These time scales are much faster than typical developmental time scales (34),74

allowing us to disentangle rapid effects due to direct regulatory interactions between Knirps75

and eve 4+6 from slower, indirect effects that are mediated by other genes in the wider regu-76

latory network. We established stable breeding lines of homozygous optogenetic Knirps flies,77

demonstrating that the protein tagged with both LEXY and LlamaTag is homozygous viable.78

Furthermore, our optogenetic Knirps drives comparable levels of eve 4+6 than wild-type Knirps79

(Figure S1). Thus, we conclude that our optogenetics-based approach represents an ideal plat-80

form for manipulating transcriptional systems to probe the molecular basis of gene regulatory81

control without significantly affecting the broader regulatory network.82

To understand how Knirps repressor regulates eve 4+6 expression, we first analyzed the83

temporal dynamics of Knirps-LlamaTag-LEXY (hereafter referred to simply as “Knirps”) con-84

centration and eve 4+6 expression in the absence of optogenetic perturbations. We gener-85

ated spatiotemporal maps of input repressor concentration and output transcription by spatially86

aligning individual embryos according to the peak of the Knirps expression domain along the87

anterior-posterior axis (Figure S2; Figure S3). These maps reveal a clear pattern: rising repres-88

sor concentrations coincide with a sharp decline in eve 4+6 activity at the center of the Knirps89

domain. Focusing on the central region of the Knirps domain (-2% to 2% of the embryo length90

with respect to the center of the Knirps domain), we observe a clear anti-correlation between91

Knirps concentration—which increases steadily with time—and the mean transcription rate,92

which drops precipitously between 10 and 20 minutes into nuclear cycle 14 (Figure 2A).93

We quantified the regulatory relationship implied by these trends by calculating the Knirps94

vs. eve 4+6 “input-output function”, which reports on the average transcription rate as a function95

of nuclear repressor concentration (inset panel in Figure 2A). This revealed a sharp decline in96

transcriptional activity across a narrow band of Knirps concentrations, suggesting that eve 4+697

loci are highly sensitive to nuclear repressor levels. This finding is consistent with previous98

observations that Knirps represses eve 4+6 (35), and with the discovery of multiple Knirps99

binding sites in the eve 4+6 enhancer region (Figure S4) (36). However, neither our endogenous100

3

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2022. ; https://doi.org/10.1101/2022.11.20.517211doi: bioRxiv preprint 

https://drive.google.com/file/d/192qP6DqoxMGgST6v5qrKwfyF0h0mfywe/view?usp=sharing
https://drive.google.com/file/d/12b_8K9sxmN0lpna4Ew7XGWXFisB09WC3/view?usp=sharing
https://doi.org/10.1101/2022.11.20.517211
http://creativecommons.org/licenses/by-nd/4.0/


measurements nor these previous studies can rule out the possibility that other repressors might101

also play a role in driving the progressive repression of eve 4+6 over the course of nuclear cycle102

14.103

Our optogenetics approach allows us to circumvent the limitations of both endogenous104

live imaging experiments (which are constrained to observing wild-type trends) and classical105

mutation-based studies (which are subject to feedback encoded by the underlying gene regu-106

latory network) and search for regulatory inputs that impact eve 4+6 experiments, but are not107

directly observed in our experiments. Specifically, we used optogenetics to alter Knirps con-108

centration dynamics over the course of nuclear cycle 14. Shortly after the beginning of the109

nuclear cycle, we exposed embryos to low and high blue light illumination, inducing moderate110

and strong reductions in nuclear Knirps concentration, respectively, which resulted in distinct111

transcriptional trends (Figure 2B; Figure S5; Movie S3). We reasoned that the presence of other112

repressors dictating eve 4+6 activity together with Knirps should lead to distinct input-output113

curves across these different illumination conditions (Figure 2C, left). Conversely, if Knirps is114

the sole repressor driving the repression of eve 4+6 over time, the transcriptional input-output115

function should be invariant to perturbations of Knirps concentration dynamics (Figure 2C,116

right).117

Comparing the eve 4+6 vs. Knirps input-output function for the unperturbed control (inset118

panel of Figure 2A) to that of optogenetically perturbed embryos (Figure 2D), we find that all119

three conditions collapse onto a single input-output curve, providing strong evidence that Knirps120

is the sole repressor of eve 4+6. Moreover, as noted above, we find that Knirps repression occurs121

in a sharp fashion: eve 4+6 loci transition from being mostly active to mostly repressed within122

a narrow band of Knirps concentrations. To quantify this sharp response, we fit a Hill function123

to the data in Figure 2D (gray line), which yielded a Hill coefficient of 6.58±0.40. Notably, this124

is comparable to Hill coefficients estimated for the Bicoid-dependent activation of hunchback125

(21, 37, 38); another canonical example of sharp gene regulation—in this case, of activation—126

during developmental patterning which relies on the presence of multiple binding sites for the127

transcription factor within the enhancer.128

The input-output function in Figure 2D summarizes the average effect of repressor level129

on eve 4+6 expression, but it cannot alone shed light on how this effect is achieved at the130

molecular level. Thus, we next investigated how this sharp average decrease in gene expression131

is realized at the single-cell level. We examined single-cell trajectories of Knirps repressor and132

corresponding eve 4+6 transcription. This revealed that the sharp population-level input-output133

function illustrated in Figure 2D is realized in an all-or-none fashion at the level of individual134

cells (Figure 2E; Figure S6). During this process, the gradual rise in Knirps concentration135

induces an abrupt, seemingly irreversible, transition from active transcription to a long-lived,136

transcriptionally quiescent state.137

It has been shown that the activity of repressors can have different degrees of reversibility138

(14, 39). For example, recruitment of certain chromatin modifiers may silence the locus even139

if the initial transcription factor is no longer present (14). The single-cell traces in Figure 2E140

and Figure S6 appear to transition into an irreversible transcriptional quiescent state. However,141
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since Knirps concentration keeps increasing after eve 4+6 expression shuts off, it is possible142

that Knirps repression is, in fact, reversible and that the observed irreversibility is due only to143

the monotonic increase of the repressor concentration over time.144

To probe the reversibility of Knirps-based repression, we used optogenetics to induce rapid,145

step-like decreases in nuclear Knirps concentration (Figure 3A). Prior to the perturbation, the146

system was allowed to proceed along its original trajectory until the majority of eve 4+6 loci at147

the center of the Knirps domain were fully repressed. Strikingly, when blue light was applied148

to export Knirps, we observed a widespread, rapid reactivation of repressed eve loci (Figure 3B149

and C; Movie S4). To probe the time scale of reactivation, we calculated the fraction of active150

nuclei as a function of time since Knirps export (Figure 3D, Figure S7). This revealed that eve151

loci begin to reactivate in as little as 1 minute following illumination. We obtain a reactivation152

time distribution from single-cell trajectories with a mean response time of 2.5 minutes and find153

that transcription fully recovers within 4 minutes of Knirps export (Figure 3E). Thus, Knirps154

repression is completely reversible.155

Previous studies have shown that the repressive effect of certain repressors increases with156

longer exposure (14). Thus, we reasoned that prolonged exposure to high levels of a repressor157

could induce the accumulation of specific chemical or molecular modifications that prevents158

activator binding and, as a result, impedes reactivation at the target locus, such as histone mod-159

ifications (40). If this process is present, we should expect gene loci that have been repressed160

for a longer period before optogenetically triggering repressor export to require more time to161

reactivate. To test this hypothesis, we used the measured single-cell reactivation trajectories162

(Figure 3C) to calculate the average reactivation time as a function of how long cells had been163

repressed prior to Knirps export. Interestingly, our analysis reveals that the reactivation time164

has no dependence on the repressed duration (Figure 3F). This, combined with the fact that165

nearly all (97%) repressed gene loci reactivate upon Knirps export (inset panel in Figure 3E),166

argues against the accumulation of any significant molecular memory amongst repressed gene167

loci within the ∼10 minute time scale captured by our experiments. Instead, it points to a model168

where Knirps action is quickly reversible and memoryless.169

The simplest model that can capture the reversible, memoryless transitions between active170

and inactive transcriptional states observed in Figure 3 is a two-state model, in which the gene171

promoter switches stochastically between periods of transcriptional activity (“bursts”) and pe-172

riods of inactivity (31, 38, 41–46). Here, the gene promoter switches between active (ON) and173

inactive (OFF) states with rates kon and koff , and initiates RNAP molecules at a rate r while174

in the ON state (Figure 4A). Consistent with this model, our single-cell transcriptional traces175

show clear signatures of transcriptional bursting (see, e.g., top two panels of Figure 2E; Fig-176

ure S6), suggesting that this two-state framework provides a viable basis for examining how177

Knirps regulates transcriptional activity at eve 4+6 loci.178

Within this model, the repressor can act by impeding transcriptional activation (decreas-179

ing kon), by decreasing the duration of transcriptional bursts (increasing koff), by decreasing the180

burst amplitude (decreasing r), or any combination thereof as shown in Figure 4A. To shed light181

on the molecular strategy by which Knirps represses eve 4+6, we utilized a recently-developed182
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computational method that utilizes compound-state Hidden Markov Models (cpHMM) to infer183

promoter state dynamics and burst parameter values (kon, koff , and r) from single-cell transcrip-184

tional traces as a function of Knirps concentration (Figure 4B) (42). We used data from all185

three illumination conditions (outlined in Figure 2B) and conducted burst parameter inference186

on 15-minute-long segments of MS2 traces.187

To reveal burst parameter dependence on Knirps concentration, we grouped traces based188

on low ([Knirps]≤ 4 au) and high ([Knirps]≥ 6 au) Knirps concentrations (Figure 4B) and189

conducted cpHMM inference. We find that the repressor strongly impedes locus activation,190

decreasing the frequency of transcriptional bursts (kon) from 2.3 bursts per minute down to191

1.1 burst per minute between low and high Knirps concentrations (Figure 4C). On the other192

hand, the Knirps-dependence of the burst amplitude and the burst duration are smaller than the193

uncertainty in our inference. Thus, burst parameter inference indicates that Knirps represses194

eve 4+6 loci mainly by interfering with the initiation of transcriptional bursts. See Appendix 1195

and Figure S8for additional cpHMM inference results.196

To our knowledge, Figure 4C provides the first simultaneous measurement of transcription197

factor concentration and burst dynamics in a living multicellular organism. However, these re-198

sults are necessarily a coarse-grained approximation of the true regulatory dynamics. Indeed,199

our cpHMM inference has an inherent low temporal resolution as it reflects averages taken200

across 15-minute periods of time and across large ranges of input Knirps concentrations. How-201

ever, in principle, our live imaging data—which contains high-resolution time traces of both in-202

put repressor concentration dynamics and output transcriptions rates—should make it possible203

to move beyond coarse-grained estimates to recover the true, instantaneous regulatory relation-204

ship between Knirps concentration and the burst frequency (kon). Furthermore, we also wish205

to establish whether a simple two-state model of transcriptional control based on our inference206

results in Figure 4C is sufficient to explain both the sharp input-output function (Figure 2D) and207

rapid reactivation dynamics (Figure 3E) revealed by our live imaging experiments.208

To answer these questions, we developed a novel computational method that utilizes stochas-209

tic simulations of single-cell transcriptional trajectories to test theoretical model predictions210

against our experimental measurements and uncover Knirps-dependent burst parameter trends211

(Figure S9A; Supplementary Text). In keeping with the course-grained results from cpHMM212

inference shown in Figure 4C, we allow both the burst frequency and the burst duration (but not213

burst amplitude) to vary as a function of Knirps concentration. We assume a model in which214

these parameters are simple Hill functions of Knirps concentration. For the burst frequency215

(kon), this leads to a function with the form216

kon([Knirps]) = k0
on

KH
D

[Knirps]H +KH
D

, (1)

where k0
on sets the maximum burst frequency value, the Hill coefficient H sets the sharpness217

of the response, and KD dictates the Knirps concentration midpoint for the transcriptional re-218

sponse, giving the Knirps concentration where kon drops to half its maximum value. Together,219

these “microscopic” parameters define an input-output function that directly links the burst fre-220
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quency to Knirps concentration. As noted above, we also allow the burst duration to vary as a221

function of Knirps concentration; however we focus on kon throughout the main text, since it is222

found to be the exclusive driver of eve 4+6 repression (see Equation S2 and Appendix 2.1 for223

further details).224

With our model defined, our procedure is as follows: first, we sample real single-cell Knirps225

concentration trajectories from (i) the three illumination conditions shown in Figure 2D and226

(ii) the reactivation experiments shown in Figure 3 (Figure 4D and E). Then, given some set of227

microscopic parameters—H , KD, and k0
on from Equation 1—we can plug these Knirps trajec-228

tories into the corresponding kon input-output function (Equation 1 and Figure 4F) to generate229

time-dependent burst parameter trends and, in turn, use these trends to simulate corresponding230

ensembles of MS2 traces (Figure S9A-D). We use these simulated MS2 traces to calculate, first,231

the predicted Knirps vs. eve 4+6 input-output function (Figure 4G) and, second, the predicted232

reactivation cumulative distribution function curve (Figure 4H). We then compare these predic-233

tions to empirical measurements of the same quantities from our live imaging experiments (see234

Figure 2D and inset panel of Figure 3E). Through this process of simulation and comparison,235

each set of microscopic parameters used to calculate our predictions are assigned a fit score.236

We then use parameter sweeps and Markov Chain Monte Carlo (MCMC) (47, 48) to search for237

parameters that most successfully reproduced our live imaging results (see Figure S9E-G and238

Appendices 2.3 and 2.4).239

As illustrated in Figure 4F, we find that the best-fitting model features a sharp kon versus240

Knirps input-output function (H = 6.05±0.7). We also find that kon has a relatively low KD of241

3.7 au ±0.13 with respect to the range of Knirps concentrations experienced by eve 4+6 loci (see242

Figure 2B, bottom), which implies that gene loci have a low concentration threshold for Knirps243

repression. As a result of this low threshold, eve 4+6 loci are effectively clamped in the OFF244

state (kon ≤ 0.1 bursts per minute) once the Knirps concentration exceeds 6 au, which happens245

about 12 minutes into nuclear cycle 14 for the average nucleus at the center of the Knirps domain246

(Figure 2B, bottom). See Figure S10 and Appendix 2.5 for full inference results. Our findings247

also indicate that a simple two-state model in which Knirps represses eve 4+6 by decreasing248

the frequency of transcriptional bursts is sufficient to quantitatively recapitulate both the sharp249

decrease in the average transcription rate with increasing Knirps concentration (Figure 4G) and250

the kinetics of reactivation following Knirps export (Figure 4H).251

Our simulation results also shed further light on the dynamics of eve reactivation follow-252

ing the step-like optogenetic export of Knirps protein from the nucleus (Figure 3A). From Fig-253

ure 3E and F, we know that it takes approximately 2-4 minutes following Knirps export for MS2254

spots to reappear in our live-imaging experiments. Yet this is the time scale for detection—for255

the amount of time it takes for genes to produce detectable levels of transcription—and thus256

likely overestimates the true eve 4+6 response time. So how fast is it really? Our model, which257

accounts for the fluorescence detection limit, predicts that kon recovers to half of its steady-state258

value within 30 seconds of the start of the optogenetic perturbation (Figure S11). Furthermore,259

we predict that half of all gene loci switch back into the transcriptionally active (ON) state260

within 102 seconds (1.7 minutes). Thus, it takes fewer than two minutes for eve 4+6 loci to261
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“escape” Knirps repression and re-engage in bursty transcription.262

Taken together, our results point to a model wherein the repressor acts upon the gene locus263

while it is transcriptionally inactive (OFF) to inhibit re-entry into the active (ON) state. Consis-264

tent with this picture, we find that the functional relation between kon and Knirps concentration265

inferred by MCMC inference is well explained by a simple equilibrium binding model where266

the burst frequency is proportional to the number of Knirps molecules bound at the 4+6 en-267

hancer (solid black curve in Figure 4F).268

Our in vivo dissection provides important clues toward unraveling the molecular basis of269

repressor action. We show that Knirps repression is both memoryless (Figure 3F) and rapidly270

reversible (Figure 3E). Another key point is that, although our model predicts that gene loci271

require 1-2 minutes to reactivate and enter the ON state following the optogenetic export of272

Knirps from the nucleus (Figure S11), our model assumes that the burst frequency itself re-273

sponds instantaneously to changing Knirps concentration (see Equation 1, blue curve in Fig-274

ure S11). While no reaction can truly be instantaneous, the success of this model in describing275

Knirps repression dynamics points to an underlying mechanism controlling the burst frequency276

that rapidly reads and responds to changing repressor concentrations, likely within a matter277

of seconds—a timescale that is consistent with the fast binding and unbinding dynamics re-278

ported for eukaryotic transcription factors (49). Lastly, the success of the two-state bursting279

model (Figure 4A) at recapitulating Knirps repression dynamics (Figure 4G and H) suggests280

that the same molecular process may be responsible for both the short-lived OFF periods be-281

tween successive transcriptional bursts (see, e.g., the middle panel of Figure 4B) and the much282

longer-lived periods of quiescence observed in repressed nuclei (e.g., Figure 3C), and that there283

may be no need to invoke an “extra” repressor-induced molecular state outside of the bursting284

cycle (50–52).285

Previous work has established that Knirps plays a role in recruiting histone deacetylase286

(53) and that Knirps repression coincides with increased histone density at target enhancers287

such as the one dissected here (19). This suggests a model in which the repressor modulates288

the longevity of the OFF state by tuning the accessibility of enhancer DNA, which would im-289

pact activator binding (19). It is notable, however, that the 1-2 minute reactivation time scales290

revealed (Figure 3; Figure S11) are faster than most chromatin-based mechanisms measured291

in vivo so far (14, 49). This rapid reversibility, along with the memoryless nature of Knirps292

repression, indicates that whatever the underlying mechanism, Knirps binding at the locus is293

necessary in order to maintain the gene in a transcriptionally inactive state at the stage of devel-294

opment captured by our live imaging experiments. Interestingly, we found that the modulation295

of burst frequency by Knirps can be recapitulated by a simple thermodynamic model predicting296

Knirps DNA occupancy. This suggests that the wide repertoire of theoretical and experimental297

approaches developed to test these models (see, for example, (54)) can be used to engage in a298

dialogue between theory and experiment aimed at dissecting the molecular mechanism under-299

lying the control of transcriptional bursting.300

Critically, none of these molecular insights would have been possible without the ability301

to measure and acutely manipulate input transcription factor concentrations while simultane-302
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ously quantifying the resulting output transcriptional dynamics in living cells. Thus, by build-303

ing on previous works using the LEXY technology in different biological contexts (26, 55,304

56), our work demonstrates the power of the LEXY system for simultaneously manipulating—305

and measuring—nuclear protein concentrations and the resulting output transcriptional activity.306

This capability can serve as a quantitative platform for dissecting gene-regulatory logic in vivo307

(see Appendix 3 for further discussions).308

Looking ahead, we anticipate that our live imaging approach, along with the quantitative309

analysis framework presented in this work, will provide a useful foundation for similar in vivo310

biochemical dissections of how the transcription factor-mediated control of gene expression311

dictates transcriptional outcomes, opening the door to a number of exciting new questions re-312

lating to transcriptional regulation, cell-fate decisions, and embryonic development that span313

multiple scales of space and time.314
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Figure 1: Combining optogenetics and live imaging enables dissection of single-cell repression dynamics.
(A) Key questions regarding transcriptional repression. Left: Whether single-cell repression occurs in a gradual
or switch-like fashion over time. Right: Whether these processes are reversible. (B) Knirps represses even-
skipped (eve) stripes 4+6 transcription in the fruit fly embryo. Top: Knirps is expressed in a bell-shaped domain
during early embryogenesis. Bottom: Knirps specifies the position and sharpness of the inner boundaries of eve
stripes 4 and 6. (C) Two-color tagging permits the simultaneous visualization of input protein concentration
and output transcriptional dynamics in vivo. Maternally deposited EYFP molecules bind to Knirps-LlamaTag,
resulting in increased nuclear fluorescence, which provides a real-time readout of the nuclear protein concen-
tration. Maternally deposited MS2 coat protein (MCP) binds to MS2 stem-loops in the nascent RNA formed
by RNAP molecules elongating along the body of the eve 4+6 reporter construct leading to the accumulation of
fluorescence at sites of nascent transcript formation. LEXY tag is attached to Knirps to allow for optogenetic
manipulation of its nuclear concentration. (D) Representative frames from live-imaging data. The embryo is
oriented with the anterior (head) to the left. Green and magenta channels correspond to Knirps repressor and
eve 4+6 transcription, respectively. When Knirps concentration is low, eve stripe 4+6 is expressed in a broad
domain, which refines into two flanking stripes as Knirps concentration increases. (E) Optogenetic control
of nuclear protein export. Upon exposure to blue light, the nuclear export signal within the LEXY domain
is revealed. As a result, the fusion protein is actively exported from the nucleus. (F) Fluorescence images
of embryos expressing the LEXY fusion proteins undergoing an export-recovery cycle. (G) Relative nuclear
fluorescence of the repressor protein over time. Half-times for export and recovery processes are estimated
by fitting temporal traces with exponential functions. (Error bars in G indicate the bootstrap estimate of the
standard error.)
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Figure 2: Knirps concentration dictates sharp, switch-like repression. (A) Average Knirps concentration
(green) and eve 4+6 transcription (magenta) shows clear anticorrelation. These dynamics are calculated by
averaging the traces over a window of -2% to 2% along the anterior-posterior axis of the embryo and centered
around the peak of the Knirps pattern (see Figure S2). Target transcription declines sharply as Knirps concentra-
tion increases. Inset panel shows the input-output relationship under this no light (unperturbed) condition. MS2
signal is an approximation of the eve mRNA production rate (22, 23, 42). (B) Optogenetics allows for titration
of protein concentration. Top panel shows the average Knirps concentration for three embryos, each under dif-
ferent illumination intensities. Bottom panel shows the corresponding trends in the eve 4+6 transcription rate.
The illumination started around 12 minutes into nuclear cycle 14 and continued throughout the experiment. (C)
To test whether Knirps is the only repressor whose concentration changes in the system, input-output functions
under different illumination conditions can be compared. If there are multiple potentially unknown repressors
at play (e.g. the X transcription factor in the figure), then each illumination level should lead to a different
input-output function (left). However, if Knirps is the sole repressor, the functions for each condition should
collapse onto a single curve (right). (D) Average transcription rate as a function of Knirps concentration for
each illumination condition (averaged over a window of -2% to 2% along the anterior-posterior axis). All three
conditions follow the same trend, suggesting that Knirps is the only repressor regulating target transcription
during this developmental stage. The input-output relationship is fitted with a Hill function resulting in a Hill
coefficient of 6.36 (95% CI [6.08, 6.64]). (E) Illustrative single-cell transcriptional dynamics (magenta points)
show that repression is switch-like at the single-cell level. Traces are normalized by their maximum transcrip-
tion rate and smoothened using a moving average of 1 minute. (Error bars in A, B, and D indicate the bootstrap
estimate of the standard error.)
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Figure 3: Knirps repression is rapidly reversible and memoryless. (A) Testing the reversibility of Knirps
repression using a step-like optogenetic perturbation. Upon removal of Knirps repressor from the nucleus,
transcriptional activity can remained repressed or recover, depending on whether repression is irreversible or
reversible. (B) Snapshots from a movie before (top) and after (bottom) the optogenetic export of Knirps protein.
Nuclei whose transcription was originally repressed by Knirps fully reactivate after 4 minutes of illumination.
(C) Heatmap of single-cell reactivation trajectories sorted by response times. Response time is defined as
the interval between the perturbation time and when transcription reappears. (D) Knirps repression is rapidly
reversible within 4 minutes. Plot showing the average repressor concentration (green) before and after blue
light illumination (averaged over a -2% to 2% window along the anterior-posterior axis centered on the Knirps
concentration peak). We find that the fraction of actively transcribing cells (magenta) recovers within 4 minutes.
(n = 4 embryos). (E) Fast reactivation occurs with an average of 2.5 minutes. The reactivation response time
is calculated as the interval between the perturbation and when a locus is first observed to resume transcription.
(n = 139 nuclei from 4 embryos). Inset panel describes the cumulative distribution of reactivation times. (F)
Knirps repression is memoryless. Plot showing the reactivation response time of individual loci as a function
of the time spent in the repressed state before optogenetic reactivation. The reactivation response time is
independent of the repressed duration of the locus. (Error bars in D and F indicate the bootstrap estimate of the
standard error.)
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Figure 4: Knirps represses through instantaneous modulation of burst frequency. (A) Cartoon illustrating
the two-state model of transcriptional bursting where a promoter can stochastically transition between active
and inactive states. Knirps may regulate eve by altering any of the three kinetic rates in the model. (B) A
representative experimental trace of Knirps protein (top) and transcription dynamics, along with the best fit
(middle) and the corresponding sequence of inferred promoter activity states (bottom) returned by cpHMM
inference. (C) Bar plots indicating cpHMM burst parameter inference results for eve 4+6 loci subjected to
low ([Knirps]≤ 4 au) and high ([Knirps]≥ 6 au) Knirps concentrations. Inference reveals a two-fold decrease
in the burst frequency, a moderate (30% though within error bars) increase in burst duration, and no notable
change in the burst amplitude between low and high concentrations. (D-H) Summary of stochastic simula-
tion methodology and results. First, we sample real single-cell Knirps concentration trajectories from (i) the
three illumination conditions shown in Figure 2D and (ii) the reactivation experiments. (D) Illustrative individ-
ual (green lines) and average (green circles) nuclear Knirps concentration trajectories as a function of time in
wild-type (unperturbed) embryos. (E) Individual and average nuclear Knirps concentrations before and after
optogenetic export, which happens at time t = 0. (F) We take kon to be a Hill function of Knirps concentration,
with a shape that is determined by three microscopic parameters: k0

on, KD, and H (see inset panel and Equa-
tion 1). Given some set of microscopic parameters, we can plug Knirps concentration trajectories from (D) and
(E) into the corresponding kon input-output function to predict transcriptional outputs. The dashed blue curve
indicates the input-output function for the burst frequency trend (kon) corresponding to the best-fitting set of
microscopic parameters. Light blue shading indicates the standard error of the mean of the kon input-output
trend, as estimated by MCMC inference. To test the possibility that Knirps binding at the eve 4+6 enhancer, we
fit a simple thermodynamic model to the trend revealed by our input-output simulations. The black line shows
the best-fitting curve predicted by this molecular model. (caption continued on the next page)
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Figure 4: (continued) Knirps represses through instantaneous modulation of burst frequency. The binding
model assumes 10 Knirps binding sites. We used the input-output function in (F) to generate a population of
simulated MS2 traces that we used to predict (G) the average fluorescence as a function of Knirps concentration
and (H) the reactivation dynamics. Dashed red line indicates the prediction of the best-fitting model realization.
Shaded red regions indicate standard deviation of the mean, as indicated by our MCMC inference. (Error bars
in C reflect the standard error of the mean, as estimated from no fewer than 20 bootstrap burst inference
replicates)
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Materials and Methods476

Cloning and Transgenesis477

The fly lines used in this study were generated by inserting transgenic reporters into the fly478

genome or by CRISPR-Cas9 genome editing, as described below. See Table S1 for detailed479

information on the plasmid sequences used in this study.480

Creation of tagged knirps loci using CRISPR-Cas9481

To tag endogenous the knirps locus with the EGFP-LlamaTag and LEXY modules, we used482

CRIPSR-mediated homology-directed repair with donor plasmids synthesized by Genscript.483

gRNA was designed using target finder tool from flyCRISPR (https://flycrispr.org),484

and cloned based on the protocol from (57). A yw;nos-Cas9(II-attP40) transgenic line was used485

as the genomic source for Cas9, and the embryos were injected and screened by BestGene Inc.486

Creation of eve 4+6 reporter487

The eve 4+6 enhancer sequence is based on 800bp DNA segment described in (35). The eve 4+6488

reporter was constructed by combining the enhancer sequence with an array of 24 MS2 stem-489

loops fused to the D. melanogaster yellow gene (22). The eve4+6-MS2-Yellow construct was490

synthesized by Genscript and injected by BestGene Inc into D. melanogaster embryos with491

a ΦC31 insertion site in chromosome 2L (Bloomington stock #9723; landing site VK00002;492

cytological location 28E7).493

Transgenes expressing EYFP and MCP-mCherry494

The fly line maternally expressing MCP-mCherry (chromosome 3) was constructed as described495

(22). The fly line maternally expressing EYFP (chromosome 2) was constructed as previously496

described (58). To simultaneously image protein dynamics using LlamaTags and transcription497

using MCP-MS2 system, we combined the vasa-EYFP transgene with MCP-mCherry to con-498

struct a new line (yw; vasa-EYFP; MCP-mCherry) that maternally expresses both proteins.499
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Fly lines500

To measure Knirps pattern and corresponding eve 4+6 transcription simultaneously, we per-501

formed crosses to generate virgins carrying transgenes that drive maternal EYFP, MCP-mCherry,502

along with LlamaTag-LEXY tagged Knirps locus (yw; vasa-EYFP; MCP-mCherry
Knirps-LlamaTag-LEXY).503

These flies were then crossed with males having both the eve 4+6 reporter and LlamaTag-LEXY504

tagged Knirps locus (yw; eve4+6-MS2-Yellow; Knirps-LlamaTag-LEXY). This resulted in the505

embryo carrying maternally deposited EYFP, MCP-mCherry, tagged Knirps loci and eve 4+6506

reporter.507

Embryo preparation and data collection508

The embryos were prepared following procedures described in (22, 23, 42). Embryos were509

collected and mounted in halocarbon oil 27 between a semipermeable membrane (Lumox film,510

Starstedt, Germany) and a coverslip. Confocal imaging on a Zeiss LSM 780 microscope was511

performed using a Plan-Apochromat 40x/1.4NA oil immersion objective. EYFP and MCP-512

mCherry were excited with laser wavelengths of 514 nm (3.05 µW laser power) and 594 nm513

(18.3 µW laser power), respectively. Modulation of Knirps nuclear concentration was per-514

formed by utilizing an additional laser with a wavelength of 458nm, with laser power of 0.2 µW515

(low intensity in Figure 2) or 12.2 µW (high intensity in Figure 2 and Figure 3). Fluorescence516

was detected using the Zeiss QUASAR detection unit. Image resolution was 768 × 450 pixels,517

with a pixel size of 0.23 µm. Sequential Z stacks separated by 0.5 µm were acquired with a518

time interval of 20 seconds between each frame, except for the export-recovery experiment in519

Figure 1, in which we used 6.5 seconds.520

Image processing521

Image analysis of live embryo movies was performed based on the protocol in (23, 59), which522

included nuclear segmentation, spot segmentation, and tracking. In addition, the nuclear protein523

fluorescence of the Knirps repressor was calculated based on the protocol in (58). The nuclear524

fluorescence of Knirps protein was calculated based on a nuclear mask generated from the525

MCP-mCherry channel. Knirps concentration for individual nuclei was extracted based on526

the integrated amount from maximum projection along the z-stack. The YFP background was527

calculated based on a control experiment and subsequently subtracted from the data.528

Predicting Knirps binding sites529

To dissect Knirps binding on eve 4+6 enhancer, we used Patser (60) with already existing point530

weight matrices (61) to predict Knirps binding sites. The predicted binding sites with scores531

higher than 3.5 are shown in Figure S4.532
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Compound-state Hidden Markov Model533

To obtain the inference results shown in Figure 4C, transcriptional traces were divided into 15534

minute-long segments. Each trace segment was then assigned to an inference group based on535

the average nuclear Knirps concentration over the course of its 15-minute span. Trace segments536

with an average Knirps concentration of less than or equal to 4 arbitrary fluorescence units537

(au) were assigned to the “low” group and segments with a Knirps concentration greater than538

or equal to 6 au were assigned to the “high” group. Parameter estimates for each group were539

estimated by taking the average across 25 separate bootstrap samples of the “high” and “low”540

trace segment groups. Each bootstrap sample contained a minimum of 6,027 and 10,000 time541

points for the high and low groups, respectively. Inference uncertainty was estimated by taking542

the standard deviation across these bootstrap replicates. We used a model with two burst states543

(OFF and ON) and an elongation time of 140 seconds (equal to seven time steps; see (42)).544
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Supplementary Text545

1 Additional cpHMM inference results546

In this section, we briefly describe additional cpHMM inference results. In addition to the binary547

inference results shown in Figure 4C that examine burst parameter values at high and low Knirps548

values, we also conducted finer-grained cpHMM inference runs, in which we queried burst549

parameter values across the full range of Knirps concentrations observed in our experiments.550

The plots in Figure S8 summarize our results. As with the results in the main text, this inference551

was conducted on 15-minute-long fragments of transcriptional traces. Multiple such fragments552

were generated from each transcription trace by sliding a 15-minute window along each and553

sampling in 1 minute increments. This produced a dataset of transcriptional “reads” that were554

then grouped by average Knirps concentration. In addition, we grouped transcriptional reads by555

experiment type (as defined in Figure 2B and D): no light (circles in Figure S8), low intensity556

(diamonds), and high intensity (squares).557

We find that the inference results are consistent with the trends indicated in Figure 4C. We558

once again see that the burst frequency decreases with increasing Knirps concentration, though559

it is notable that the increased dynamic range of our inference reveals a more dramatic depen-560

dency, with burst frequency (kon) dropping by a factor of 6 across the range of concentrations561

examined (Figure S8A). Additionally, we see that the burst duration (1/koff) increases with562

increasing Knirps, and that burst amplitude (r) remains roughly constant (Figure S8B and C).563

However, while these findings paint a more detailed picture of how Knirps regulates tran-564

scriptional dynamics than the binary results presented in the main text, their resolution is565

nonetheless still limited by the fact that we must use 15-minute fragments for cpHMM in-566

ference. As a result, this approach is not suitable for recovering the true, instantaneous input-567

output functions that dictate how Knirps dictates burst parameter values. To make progress568

toward this goal, we developed a simulation-based computational framework for input-output569

function inference. We provide further details on this approach in the following sections.570

2 Stochastic input-output simulations571

Here we provide further details regarding the implementation of the simulation-based computa-572

tional method that was utilized to produce the results featured in Figure 4F-H of the main text.573

Our aims in developing this method were two-fold: first, we sought to use our live imaging data574

to uncover burst parameter input-output functions and, second, we sought to assess whether a575

simple two-state model of transcriptional control based on our inference results in Figure 4C576

is sufficient to explain both the sharp input-output function (Figure 2D) and rapid reactivation577

dynamics (Figure 3D-E) revealed by our experiments.578
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2.1 Model specification579

Our coarse-grained cpHMM burst inference results indicate that both burst frequency (kon) and580

burst duration (1/koff) vary as functions of Knirps concentration (Figure 4C). Accordingly, we581

employed a modeling framework in which both of these parameters vary as a function of Knirps582

concentration. Specifically, we model kon and koff as simple Hill functions of nuclear Knirps583

concentration (see inset panel of Figure 4F), such that:584

kon([Knirps]) = k0
on

KHon
Don

[Knirps]Hon +KHon
on

, (S1)

and

koff([Knirps]) = k0
off

K
Hoff

Doff

[Knirps]Hoff +K
Hoff

Doff

. (S2)

where k0
on and k0

off set the upper limits for on and off rates, respectively; where the Hill co-585

efficient Hon and Hoff set the sharpness of each parameter’s response to increasing Knirps586

concentration; and where KDon and KDoff
dictate the half-max points for the kon and koff input-587

output curves. Finally, we assume that the burst amplitude, r, takes on a fixed value that does588

not vary as a function of Knirps concentration.589

2.2 Stochastic simulations590

We can use Equations S1 and S2 to generate simulated fluorescent traces with burst dynamics591

that vary as a function of nuclear Knirps concentration. To do this, we first sample real single-592

cell Knirps concentrations from (1) the three illumination conditions shown in Figure 2B and593

(2) the reactivation experiments shown in Figure 3B-D (see also Figure 4D and E), and use594

these to generate time-dependent burst parameter trends. Figure S9A shows an illustrative time595

trace of Knirps concentration and panel Figure S9B shows the corresponding kon (blue curve)596

and koff (red curve) trends generated by plugging that trace into Equations S1 and S2. Note that597

the burst duration can be obtained simply by taking the inverse of the koff trend. These burst598

parameter trends are used to simulate an ON/OFF promoter trajectory (Figure S9C), which,599

in turn, is used to generate a predicted MS2 trace (Figure S9D) with Knirps-dependent burst600

dynamics.601

To simulate promoter trajectories with concentration-dependent burst parameters, we used602

a discrete implementation of the widely used Gillespie Algorithm (62), in which the promoter603

state is sampled with a time resolution of 1 second. We provide a brief overview of the approach604

here, and direct readers to the Github repository accompanying this work for further details605

regarding the algorithm’s implementation. Consider the time-varying burst parameter trends606

shown in Figure S9B, along with the simulated ON/OFF promoter trajectory in Figure S9C.607

At 11 minutes, we see that the promoter switches into the OFF state. In a standard Gillespie608

simulation with constant burst parameters, we would obtain the time until the next transition,609
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τOFF, by drawing a random sample from an exponential distribution with rate parameter λ = kon,610

such that611

τOFF ∼ Exp(kon). (S3)

At time 11 + τOFF, the promoter would then transition out of the OFF state and into the ON612

state.613

Our case is more complicated, however, since kon may change over time as the nuclear614

Knirps concentration changes. One simple way to capture this time-dependence is to adopt615

a discrete approach to promoter state simulations. In this approach, we designate some finite616

simulation time resolution, ∆t. Starting again at t = 11 minutes (with the promoter in the OFF617

state), the algorithm proceeds as follows:618

1. use Equation S1 to calculate kon based off of the current Knirps concentration619

2. sample an expected jump time τ620

if promoter is OFF, sample τ from an exponential distribution with rate parameter kon621

else, sample τ from an exponential distribution with rate parameter koff622

3. compare τ to ∆t623

if τ ≥ ∆t: the promoter state remains unchanged624

else, if τ < ∆t: change the promoter state (OFF to ON in our case)625

4. Increment the time variable such that t = 11 + ∆t, and return to (1).626

By proceeding in this fashion, we obtain a discrete time trace of promoter activity, p, that627

reflects time-dependent changes to the transition rates kon and koff due to changes in Knirps628

concentration. We set ∆t = 1 second, such that the resolution of our discrete sampling is sig-629

nificantly faster than the promoter burst dynamics being simulated (defined by kon and koff ; see630

Figure 4C). By enforcing this separation of timescales, we ensure that our discretely sampled631

time trace is a good approximation of a continuous Knirps-dependent trajectory.632

Unlike kon and koff , we assume that the initiation rates, r0 and r1, which encode the rate of633

Pol II initiation in the OFF and ON states, respectively, are Knirps-independent. Thus, to obtain634

a predicted time series of initiation rates, r from promoter states p, we simply, set r = r0 for all635

time points when the promoter is OFF and r = r1 for all time points when the promoter is ON636

(see inset panel of Figure S9C). Finally, we obtain a predicted MS2 trace shown in Figure S9D637

by convolving r with the kernel κMS2 (illustrated in inset panel of Figure S9D), which has the638

effect of taking a moving sum of past initiation rates over a time window defined by the time639

required for which nascent polymerase molecules remain on the gene body (set to 140 seconds640

throughout this work). This procedure also accounts for the finite amount of time needed for641

newly initiated Pol II molecules to transcribe the MS2 cassette and become fluorescent. We642

direct readers to Appendix D of (42) for further details.643
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2.3 Parameter sweeps644

We used parameter sweeps to systematically test model performance across a broad range of645

plausible parameter values. As illustrated in Figure S9E, we performed a gridded sweep across646

15 different values for KDon and Hon from Equation S1. In addition we sampled 15 values each647

for KDoff
and Hoff (not pictured) from Equation S2, making for a total of 154 = 60625 distinct648

parameter combinations. The remaining parameters, namely k0
on, k0

off , r0, and r1 were held649

fixed at their average values as calculated from the Knirps-dependent inference results shown650

in Figure S8A-C. Table S3 specifies the values and value ranges used for this procedure.651

For each combination of parameter values, the procedure outlined in Figure S9A-D was652

used to generate ensembles of simulated fluorescent traces with realistic Knirps-dependent653

burst parameters using real experimental measurements of Knirps concentration over time (Fig-654

ure S9F). We could then use these trace ensembles to calculate predictions for the fluorescence655

vs. [Knirps] input-output function (Figure 4G) and reactivation cumulative distribution func-656

tion (CDF, Figure 4H). By comparing our model predictions to our experimental results (Fig-657

ure S9G), it was possible to assess whether a given set of model parameters was sufficient to658

recapitulate these key features of Knirps repression.659

We used the mean-squared error to assess model fits to the input-output function and reac-660

tivation CDF. In each case, deviations were normalized by the mean of the experimental curve661

to ensure comparable scaling between the fluorescence input-output errors (which are natively662

in arbitrary units) and CDF errors (which are probabilities). For the fluorescent input-output663

function (Figure 4G) this gives664

δ2io =
1

Nk

Nk∑
k=1

(fk − f̂k
µf

)2

, (S4)

where Nk is the number of Knirps concentration bins for which the average was calculated, µf665

is the average fluorescence of the experimental curve in Figure 4G taken across all Nk points,666

and where fk and f̂k are the observed and predicted fluorescent values for Knirps concentration667

group k. Similarly, for the reactivation CDF we have668

δ2ra =
1

Nt

Nt∑
k=1

(pt − p̂t
µp

)2

, (S5)

where Nt is the number of time points post-reactivation that were considered, µp is the aver-669

age probability taken across the CDF in Figure 4H, and where pt and p̂t are the observed and670

predicted fraction of reactivated nuclei at time point t post Knirps export.671

We defined the total error in model fit as the weighted sum of δ2io and δ2ra, such that672

δ2 = (wioδ
2
io + wraδ

2
ra)(Nk +Nt), (S6)

where the sum (Nk+Nt) up-weights δ2 according to the total number of data points considered,673

and where wio and wra are weight parameters that tune the relative impact of δ2io and δ2ra to the674
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total loss, δ2. These weights can be adjusted to navigate tradeoffs between the minimization of675

input-output and reactivation CDF fitting loss. In our case, we find that values of wio = 1/4676

and wra = 3/4 lead to the best visual alignment between model predictions and experimental677

observations.678

2.4 Estimating uncertainty bounds with MCMC679

The parameter sweep procedure outlined above produced a δ2 estimate for each of the 60625680

parameter combinations considered. In principle, the model realization corresponding to the681

lowest δ2t could be selected to obtain an approximate point estimate for the optimal KDon , Hon,682

KDoff
, and Hoff values; however the parameter sweep results are not alone sufficient to obtain683

uncertainty bounds, nor do they provide insights into the remaining parameters not included684

in the sweep. To obtain this information, we employed Markov Chain Monte Carlo (MCMC)685

to sample the posterior distributions of our model parameters, conditional on our experimental686

data. MCMC is a widely used class of algorithms that are capable of efficiently sampling high-687

dimensional probability distributions (47).688

As a first step in this process, we utilize information from the parameter sweeps to obtain689

parameter priors that are used to initialize and constrain MCMC sampling. To do this, we690

generate a weight vector, w, comprised of terms with the form691

wi = e−δ2i , (S7)

where δ2i is the total loss from Equation S6 for the ith set of parameter values. If we assume692

that model errors are approximately Gaussian-distributed, then each wi can be interpreted as an693

unnormalized probability that is proportional to the likelihood of the data x (the input-output694

and reactivation curves) conditional on the ith parameter set θi:695

wi ∝ P (x|θi). (S8)

Moreover, from Bayes’ Theorem we have that696

wi ∝ P (x|θi)P (θi) = P (θi|x)P (x). (S9)

From here, we see that if we take a uniform prior across all θi values (such that P (θi) is a697

constant), then the weight wi will be proportional to the likelihood of each set of parameter698

values, conditional on the experimental data:699

wi ∝ P (θi|x). (S10)

Motivated by this observation, we resampled the parameter values, θ, surveyed in the pa-700

rameter sweep according to the weight vector w. This leads to a new set of parameter values,701

θ∗, where the frequency of a given parameter vector, θi, is proportional to its likelihood. As702

a result, the best-fitting parameter sets will frequently in θ∗, and the worst-fitting are unlikely703

to appear at all. We calculate prior distributions for KDon , Hon, KDoff
, and Hoff (assumed to704
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be Gaussian) by taking the mean and standard deviation of each parameters values across θ∗.705

The prior distributions for k0
on, k0

off , and r1 were initialized using the Knirps-dependent cpHMM706

inference results shown in Figure S8A-C. Specifically, the mean and standard deviation for k0
on707

and k0
off were estimated using the mean and standard deviations of the intercepts of the linear708

fits shown in Figure S8A and B, which we reasoned should provide reasonable estimates for709

the upper limit of each parameter. Given the lack of strong Knirps-dependence in the burst710

amplitude, the mean and standard deviation for the r1 prior were calculated by taking the mean711

and standard deviation of all cpHMM results shown in Figure S8C. The initiation rate when712

the system is in the OFF state, r0, was not subject to MCMC sampling, and was held fixed713

at its mean value from cpHMM inference. See Table S4 for the precise values used for each714

parameter prior.715

With our prior distributions established, we conducted MCMC sampling to obtain estimates716

for the posterior distribution of each parameter. We conducted 24 independent MCMC simula-717

tions, each of which was run for 2500 total steps. We used standard Metropolis Hastings (63)718

updates during sampling. The procedure for each step was as follows:719

1. At the tth step in the simulation, a new proposal for the parameter vector, θ′
t, was gener-720

ated by sampling from a multivariate normal distribution centered at the parameter values721

from the previous step, such that722

θ′
t ∼ N (θt−1,Σ). (S11)

The covariance matrix, Σ, dictates how large or small the randomly proposed jumps tend723

to be relative to the previous parameter values. We assumed Σ to be a diagonal matrix and724

set each component, σi, to be equal to 15% of the standard deviation of the corresponding725

parameter’s prior distribution.726

2. Next, we used the proposed parameters, θ′
t, to simulate populations of MS2 traces and727

calculate predictions for the fluorescence vs. Knirps curve (Figure 4G) and reactivation728

CDF (Figure 4H) as outlined in the preceding sections.729

3. We then calculated the total likelihood of the new parameters, defined as730

P (θ′
t|x) = P (x|θ′

t)P (θ′
t). (S12)

Here the first term on the right-hand-side is as defined in Equations S7 and S8, and func-731

tions to penalize proposals that produce curves that deviate too far from experimental732

measurements. The second component is the prior probability, and has the effect of pe-733

nalizing proposals that deviate too far from our priors regarding parameter values.734

4. Finally, we perform the standard Metropolis-Hastings move (48, 63). We calculate a735

probability, p, that takes the form736
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p = min
{ P (θ′

t|x)
P (θt−1|x)

, 1
}
, (S13)

where P (θt−1|x) is the likelihood of the previous set of parameter values. Next we draw737

a random number, z, from the uniform distribution (z ∼ U [0, 1]). If p ≥ z: θt = θ′
t.738

Otherwise: θt = θt−1.739

2.5 Additional MCMC results740

Figure S10 contains bivariate density plots and univariate histograms illustrating the results of741

MCMC sampling for each of the seven parameters examined. The results for the burst frequency742

(kon) are as quoted in the main text. We find that, like kon, koff has a negative dependence on743

(Hoff = 3.2 ±0.65). This translates to a burst duration that is predicted to increase as a function744

of increasing Knirps concentration (Figure S10C). On its own, this trend would increase eve745

4+6 activity; however, this effect is dominated by the stronger Knirps-dependent decrease in746

kon, leading to a strong overall repressive effect (see Figure 4G). Additionally, our sampling747

returns a burst amplitude (r1) value of 21.6 ± 1.9 au/min.748

In addition to these burst parameter results, our MCMC algorithm returns an estimate for749

the detection threshold of our MS2 experiments. As illustrated in Figure S10E and F, we find a750

detection threshold of 6.0 ± 0.13 au. This means that fluorescent spots with a fluorescence of751

6.0 au are predicted to be missed by our segmentation pipeline 50% of the time.752

3 Comparison to other optogenetic approaches developed for multicellu-753

lar organisms754

In this work, we contribute a powerful new optogenetic platform to a rapidly expanding array755

of optogenetic approaches that have been developed for modulating protein dynamics inside756

developing embryos. Our LEXY tag-based method addresses several key limitations faced757

by many previously reported methods. First, some optogenetic tools are designed for specific758

signaling pathways (64–67) and receptor (68) targets, and as a result, are not readily gener-759

alizable. In contrast, LEXY can be directly attached to any protein (though issues of genetic760

rescue (55) and its modulation strength (26) remain). Second, many optogenetic tags do not761

act through concentration modulation, which makes it difficult to draw quantitative conclusions762

from the results. For example, the blue light-induced dimerization of Arabidopsis cryptochrome763

2 (CRY2) controls downstream transcription by disrupting the function of the tagged protein764

through multimerization without affecting its concentration (69–71). On the other hand, LEXY765

controls transcriptional activity through direct modulation of the protein concentration within766

the nucleus, allowing for easy quantification and straightforward interpretation.767
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Figure S1: even-skipped expression under homozygous optogenetic Knirps (tagged with LEXY and Lla-
maTag) qualitatively recapitulates wild-type expression dynamics. (A) To understand whether and to what
degree the eve expression pattern is impacted in the homozygous optogenetics Knirps background, we imaged
the dynamics of a previously published eve-MS2-BAC reporter containing the full endogenous eve locus (31)
in the wild-type and optogenetics Knirps backgrounds. (B-C) The expression pattern of even-skipped is simi-
lar under wild-type Knirps (B) and optogenetics Knirps (C) except for a weaker stripe 5. (D) Comparison of
integrated mRNA shows that stripe 5 expression is weaker under homozygous optogenetics Knirps at 30 min-
utes. Moreover, stripe 4 and 6 expression is slightly wider than under the wild-type condition, suggesting that
optogenetics Knirps is a slightly weaker repressor compared to the wild-type Knirps. (E) Stripe 5 expression
continues to increase as it reaches a similar level compared to the wild-type around 40 minutes. The anterior-
posterior position is aligned based on the center of stripe 5. The plots are normalized according to the peak of
stripe 4 at 40 minutes and smoothened using a moving window of 1.5% range along the anterior-posterior axis.
(Data from a single embryo is shown for each condition. The developmental time is aligned based on the onset
of transcription.)
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Figure S2: Nuclei position calibration based on Knirps expression pattern. The Knirps pattern of each indi-
vidual embryo is used to align embryos along their anterior-posterior position axis. (A) Snapshot of the Knirps
pattern used to calibrate nuclei position. (B) Extracted nuclear fluorescence is smoothed by local quadratic
regression. (C) The region with high Knirps expression (yellow region) is extracted with a single threshold.
Then, a quadratic function is fitted to the nuclei with high Knirps expression (yellow region) to extract the
center line of Knirps expression (blue line). (D) Calibrated positions relative to the Knirps expression peak are
calculated based on the distance to the extracted center line.
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Figure S3: Spatiotemporal dynamics of Knirps protein and eve 4+6 transcription. Nuclei were binned
based on their positions relative to the center of the Knirps domain (Figure S2, Materials and Methods) and
their corresponding (A) Knirps protein concentration reported by LlamaTag fluorescence and (B) transcription
reported by MS2 fluorescence were quantified over time.
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Figure S4: Predicted Knirps binding sites in the eve 4+6 enhancer. (A) The eve 4+6 enhancer is a 800 bp
segment from the endogenous eve locus. (B) Ten Knirps binding sites are predicted within the eve 4+6 enhancer
using PATSER (60) and Knirps position weight matrices from (61). Only binding motifs with PATSER scores
higher than 3.5 are shown. The bar height of each binding site is proportional to the PATSER score.
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Figure S5: Repressor titration results in distinct transcriptional dynamics. (A) Optogenetic titration of
protein concentration. Cartoon schematics for three different illumination conditions. Left: No illumination
results in a negligible export of nuclear Knirps over time (green). Middle: Low dosage of blue light induces
weak export of repressor from nuclei. Right: high intensity of blue light results in a strong export of repressor.
(B) Single-cell traces for embryos with different Knirps export levels show distinct transcriptional dynamics.
(C) Representative single-cell transcriptional dynamics under different illumination conditions show distinct
responses. (D) Mean protein (top) and transcription rates (bottom) under different illumination conditions.
Averaged over n = 4 (no light), n = 4 (low intensity) and n = 3 (high intensity) embryos. (Error bars in D
indicate the bootstrap estimate of the standard error over n = ... nuclei.)
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Figure S6: Example single-cell traces under no illumination. Single-cell traces show a clear sign of tran-
scriptional bursting, and that repression is switch-like. Traces are normalized by their maximum transcription
rate and smoothened using a moving average of 1 minute.
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Figure S7: Responses to Knirps perturbations are consistent across multiple embryos. Plot showing four
individual embryos with similar responses to Knirps export. Each marker shape corresponds to one embryo.
(Error bars indicate the bootstrap estimate of the standard error.)
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Figure S8: Full cpHMM inference results of Knirps-regulated transcriptional bursting. (A) We find that
the burst frequency (kon) decreases significantly as a function of Knirps concentration. (B) We also find a
moderate increase in burst duration (1/koff) with Knirps concentration, (C) while burst amplitude (r) remains
approximately constant. Lines in A, B and C indicate the best linear fit to data. Circles, diamonds, and
squares indicate data points from no light (unperturbed), low illumination, and high illumination experiments,
respectively, as described in Figure 2B.
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Figure S9: A computational framework for Knirps-dependent stochastic simulations. (A-D) Schematic
showing process for simulating stochastic transcription time traces. (A) We first sample an empirical time
trace of Knirps concentration from a nucleus in our live imaging dataset. (B) Next, we plug this Knirps
trace into the input-output functions for kon (eq:konioapp)andkoff (Equation S2) to generate time-dependent
burst parameter trends. (C) We then use a discrete implementation of the Gillespie Algorithm to simulate a
stochastic time-series of promoter activity that reflects the time-dependent parameter trends. Inset panel shows
corresponding initiation rate time series. (D) Finally, we use this promoter time series to calculate the predicted
MS2 fluorescence at each time point. Inset panel shows a cartoon illustrating the kernel used to account for the
finite amount of time required for nascent transcripts to traverse the gene body. Note that lower values early
on account for reduced fluorescence contribution due to incomplete transcription of the MS2 cassette (green
rectangle). Cartoon is for case when 5 time steps are required to traverse the gene (we assume 7 for actual
simulations). (E-G) Schematic illustrating the parameter sweep algorithm. (E) We use a simple gridded search
to sweep a broad space of values for key parameters in Equations S1 and S2. Cartoon illustrates case for a
2D search for kon-related parameters. In reality, we also scan the analogous koff parameters, leading to a 4D
gridded search. (caption continued on next page)
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Figure S9: (continued) A computational framework for Knirps-dependent stochastic simulations. (F) For
each iteration of the sweep algorithm, we select a new combination of parameters (black circle in panel (i)) and
use the process illustrated in A to simulate an ensemble of MS2 traces that reflect these parameter values. (G)
Finally, we use these simulated traces to calculate dynamics of the fraction of reactivated and MS2 fluorescence
as a function of Knirps concentration for comparison with our experimental results. Fit to these trends is used
to score models and identify the set of microscopic parameters that best describes the data.
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Figure S10: Full MCMC results for stochastic input-output model parameters. (A) Univariate and bivariate
density plots. Vertical green lines in histograms indicate the mean parameter value taken across the 25 best-
fitting model realizations. Dashed black lines indicate parameter means. Shaded regions in histograms indicate
1 standard deviation above and below the mean. (B) Inferred trends for the burst frequency (kon), (C) burst
duration (1/koff) and (D) burst amplitude (r). koff was modeled as a Hill function of Knirps (see Equation S2)
and r was assumed to be invariant relative to Knirps concentration. (E) Plot showing the probability that an
MS2 spot will be undetected (missed) as a function of its intensity. Dashed line indicates half-max point where
the probability of missing a spot is 50%. (F) Distribution of the “half max” points for curve in (E). (Shaded
regions in B-E indicate 1 standard deviation uncertainty range as indicated by posterior parameter distributions.
Dashed lines in B-E indicate average taken across 25 most likely model realizations.)
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Figure S11: Model predictions for eve4+6 reactivation dynamics following Knirps export. Blue curve
shows the predicted recovery of burst frequency and the green curve indicates the cumulative fraction of loci
that are predicted to have reentered the ON state as a function of time since the perturbation. Black curve is
identical to the one shown in Figure 4H.
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Supplementary Tables769

Table S1: List of plasmids used in this study.

Name Function
pCasper-vasaPr-EYFP P-element insertion plasmid for vasa

promoter driven EYFP
pBPhi-eve4+6-evePr-MS2-Yellow eve 4+6 reporter
pHD-Kni-LlamaTag-LEXY-dsRed Donor plasmid for Knirps-LlamaTag-

LEXY CRISPR knock-in fusion
pU6-3-gRNA-Knirps-1 guide RNA 1 for Knirps-LlamaTag-

LEXY CRISPR knock-in fusion
pU6-3-gRNA-Knirps-2 guide RNA 2 for Knirps-LlamaTag-

LEXY CRISPR knock-in fusion

Table S2: List of fly lines used in this study.

Genotype Usage
yw; vasa-EYFP/CyO; + Maternally deposit ubiquitous EYFP
yw; +; MCP-mCherry/TM3,Sb Maternally deposit MCP-mCherry

protein
yw; eve4+6-evePr-MS2-Yellow/CyO; + MS2 reporter for eve 4+6 enhancer
yw; +; Kni-LlamaTag-LEXY/TM3,Sb CRISPR knock-in of LlamaTag and

LEXY at Knirps C-terminal
yw; vasa-EYFP/CyO; MCP-mCherry/TM3,Sb Maternally deposit both ubiquitous

EYFP and MCP-mCherry proteins
yw; vasa-EYFP; Kni-LlamaTag-LEXY/TM3,Sb Maternally deposit ubiquitous EYFP,

and expresses Knirps protein labeled
with LlamaTag and LEXY

yw; eve4+6-evePr-MS2-Yellow/CyO; Kni-
LlamaTag-LEXY/TM3,Sb

MS2 reporter for eve 4+6 enhancer
with endogenous knirps locus labeled
with LlamaTag and LEXY
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Table S3: List of parameter ranges used for parameter sweeps. Brackets denote inclusive
ranges. Parameters with a single value appearing in the “range” column were held fixed during
the sweeps. Parameters with two values were sampled at 15 equally spaced points bounded by
the values indicated in the brackets.

Parameter Range
burst frequency Hill Coefficient (HON) [3.15, 12.6]
burst frequency half-maximum (KDON) [2.5, 10.2] (au)
max burst frequency (k0

on) 2.85 (events per min)
off rate Hill Coefficient (HOFF) [0, 4]
off rate half-maximum (KDON) [2, 6] (au)
max off rate (k0

off) 5.81 (events per min)
ON state initiation rate (r1) 22.76 (au per min)
OFF state initiation rate (r0) 0.6 (au per min)

Table S4: List of parameter priors used for MCMC sampling.

Parameter Prior distribution
burst frequency Hill Coefficient (HON) N (5.7, 0.8)
burst frequency half-maximum (KDON) N (3.7, 0.15) (au)
max burst frequency (k0

on) N (2.84, 0.17) (events per min)
off rate Hill Coefficient (HOFF) N (3.1, 0.8)
off rate half-maximum (KDON) N (3.5, 0.3) (au)
max off rate (k0

off) N (5.8, 0.4) (events per min)
initiation rate (r1) N (22.8, 2.1) (au per min)
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Supplementary Movies770

Movie S1 Full movie for repression without perturbation. Knirps concentration is indicated771

in green. Active eve 4+6 loci appear in magenta. Timestamp indicates minutes since the start772

of nuclear cycle 14.773

Movie S2 Full movie demonstrating optogenetic manipulation of protein concentration.774

Knirps concentration is indicated in green. Timestamp indicates time in minutes relative to the775

optogenetic perturbation.776

Movie S3 Full movie demonstrating optogenetic titration of protein concentration. Panels777

correspond to the three illumination conditions illustrated in Figure 2B. Knirps concentration is778

indicated in green. Active eve 4+6 loci appear in magenta. Timestamp indicates minutes since779

the start of nuclear cycle 14.780

Movie S4 Full movie showing optogenetic export of repressor protein. Knirps concentration781

is indicated in green. Active eve 4+6 loci appear in magenta. Timestamp indicates time in782

minutes relative to the perturbation.783
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