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1 Bacteria Taking Over the Earth

Assume that a single E. coli cell has all the nutrients it could possibly desire and that it
(and all of its descendants) can grow without limit.

(a) How many bacterial cells would it take to make a giant colony that has the same mass
as a human?

(b) How long would it take for a single cell to grow into a giant human-sized bacterial colony?

(c) How many bacteria cells would it take to make a giant colony that as the same mass as
the Earth?

(d) How long would it take for a single cell to grow into a giant Earth-sized bacterial colony?

(e) How does the number you calculated in part (c) compare to the actual number of bac-
teria on Earth?

(f) In reality, the number of bacteria on Earth stays fairly constant from day to day and
from year to year, rather than increasing exponentially. Briefly explain why this is the case.

2 Growth Curves and the Logistic Equation

Much of our understanding of the natural world is couched in the language of the subject
now known as “dynamical systems.” In a nutshell, the idea is to write down equations that
tell us how some variable(s) of interest change in time. Often, this ends up being written in
the form of coupled differential equations. Perhaps the most important and simplest of such
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dynamical systems is the law of exponential growth (or decay), relevant to thinking about
the early stages of growth of a culture of cells, for example. In this problem, you are going
to revisit the discussion I give there by solving for the dynamics of a population of bacterial
cells both analytically and numerically.

In class, we discussed the exponential growth equation. This equation has been the basis
for the study of microbiology for years (read, for example, F. Neidhardt, Bacterial Growth:
Constant Obsession with dN/dt, J of Bacteriology 181:7405 (1999) provided on the course
website). If the number of cells is given by N and the growth rate is r, then this equation
takes the form

dN

dt
= rN. (1)

We solved this equation in a variety of ways, both numerically and analytically, and found
a solution given by

N(t) = N0e
rt, (2)

where N0 is the number of cells at t = 0.

(a) Of course, the solution shown above cannot be correct forever. For fast-growing E. coli
estimate how long it would take for a single cell to produce enough progeny to cover the
whole surface of the Earth.

A more realistic scenario is to account for the fact that, sooner or later, bacteria will run
out of resources and halt their growth. For example, a liquid bacterial culture will saturate
at a density of about 109 cells/ml. To account for these limited resources, we introduce a
growth rate that depends on the number of cells, rnew

rnew = r
(

1 − N

K

)
, (3)

where K represents the maximum population size. Note that when N is very small compared
to K, rnew = r and growth is exponential. However, as N approaches K the growth rate
will decrease. Thus, we get the so-called logistic equation

dN

dt
= rnewN = rN

(
1 − N

K

)
. (4)

(b) What is the number of cells at which there is no growth and the population reaches
steady state? Justify how you impose steady state on the logistic equation in order to figure
out this number.

In class, we wrote pseudocode and then Python code to solve Equation 1 numerically using
the so-called Euler method.

(c) Based on your pseudocode for exponential growth, write pseudocode to now solve the
logistic equation. Make sure to comment your code appropriately at every step!
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(d) Write Python code for your pseudocode. For reasonable choices of r and K, plot number
of cells as a function of time for both exponential and logistic growth. Note that we don’t
want your raw code, just the plots generated by this code.

(e) Feel free to look at section “Computational Exploration: Growth Curves and the Logistic
Equation” on page 103 of PBoC2.

3 Migration of the bar-tailed godwit

Animal migrations are one of the greatest of interdisciplinary subjects, bringing together
diverse topics ranging from animal behavior to the physics of navigation to the metabolism
required for sustained long-distance travel. The bar-tailed godwit is a small bird that each
year travels between Alaska and New Zealand on the same kind of incredible nonstop voyage
taken by happy tourists in modern long-distance jetliners as shown in Figure 1. A naturalist
guide in the Okarito Lagoon in New Zealand’s South Island once claimed that over the course
of their ten-day, ten-thousand kilometer trip, these amazing migratory birds lose 1/3 of their
body mass. In this problem, we make a series of simple divide-and-conquer estimates to see
whether this claim might be true.

One of the most powerful tools for estimation is dimensional analysis. Here, we will use this
type of analysis to estimate the drag force experienced by flying godwits as they migrate.
This sort of analysis makes it possible to quickly answer questions such as whether the drag
force increases linearly or quadratically with the length of the birds. In dimensional analysis,
we amass the various physical parameters that we imagine will dictate the drag force with
their attendant units on the right hand side of the equation. In this case, we will consider
the density of air (ρ), the speed of the birds (v) and the size of the birds (L, representing the
size of the cross-section of the bird). On the left hand side, we have the drag force, resulting
in

Fdrag = CραvβLγ, (5)

where C is a dimensionless constant that we will not consider further. Note that in the
equation we have proposed a set of exponents α, β and γ for each variable. The idea of
dimensional analysis is to find the exponents that balance the units on each side of the
equation as a means to uncover the scaling of the drag force with the various physical
parameters we proposed.

(a) Using dimensional-analysis arguments, work out how the drag force experienced by the
flying godwits depends upon the density of air (ρ), the speed of the birds (v) and the size of
the birds (L). Specifically, work out the coefficients α, β and γ in Equation 5.

(b) Work out the power expended by the bar-tailed godwit to overcome the drag force. Then,
work out the total energy expended during the ten-day migration in overcoming this drag
force.
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Figure 1: Map showing the migration pattern of the bar-tailed godwit. Adapted from Gill
et al., Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor
rather than barrier?, Proc Biol Sci. 2009 Feb 7; 276(1656): 447-457.
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(c) Given that burning fat yields 9 kcal/g, work out the number of grams of fat that would
need to be burned to sustain the ten day flight of the bar-tailed godwit. What fraction of
the bird’s body mass would be loss during such a migration based on these estimates?

4 Post-Translational Modifications and “nature’s es-

cape from genetic imprisonment”

In a very interesting article (“Post-translational modification: nature’s escape from genetic
imprisonment and the basis for dynamic information encoding”), Prof. Jeremy Gunawardena
discusses how we should think about post-translational modifications as a way of expanding
the natural repertoire of the 20-letter amino acid alphabet. Similarly, Prof. Christopher
Walsh wrote a whole book entitled “Posttranslational Modifications of Proteins: Expanding
Nature’s Inventory,” again making the point that by adding chemical groups to proteins we
can significantly change their properties.

(a) Provide at least one mechanistic idea about how adding a chemical group to a protein
can alter its structure or function. Your answer should be offered in less than a paragraph,
but should be concrete in its assertions about how these modifications change the protein.
Why does Gunawardena refer to this process of post-translational modification as “escape
from genetic imprisonment”?

(b) As a toy model of the combinatorial complexity offered by post-translational modifi-
cations, let’s imagine that a protein has N residues that are able to be phosphorylated
(NOTE: please comment on which residues these are—the answer is different for bacteria
and eukaryotes). How many distinct states of the protein are there as a result of these dif-
ferent phosphorylated states? Make an approximate estimate of the mass associated with a
phosphate group and what fraction of the total mass this group represents. Similarly, give
some indication of the charge associated with a phosphate group. What ideas do you have
about how we can go about measuring these different states of phosphorylation?

(c) In this part of the problem, we make a very crude estimate of the number of sites on a
protein that are subject to phosphorylation. To do so, imagine that the protein is a sphere
with N residues. How does the radius of that sphere depend upon the number of residues in
the protein? Given that estimate, what is the number of residues that are on the surface?
Given that number, what fraction of those are phosphorylatable? Remember, these are crude
estimates. Work out these results for a concrete case of a typical protein with roughly 400
amino acids.

(d) Let’s close out these estimates by thinking about a bacterial cell. If all 3 × 106 proteins
in such a cell can be phosphorylated with the number of different phosphorylation states
that you estimated above, how many distinct cells could we make with all of these different
states of phosphorylation.
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Figure 2: Schematic of a protein showing the surface residues that are available for phos-
phorylation.

5 Proteomic data on bacteria in different growth con-

ditions

Read the paper by Schmidt and Heinemann and co-workers in which they use mass spec-
trometry to take the census of E. coli under a variety of different growth conditions. The
outcome of this work was a census of the number of copies of roughly half of the proteins in
this important bacterium.

(a) Using the data in the spreadsheet available with this homework, examine the numbers
for the subunits of ATP-synthase. Write a short paragraph describing what ATP synthase
is and what it does. Then, make an estimate of the number of ATPs it takes to make a new
cell. In light of the number of ATP synthases counted by Heinemann and his group, are
there enough to make all the ATPs needed to build a cell?

(b) Comment on the units on the y-axis of figure 2b of the Schmidt et al. paper. Specifically,
justify those units in terms of what you know about the total number of proteins and the
mass per protein. Do you think that the measurements pass the street fighters sanity check?
Explain your conclusions.
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