
MCB137L/237L: Physical Biology of the Cell
Spring 2025
Homework 5

(Due 2/25/25 at 2:00pm)

Hernan G. Garcia

1 Dynamics of A→ B reactions.

One of the most interesting topics in science is how we have learned to probe deep time.
Surprisingly, DNA sequence has permitted us to explore deep time in the biological setting.
Of course, biology and the dynamics of the Earth are not independent phenomena and the
point of the rest of this problem is to better understand the details of how scientists figure
out how old the Earth is as well as how old various fossil-bearing strata are. To that end,
we will first consider a simple model of the radioactive decay process for potassium-argon
dating methods, recognizing that there are many other dating methods that complement the
one considered here.

Potassium-Argon dating

Potassium-argon dating is based upon the decay of 40K into 40Ar. To a first approximation,
this method can be thought of as a simple stopwatch in which at t = 0 (i.e. when the rocks
crystallize), the amount of 40Ar is zero, since it is presumed that all of the inert argon has
escaped. We can write an equation for the number of potassium nuclei at time t+ ∆t as

NK(t+ ∆t) = NK(t)− (λ∆t)NK(t). (1)

Stated simply, this means that in every small time increment ∆t, every nucleus has a prob-
ability λ∆t of decaying, where λ is the decay rate of 40K into 40Ar. We also employ the
important constraint that the number of total nuclei in the system must remain constant,
so that

NK(0) = NK(t) +NAr(t), (2)

where NK(0) is the number of 40K nuclei present when the rock is formed, NK(t) is the
number of 40K nuclei present in the rock at time t, and NAr(t) is likewise the number of 40Ar
nuclei present in the rock at time t. In this part of the problem you will use equations 1
and 2 to construct differential equations to find the relationship between NK(t), NAr(t), and t.
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(a) Using equations 1 and 2 as a guide, write differential equations for NK(t) and NAr(t).
How do these two expressions relate to one another?

(b) Next, we note that the solution for a linear differential equation of the form dx
dt

= kx is
given by x(t) = x(0)ekt. Use this result to solve for NK(t).

(c) Use the constraint encapsulated by equation 2 to write an equation for the lifetime of
the rock, t, in terms of the ratio NAr

NK
.

Age of the Galapagos Islands

The potassium-argon dating method described above has been used in several contexts cen-
tral to some of the most important evolutionary questions in biology. As we go from West to
East in the Galapagos Archipelago, the ages of the islands increase, with Santa Cruz older
than Isabella, for example. But how are these numbers known and what evidence substan-
tiates these claims when naturalist guides make them? In a beautiful article from Science
Magazine in 1976 (Science, New Series, Vol. 192, No. 4238 (Apr. 30, 1976), pp. 465-467),
Kimberly Bailey tells us of her efforts to determine the ages of the islands of Santa Cruz,
San Cristobal and Espanola. We will now use her data to find out the K-Ar ages of several
of these islands ourselves.

(d) Read Bailey’s short paper and give a brief synopsis (1 paragraph) of her approach and
findings.

(e) Use the results from Sample H70-130 and JD1088 of Table 1 from Bailey’s paper to
determine ages for Santa Cruz Island and Santa Fe Island. To do this, you will need to
navigate a few subtleties. First, note that the amount of Argon is presented in moles, and
so you can use those numbers directly. To determine the number of moles of 40K, you will
need to use the weight percentage that is K2O and use that in combination with the mass of
the sample to figure out how much K is present. Note that not all of the potassium in the
sample will be the isotope 40K, so you will need to use the ratio of 40K to total potassium,
40K
Ktotal

≈ 1.2× 10−4. Additionally, use the decay constant λ ≈ 5.8× 10−11 yr−1.

Determining Lucy’s age

In 1974, a fossil of Australopithecus afarensis (shown in Figure 1) was discovered in Ethiopia.
This specimen, which was dubbed “Lucy,” marks an important step in understanding hu-
man evolution because at the time of its discovery, it was the earliest known species to show
evidence of bipedal locomotion. Because Lucy was found in an area that was rich in volcanic
rock, potassium-argon dating was an ideal method for determining Lucy’s age (Aronsen
1977).

Unfortunately for us, real-world K-Ar dating data are generally not neatly presented in the
form of NAr and NK. Instead, geologists will measure a concentration of 40Ar in mol/g and
a weight percent of K2O. These data must be used to identify the number of 40Ar and 40K
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nuclei in the sample. In this part of the problem, we will look at such measurements from
an actual paleontological specimen as reported in Aronsen (1977) in order to determine its
age.

Figure 1: The remains of Lucy, a specimen of Australopithecus afarensis.

(f) Using the table of 40Ar and K2O measurements below (Aronsen 1977), obtain an esti-
mate for Lucy’s age. Be sure to explain the steps you take to obtain your answer. Since
each sample is taken from the area in which Lucy was found, we expect each sample to give
you roughly the same answer; you will need to take the mean of the ages of each sample to
obtain an estimate for Lucy’s age.

Assume that each sample has a total mass of 1 g. Also, note that not all of the potassium in
the sample will be the isotope 40K, so you will need to use the ratio of 40K to total potassium,
40K
Ktotal

≈ 1.2× 10−4. Additionally, use the decay constant λ ≈ 5.8× 10−11 yr−1.

Sample Number 40Ar × 10−12 mol/g wt.%K2O
1 2.91 0.657
2 3.18 0.755
3 3.08 0.680

Table 1: Outcome of measurements of potassium and argon for dating the rocks in the
vicinity of Lucy.
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2 Taylor series

In class, we solved the master equation for mRNA production and concluded that the mRNA
production in steady state can be described by a Poisson distribution. To make this possible,
we had to invoke the result that

+∞∑
m=0

1

m!
xm = ex = 1 + x+

1

2
x2 +

1

6
x3 + . . . (3)

In this problem, we introduce the Taylor expansion to prove that the equation above is cor-
rect. This expansion is perhaps one of the most important tools used in the mathematical
analysis of physical models.

(a) Read the section “The Math Behind the Models: The Beauty of the Taylor Expansion”
on page 215 of PBoC2 shown below in Figure 2.

(b) The idea behind Equation 3 is that, as we sum more of the terms in the equation, our
summation will converge to the function ex. Here, we check this assertion using your favorite
programming language. Make a plot like that shown in Figure 5.22 of PBoC (shown below
in Figure 3), but for the function ex. Specifically, plot the function ex as well as the sum in
the equation up until different powers. This means that you will plot ex, together with 1,
1 + x, 1 + x+ 1

2
x2, etc. Go until the fourth order for a total of five lines on your plot.

3 Every Distribution Has Its Moments: The Poisson

Distribution

In class, our null hypothesis for the mRNA distribution of a constitutive promoter led us to
the Poisson distribution given by

p(m) =
λm

m!
e−λ, (4)

with λ = r/γ, r the rate of transcription and γ the rate of mRNA degradation. In this prob-
lem, we explore this distribution and its moments, namely, how the λ parameter dictates
the mean and the variance of the Poisson distribution.

(a) Show that the Poisson distribution is normalized. To make this possible, you will have
to invoke the Taylor expansion of the exponential function.

(b) Calculate the mean of the Poisson distribution, which is defined as

〈m〉 =
+∞∑
m=0

mp(m). (5)

To make this possible, you can use a trick that invokes the derivative. Specifically, note that

λ
d

dλ
λm = mλm (6)
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The Math Behind the Models: The Beauty of the Taylor
Expansion A very important tool invoked in the mathemat-
ical analysis of physical models is the use of the so-called
Taylor expansion. Series expansions of this kind will be one
of our primary mathematical tools in the remainder of this
book. The idea is very simple and amounts to replacing a func-
tion f (x) in some neighborhood with a simple polynomial. As
will be seen repeatedly throughout this book, the virtue of
these approximations is that they allow us often to replace
intractable nonlinear expressions with simple algebraic surro-
gates that we can handle analytically and that give an intuitive
sense of the mathematics.

The idea of the Taylor expansion is embodied in the simple
formula

f (x) = a0 + a1x + a2x2 + ···. (5.18)

Most of the time, we will only keep terms up to second order,
and as a result the Taylor series algorithm reduces to the ques-
tion: what three coefficients a0,a1, and a2 should we use to
best approximate the function f (x)?

For concreteness, let us consider the case in which we are
interested in the behavior of the function f (x) near x = 0. If we
set x = 0 on both sides of Equation 5.18, we see that a0 = f (0).
But we already know the function f (x), so all we have to do is
find its value at x = 0 to obtain the first coefficient. Next, let us
take the derivative of both sides of Equation 5.18 with respect
to x. We are left with the equation

f (x) = a1 + 2a2x + ···. (5.19)

Once again, if we set x = 0, we are left with a1 = f (0). We
can continue to play the same game, this time evaluating the
second derivative, with the result

f (x) = 2a2 + ···, (5.20)

which leads to a2 = 1
2 f (0). This same basic analysis can be car-

ried on indefinitely if one is interested in higher-order terms.
Most of the time we will be content with the expression

f (x) ≈ f (0) + f (0)x + 1
2 f (0)x2. (5.21)

The symbol ≈ refers to the fact that in the neighborhood of
the point x, the left- and right-hand sides of this equation are
approximately equal. The conclusion of this little analysis is
that if we want to find a simple quadratic surrogate for our
function ofinterest, all we need to know is the value of the
function and its first two derivatives at the point around which
we are expanding. An example of this kind of analysis for the
case of cos x is shown in Figure 5.22. In particular, using the
rules given above, the Taylor series for this function is given by

cos x ≈ 1 −
x2

2!
+

x4

4!
−

x6

6!
+

x8

8!
−

x10

10!
+ ···. (5.22)

Figure 5.22 compares the function cos x with various approx-
imations based upon the Taylor series. We see that as more
terms are included, the approximation is good for a wider
range of values of x. Of course, there are mathematical sub-
tleties that arise when considering a generic function, such as
the question of convergence of the Taylor series. For example
the function 1 /(1 − x) has the Taylor series, 1 + x + x2 + x3 + ···,
which is finite only for values of x such that −1 < x < 1.

Figure 2: Math Behind the Models: The Beauty of the Taylor Expansion. From PBoC2,
page 215.
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Figure 5.22: Comparison of the
function cos x and its Taylor
expansion. The curves are labeled by
the order of the highest term kept in
the Taylor series. For example, n = 2
means that the series goes to
quadratic order, etc. The cosine
function we are approximating is
shown in bold for comparison with
the approximate expressions.
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Figure 3: Figure 5.22 from PBoC2.

in order to rewrite the sum for the mean as the derivate of a sum you know how to calculate.
Is the result you get consistent with what you concluded when calculating the temporal
evolution of the mean mRNA number in class?

Now, let’s calculate the variance which is defined as

var = SD2 = 〈(m− 〈m〉)2〉, (7)

where SD is the standard deviation. The variance measures the width of the distribution by
calculating its squared spread with respect to the mean.

(c) Show that the variance can be written as

var = 〈m2〉 − 〈m〉2. (8)

To make this possible, you need to remember that the average of a number is just that
number such that

〈〈m〉〉 = 〈m〉, (9)

and that the mean of a sum is the sum of the means.

(d) Invoke the derivative trick you used to calculate 〈m〉 in order to compute 〈m2〉.

(e) Calculate the variance. How does it compare to the mean? This is the key feature of the
Poisson distribution! Visualize this by plotting the Poisson distribution for three different
mean values, noting how the width of the distribution changes as its mean is modulated.

4 Sequencing Depth and the Poisson Distribution

The main challenge in assembling the sequence of a genome is to avoid any sequence gaps. To
make this possible, it is important to sequence the genome at a depth—also called coverage—
that ensures a minimal number of these gaps. In this problem, we explore how we can use the
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genome of length G
... ...

individual
base pairs

M sequencing
reads

Figure 4: Simple model of genome sequencing. The base pairs of a genome of length G can
be sequenced by any of the M sequence reads.

Poisson distribution to calculate this required sequencing depth in the context of a simple
model of DNA sequencing. Specifically, Figure 4 shows how the G base pairs in a genome
can be read out by M sequencing reads. As shown in the figure, some base pairs will be
read out by the sequencing reads multiple times, while some base pairs will not be read out
at all as predicted by the Poisson distribution.

(a) Given a genome of length G, and a total number of sequenced bases M , what is the
mean number of reads per base pair λ?

(b) Let’s assume that λ is small such that the number of reads falling on a given base pair
is dictated by the Poisson distribution. What is the likelihood of that given base pair not
being read at all?

(c) If you ask that the likelihood of a base pair not being read is 1%, what should the value
of λ be? What does that say about the coverage, namely how many times the genome needs
to be sequenced over in order to ensure this value of λ?

(d) Look up an example of sequencing coverage in your favorite DNA sequencing applica-
tion. Do the numbers make sense given your calculation?

5 Mutation Per Generation in Humans

Comparing genetic sequences has served as a useful tool for determining how various or-
ganisms are related to each other. With the advent of the “genomic era,” we no longer
have to infer how living organisms are related to each other based on morphological traits
alone. In this problem, we will begin to get a sense of the time scales over which mutations
accumulate in genetic sequences and how we can use these mutations as a molecular clocks
for determining the relationships between various organisms.
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In this problem, we are ultimately interested in estimating the total number of mutations
that are passed on in each human generation. As a first step, we must estimate the number
of mutations that accumulate in a single cell division.

(a) Given that the human genome is 3 billion basepairs long and is replicated with an incred-
ible fidelity of only one error in every 1010 basepairs per replication, how many mutations
do you expect to see after one genome duplication?

With this number of mutations per genome duplication in hand, we can next tackle how
many mutations are passed on by a mother and a father. Recall that while many mutations
may occur in a given human, only those that accumulate in the gametes (egg and sperm) will
actually be passed on. To determine the number of mutations that we expect to be passed
on, we will need to consider the formation of the egg and the sperm separately as males and
females have different developmental pathways regarding gametogenesis (see Figure 2).

As a primer for thinking about gametogenesis, let’s briefly review the difference between
mitosis and meiosis. Mitosis is the process by which a somatic cell duplicates its genome and
then divides into two cells. Thus in a human, mitosis yields two cells with 46 chromosomes
each. Meiosis, however, is the process by which a cell duplicates its genome and then pro-
ceeds to undergo two cell divisions, ultimately resulting in four cells with 23 chromosomes.
This means that each round of mitosis requires one genome duplication and each round of
meiosis requires one genome duplication (despite having two cell divisions).

In humans, females are born with all of their eggs nearly fully developed and they produce
no new egg cells throughout the rest of their life. As illustrated in the top half of Figure 2,
every developed egg is the result of 22 rounds of mitosis and 1 round of meiosis, yielding a
total of 23 genome replications. This means that every egg a woman produces has undergone
23 genome replications regardless of a woman’s age.

(b) Given the 23 genome duplications that occur in the process of forming an egg, how many
mutations do you expect a woman to pass on to her children?

By contrast, spermatogenesis occurs continually throughout a male’s lifetime upon reaching
sexual maturity (i.e. puberty). At a bare minimum, a developed sperm cell has undergone
34 rounds of mitosis (30 leading to the formation of the stem cell and 4 after the stem cell)
and 1 round of meiosis. But there are also additional rounds of mitosis to take into account
as the result of the stem cells continually dividing to maintain the sperm supply. With these
stem cells dividing every 16 days after puberty, the number of genome duplications to make
a man’s sperm is dependent on the age of the man.

(c) How many genome replications have occurred to make a “typical” man’s sperm? In this
context, we consider that a “typical” male hits puberty at 15 and reproduces at 30 years
old.

(d) Given your answer in (c), how many mutations do you expect this “typical” man to pass
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Figure 5: Schematic of oogenesis and spermatogenesis in humans. n refers to the number of
chromosomes, where somatic cells have 46 and gametes have 23. For simplicity, the dashed
arrows indicate the lineages of cells that we do not follow.

on to his children?

We have now estimated the total number of mutations that we expect the mother and the
father to contribute, allowing us to determine the total number of mutations per human
offspring.

(e) What is the total number of mutations we expect to accumulate in a human offspring?
What are the relative effects of the mother and the father in this estimate?

(f) Make a plot of the number of mutations accumulated in the gametes as function of age
for males and females. Make sure to graph the number of mutations in the egg and the
sperm on the same plot to better compare their relative effects.
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