
MCB137L/237L: Physical Biology of the Cell
Spring 2025
Homework 6

(Due 3/4/25 at 2:00pm)

Hernan G. Garcia

“Mathematics, rightly viewed, possesses not only truth, but supreme beauty cold and aus-
tere, like that of sculpture, without appeal to any part of our weaker nature, without the
gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection
such as only the greatest art can show. The true spirit of delight, the exaltation, the sense
of being more than Man, which is the touchstone of the highest excellence, is to be found in
mathematics as surely as in poetry.” - Bertrand Russel in Study of Mathematics

1 Synthesizing a Transcriptome: Big Data in Tran-

scription

In class, we briefly discussed the myriad of different ways to measure gene expression. Writ
large, we can either find ways to count the mRNA transcripts or the protein products that
result from these transcripts. For example, when properly calibrated, the green fluorescent
protein (GFP) in conjunction with fluorescence microscopy is a favorite approach for mea-
suring protein copy numbers. Recently, a different way to engage in the dialogue between
theory and experiment has been afforded by the advent of technologies that make it possible
to take a census of the full complement of transcripts inside individual cells.

One of the key applications of single-cell mRNA sequencing has been its use to identify “tran-
scriptional fingerprints” that define discrete cell types within a population containing cells
that have committed to multiple possible fates. One of the best examples of this application
of single-cell transcriptome-wide sequencing comes from projects such as the Tabula muris.
This project measured RNA counts for tens of thousands of genes within tens of thousands
of individual cells in the mouse, derived from tens of distinct organs and tissues. Each single
cell transcriptome is a giant ≈ 10,000 dimensional vector with the ith entry corresponding
to the mRNA count of the ith gene.

One widespread approach to visualizing the results from these types of experiments is shown
in Figure 1. In the figure, each point corresponds to an individual cell whose transcriptome
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Figure 1: Graphical representation of the Tabula muris single-cell sequencing data. In-
dividual cells of different organs in the mouse were subjected to single-cell transcriptome
sequencing. Each dot represents a single cell, with its high-dimensional gene expression
vector reduced to a two t-SNE lower dimensional representation. Clustering and manual an-
notation reveal different tissues and cell types. Adapted from The Tabula Muris Consortium
et al., Nature 562:367-372, 2018.
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was sequenced. Here, the extremely high dimensional data resulting from single-cell RNA
sequencing (i.e., the number of mRNA molecules corresponding to each of ≈ 10,000 genes in
each cell) was projected onto two dimensions using methods we will later explore. Further,
once this projection is performed, cells are grouped in clusters. The idea is that cells within
a cluster share much of their gene expression profile and are therefore identified as unique
cell types corresponding to different tissues within the mouse. In this problem, we will at-
tempt to build some intuition for how this identification of unique cell types is achieved by
working with a synthetic transcriptome that we build ourselves using our understanding of
the constitutive promoter. Obviously this is a caricature of the real situation where most
genes are not constitutively expressed.

(a) Let’s start by creating a mental picture of the high dimensionality of single-cell sequenc-
ing data by picturing how this data is stored. Specifically, think of a matrix G where you
store the RNA counts for 10,000 genes measured in 1,000 cells where each row of the matrix
corresponds to a given cell. How many rows and columns would this matrix have? Draw this
matrix schematically, clearly indicating what each dimension of the matrix represents. Fur-
ther, identify the gene expression vector that corresponds to the number of mRNA molecules
detected for all species in cell number 1.

(b) To begin to get a feeling for this kind of data, we imagine an experiment on cells contain-
ing only two genes. These cells can adopt three different fates based on the expression state
of these genes (i.e., low/low, low/high and high/high). Further, let’s assume that these two
genes are constitutively expressed, and that low and high gene expression levels correspond
to an average of 10 and 35 mRNA molecules per cell, respectively. To remind ourselves of
what the null hypothesis for constitutive promoters looks like, write the chemical master
equation for a constitutive promoter and show that solving this equation in steady state
results in a Poisson distribution. In the case of the low and high expression levels, give the
formula for the specific Poisson distribution for those two cases.

(c) Plot histograms of the number of mRNA molecules of gene 1 and gene 2 for each cell
type, assuming 1,000 cells of each type. This means that you will invoke the Poisson distri-
bution you derived in the previous part of the problem and use it to describe the distribution
of mRNA counts for the different cell types.

(d) Generate a synthetic transcriptome matrix G with 1,000 cells of each type (for a total
of 3,000 cells in your dataset) by sampling from the Poisson distributions that you derived
above. Make a plot of this low-dimensional synthetic transcriptome data set consisting of
number of mRNA molecules of gene 2 vs. number of mRNA molecules of gene 1, where each
dot within the plot corresponds to an individual cell.

Now, we will imagine that we are given this transcriptome data without any more informa-
tion than the fact that there should be three cell types within it. Note that in reality we will
rarely have information about number of cell types within a sample a priori. However, this
is a good first step toward building intuition about the challenges of analyzing single-cell
sequencing data.
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In order to find cell types in our synthetic transcriptome, we will resort to so-called k-means
clustering. The steps of this algorithm are illustrated in figure 2 and can be enumerated as
follows:

1. The transcriptome data is plotted. In this case, because we only have two genes, this
corresponds to a two dimensional plot of the number of mRNA molecules of gene 2 as
a function of the number of mRNA molecules of gene 1 for each single cell. A set of
N random points within this data set are then selected, with N being the number of
clusters we are trying to identify. These N points will be called the centroids.

2. The distance of every data point to the centroids is calculated. Each data point is
assigned to its closest centroid. This is our first approximation to the assignment of
cells to our three clusters.

3. Based on the categorization of data points, new centroids are calculated. For each clus-
ter, calculate their corresponding centroids by taking the average values of expression
for the two genes.

4. Data points are reassigned to their closest centroid. This means that we now need
to take every data point and compute the distance to all three updated centroids and
then to assign them to the centroid they are closest to.

5. Steps (3) and (4) are repeated until convergence is achieved.

(e) Write a k-means algorithm to find 3 clusters in your synthetic transcriptome data set. In
doing so, generate intermediate plots for the iterations of the algorithm such as those shown
in Figure 2.

(f) One of the biggest drawbacks of k-means clustering is that we need to commit to a given
number of clusters in advance. Explore what happens if you tell your algorithm to look
for two and four clusters instead of three. Document some of the final answers from the
algorithm and comment on why it converged to that answer. Comment on how all of these
answers correspond to what you actually know about the system given that you generated
the transcriptomes!

Finally, it is important to note that all algorithms are limited in the sense that they require
commitments by specifying parameters. In k-means, we had to commit to a number of clus-
ters. However, there are other approaches to finding clusters that do not require specifying
cluster number a priori such as DBSCAN.

(g) Read about DBSCAN and explain how it works by drawing a graphical example (this
can be in cartoon form). For this algorithm, what are the parameters we need to commit
to?
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Figure 2: The k-means clustering algorithm. (i) A set of N points are chosen randomly from
the dataset to become the centroids of the N clusters to identify. (ii) Each data point is
assigned to its closest centroid. (iii) New centroids are calculated for each new cluster. (iv)
Data points are reassigned to their new centroids. By iteratively repeating steps (iii) and
(iv) convergence can be ultimately reached.
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2 Mutation correlation and physical proximity on the

gene

Do problem 4.4 from PBoC2 shown in Figure 3. You might find it useful to read section
“Flies and the Rise of Modern Genetics” starting on page 170 of PBoC2.

Table 4.2: Fraction of crossovers of six sex-linked factors in Drosophila.
(Adapted from A. H. Sturtevant, J. Exp. Zool. 14:43, 1913.)

Factors Fraction of crossovers

BR 115/324

B(C,O) 214/21736

(C,O)P 471/1584

(C,O)R 2062/6116

(C,O)M 406/898

PR 17/573

PM 109/458

BP 1464/4551

BM 260/693

• 4.4 Mutation correlation and physical proximity
on the gene

In Section 4.6.1, we briefly described Sturtevant’s analysis of
mutant flies that culminated in the generation of the first
chromosome map. In Table 4.2, we show the crossover data
associated with the different mutations that he used to draw
the map. A crossover refers to a chromosomal
rearrangement in which parts of two chromosomes
exchange DNA. An illustration of the process is shown in
Figure 4.26. The six factors looked at by Sturtevant are B, C,
O, P, R, and M. Flies recessive in B, the black factor, have a
yellow body color. Factors C and O are completely linked,
they always go together and flies recessive in both of these
factors have white eyes. A fly recessive in factor P has
vermilion eyes instead of the ordinary red eyes. Finally, flies
recessive in R have rudimentary wings and those recessive
in M have miniature wings. For example, the fraction of flies
that presented a crossover of the B and P factors is denoted

P

M

MP

(A)

(B)

(C)

MP

Figure 4.26: Crossing over of chromosomes. (A)
Chromosomes before crossing over showing two loci labeled P
and M. (B) Illustration of the crossing-over event. (C)
Chromosomes after crossover.

as BP. Assume that the frequency of recombination is
proportional to the distance between loci on the
chromosome.

Reproduce Sturtevant’s conclusions by drawing your own
map using the first seven data points from Table 4.2.

Keep in mind that shorter “distances” are more reliable than
longer ones because the latter are more prone to double
crossings. Are distances additive? For example, can you
predict the distance between B and P from looking at the
distances B(C,O) and (C,O)P? What is the interpretation of
the two last data points from Table 4.2?

Figure 3: Problem 4.4 from PBoC.
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3 Counting Proteins with Partitioning Statistics

One of the great challenges in quantitative cell biology is to be able to turn the fluorescence
values obtained from fusions to proteins to an actual absolute number of proteins. While
there are many ways to “calibrate” such measurements using standards of a known concen-
tration, in this problem, we will explore how we can use bacterial cell division, pure thought
and the binomial distribution in order to calibrate a fluorescent protein.

(a) Begin by reading the paper by Rosenfeld et al. entitled “Gene Regulation at the Single-
Cell Level” (posted on the website with the homework) and write a one paragraph commen-
tary on the paper with special reference to how they used the binomial partitioning as a way
to count repressor proteins. What is the experiment they did and what were they trying to
learn?

In the rest of the problem we work out for ourselves the ideas about binomial partitioning
introduced in the Rosenfeld et al. paper in order to consider the concentration of proteins
as a function of time in dividing cells. In particular, the point of this problem is to work out
the concentration of protein given that we start with a single parental cell that has N copies
of this protein. In the Rosenfeld experiment, at some point while the culture is growing, the
production of the protein is stopped by providing a chemical in the medium and then the
number of copies per cell is reduced as a result of dilution as the cells divide.

Interestingly, this problem opens the door to one of the most important themes in physics,
namely, that of fluctuations. In particular, as the cells divide from one generation to the
next, each daughter does not really get N/2 copies of the protein since the dilution effect is
a stochastic process. Rather the partitioning of the N proteins into daughter cells during
division follows the binomial distribution. Analyzing these fluctuations can actually lead to
a quantification of the number of copies of a protein in a cell.

(b) We think of the N copies of the protein as being divided between the two daughters
with N1 going to daughter 1 and N −N1 going to daughter 2. Explain how the probability
of N1 proteins going to daughter cell one is given by the binomial distribution

P (N1, N) =

(
N

N1

)
pN1qN−N1 , (1)

where the probability of a protein going to daughter cell 1 is p, and the probability of a one
protein going to daughter 2 is q = 1 − p. For your explanation you can choose to show a
formal mathematical derivation, or qualitatively walk us through the meaning of each term
in the equation. Remember that, while for most of the course we could use the “stadium
seating” approximation to think about how to place N1 spectators in N seats, here N and
N1 are of comparable magnitude. This situation, which already encountered in the context
of the DNA entropic spring, calls for the binomial coefficient

(
N
N1

)
.

We can also calculate the mean of the probability distribution (also called the first moment
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of the distribution) by invoking a cool trick using the derivative with respect to p

〈N1〉 =
N∑

N1=0

N1

(
N

N1

)
pN1qN−N1 = p

∂

∂p

N∑
N1=0

(
N

N1

)
pN1qN−N1 . (2)

This equation can be rewritten as

〈N1〉 = p
∂

∂p

(
(p+ q)N

)
= pNmother(p+ q)N−1, (3)

where we made use of the fact that

N∑
N1=0

P (N1, N) = (p+ q)N . (4)

Using p+ q = 1, Equation 3 leads to

〈N1〉 = pN. (5)

(c) Work out the expected averaged fluctuations squared in the partitioning process after
each division by noting that the averaged fluctuations can be written as 〈(N1−N2)

2〉, where
N1 and N2 are the number of proteins that end up in daughter cells 1 and 2, respectively.
Show that, if p = q = 0.5, the partitioning error is given by 〈(N1 −N2)

2〉 = N . To make
this possible, use the derivative trick twice such that

〈N2
1 〉 =

N∑
N1=0

N2
1

(
N

N1

)
pN1qN−N1 = p

∂

∂p

[
p
∂

∂p

(
N∑

N1=0

(
N

N1

)
pN1qN−N1

)]
(6)

as well as the result 〈N1〉 = pN described above. In addition, use the fact that N = N1+N2,
in order to calculate the average partioning error as

〈(N1 −N2)
2〉 = 〈[N1 − (N −N1)]

2〉 = 〈(2N1 −N)2〉. (7)

Remember that 〈N〉 = N , as N is a constant in our problem.

(d) Next, look at the Rosenfeld paper and explain how measuring fluorescence variations
can be used to calibrate the exact number of copies of the fluorescent protein in a cell.
Specifically, assume that the fluorescence intensity in each cell can be written as I = αN ,
where α is an as-yet unknown calibration factor and N the number of proteins in the cell.
Explain what this equation means and why you think it is justified. Derive an expression
relating I1, I2 and Itot using the result of part (c). Make a qualitative schematic showing a
plot of 〈(I1− I2)2〉 versus Itot and explain how to get the calibration factor α from this plot.
Note that we’re asking to draw up an explanation, not to actually make a plot with Python..

(e) Now we are going to repeat the Rosenfeld experiment numerically in order to fit the
calibration factor. Consider a fluorescent protein such that the calibration factor between
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the intensity and the number of fluorophores is 50, that is I = 50N . Generate intensity data
by choosing N1 +N2 = 10, 50, 100, 1000 and 5000 and for each case, “partition” the proteins
from the mother cell to the two daughters 100 times (i.e. as if you are looking at 100 mother
cells divide for each choice of the protein copy number).

To make this possible, flip a coin for each molecule in order to decide whether the molecule
is going to daughter cell 1 or 2. Specifically, for every molecule to be partitioned, draw a
random number between 0 and 1 using the Python ramdom.randint function (remember to
import the random package). Then, use the if function to decide whether a molecule will
be partitioned to daugther cell 1 or 2.

Finally, make a plot of the resulting 〈(I1 − I2)2〉 vs Itot just as we did analytically in the
previous problem. What I mean is that you need to make a plot of all of your simulation
results. Then, do a fit to your “data” using a numpy function (see the note below) and see
how well you recover the calibration factor that you actually put in by hand. Plot the fit on
the same graph as all of the “data”.

Note: You can use numpy.polyfit to perform a linear fit to your “data” using the syntax
numpy.polyfit(x, y, deg) where x is the data x-coordinate, y is the data y-coordinate,
and deg is the degree of the polynomial you’d like to fit to your data (for instance, you would
use deg = 1 for a linear fit). You can also use numpy.linalg.lstsq if you’d rather phrase
the problem as a matrix equation (this is reasonably simple to do as well, and an example
of a linear fit performed using this function is provided in the Numpy documentation linked
to above).
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https://www.geeksforgeeks.org/python-randint-function/
https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html
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