
MCB137L/237L: Physical Biology of the Cell
Spring 2025
Homework 9:

(Due 4/1/25 at 2:00pm)

Hernan G. Garcia

“Biology is catching up” - PAM Dirac

1 Diffusion times

Make a log-log plot of the diffusion time (in seconds) as a function of length (in µm) using
Python. Plot multiple lines considering the diffusion constants for ions and for a typical
protein inside a cell. Finally, mark a few relevant biological sizes along the x-axis such as
the size of an axon, a synaptic cleft, an E. coli cell, and a eukaryotic nucleus.

2 Ion channel currents

Figure 1A shows a single-channel recording of the current passing through a voltage-gated
sodium channel. The data reveal that the channel transitions between open and closed
states as shown in Figure 1B. When in the open state, Na+ ions can flow from one side of
the membrane to the other, resulting in a current across the membrane.

Given that ions have a typical diffusion constant of 1000 µm2/s, given the difference between
the sodium intracellular and extracellular concentrations shown in Figure 1C, and using a
rough guess for the radius of an ion channel, estimate the current that flows through the ion
channel when in the open state.

Recall that the charge of one monovalent ion is 1.6×10−19 C (Coulomb), and that 1 A = 1 C/s
(Ampere = Coulomb/second). Compare your estimate to the current measured in Figure 1A.
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Figure 1: Electrical current flowing through an ion channel. (A) Current flowing through a
single voltage-gated sodium channel. (B) The channel recording reveals transitions through
an open and a closed state. (C) The concentration gradient of Na+ ions across the membrane
can be used to estimate the current when the channel is open. (A, adapted from B. U. Keller
et al., J. Gen. Physiol. 88:1, 1986; B, adapted from B. Hille, Ion Channels of Excitable
Membranes. Sinauer Associates, 2001)

3 Diffusion on a microtubule

Read the great paper by Helenius et al. (provided on the course website) dissecting the
mechanism of microtubule depolymerization by the kinesin MCAK. Here, they show how
the MCAK molecular motor diffuses along the microtubule towards both ends, triggering
the depolymerization of a few tubulin dimers before falling off the microtubule.

(a) In their Figure 2b, they show the mean squared displacement of MCAK 〈x2〉 as a function
of time t. Remember that, using dimensional analysis, we concluded that 〈x2〉 = Dt, where
D is the diffusion constant (there’s a difference of a factor of two between our expression
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and the one used by Helenius et al., but we can ignore that for now). Fit the data in the
figure (provided on the course website) “by eye” in order to determine the value of D. To
make this possible, plot the expected relation between 〈x2〉 and t for different values of D
and decide which value of D better recapitulates the data.

(a, EXTRA CREDIT) Write a chi2 minimization program to determine the diffusion con-
stant. Make sure to plot the chi2 as a function of D.

(b) In their Figure 3, they argue that a diffusive mechanism can be faster than one of directed
motion on short length scales. Explain how this assertion is supported by the plot shown in
their Figure 3b, and reproduce the plot in Python.

4 Analytical solution to the diffusion equation

In class, we derived the diffusion equation in 1D given by

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
, (1)

where c(x, t) is concentration of molecules, and D is the diffusion constant. Further, in class
we solved this equation numerically by integrating its chemical master equation for an initial
condition corresponding to having N0 molecules centered at x = 0.

(a) The analytical solution to the diffusion equation under the inital conditions described
above is given by

c(x, t) =
N0√
4πDt

e−
x2

4Dt . (2)

Show that this is indeed a solution of the diffusion equation. To make this possible, plug in
the proposed c(x, t) above into the diffusion equation, do the derivatives on each side and

show that, indeed, ∂c(x,t)
∂t

is equal to D ∂2c(x,t)
∂x2

.

Remember what you learned in calculus about the product of derivatives and the chain
rule! Given a function f(x, y), you can think of the partial derivative ∂

∂x
as a measure of

the derivative as we walk along the x-direction as shown in Figure 2. Operationally, taking
a partial derivative is like taking a regular derivative: you just treat all other variables as
constants. For example, let’s define a function of x and y

f(x, y) = ax2y3. (3)

Now, we take the partial derivative with respect to x

∂f

∂x
= ay3

∂

∂x

(
x2
)
. (4)

Note that we just thought of ay3 as constants and took them out of the derivative. As a
result, we get

∂f

∂x
= ay32x. (5)
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Similarly,
∂f

∂y
= ax23y2. (6)

For more information on the partial derivative, please refer to “The Math Behind the Models:
the Partial Derivative” on page 212 of PBoC.
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Figure 2: Illustration of the concept of a partial derivative. (A) The plot shows the function
f(u1, u2) which depends upon the variables u1 and u2. If u2 is held fixed, the surface is
reduced to a curve and the partial derivative is nothing more than the ordinary derivative
familiar from calculus, but on this particular curve. (B) Planar cuts through the function
f(u1, u2).

(b) Now, let’s plot this analytical solution. Specifically, plot the concentration profile (i.e.,
concentration vs. position) for 0.01 ms, 0.1 ms, 1 ms, 5 ms and 10 ms in a single figure. Note
that we are not asking you to plot the t = 0 time point because Python won’t necessarily
know how to deal with the fact that, while the term N0√

4πDt
approaches infinity as t→ 0, the

term e−
x2

4Dt approaches 0 for the same limit. Use a typical diffusion constant for a protein in
the cell of D = 10 µm2/s. You’ll have to make reasonable choices for the model parameter
N0. Think hard about the range of x-values over which to plot this distribution and the
spacing of x-values in this range. You might note that your concentration peaks beyond
N0! This is because you’re plotting c(x, t), the concentration in an infinitesimal box of size
dx. This means that the integral

∫ +∞
−∞ c(x, t)dx = N0, indicating that the total amount of

molecules is N0. We will discuss this subtlety in class.

(c) Finally, we will check that our simulation makes sense by estimating the diffusion constant
from the plots you’ve made. How long does it take for the distribution to spread to about
0.5 µm? Is this consistent with the diffusion constant you used for your simulation? Note
that we’re not after an exact result for D, but instead are performing a sanity check to see
whether our results make sense.
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