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In the past decade, much effort has been invested in adapting 
methods for quantifying transcriptomic and epigenomic states 
on a genome-wide scale to the single-cell level. This has led to 

the development of a large number of new methods that are starting 
to make it possible to track the states of single cells across tissues 
and embryos as they are developing1–22. It is widely expected that 
these methods will revolutionize our understanding of the ways in 
which cell fate and cell identity are regulated, and large consortia 
are being formed with the aim to comprehensively chart single-cell 
landscapes in model organisms23,24.

To fulfill the promise of these single-cell measurement technolo-
gies, it will be crucial that computational methods are available to 
unambiguously determine what the raw measurements say about 
the states of individual cells. We not only want to be able to inte-
grate results of scRNA-seq measurements from different labs and 
protocols but also want to integrate scRNA-seq measurements with 
results derived from different measurement technologies, such as 
fluorescence in situ hybridization (for example, see ref. 25). To make 
this possible, expression values that we extract from scRNA-seq 
data should correspond to physically meaningful quantities that 
can be directly compared with measurements of the same quantities 
made with other experimental methods. In addition, the estimated 
values of these concrete physical quantities should follow directly 
from the experimental data with as small a number of additional 
assumptions as possible and not depend on arbitrary parameters 
that the user can set at will. Moreover, to determine when different 
measurements are mutually consistent, estimates should be accom-
panied by error bars.

However, although there has been a veritable explosion of 
scRNA-seq analysis tools in recent years, little attention has been 
given to satisfying these objectives. Instead of a few methods that 
estimate quantities with clear physical interpretation in a trans-
parent manner, scientists are faced with a large number of ad hoc 
methods that apply complex transformations to the data to perform 
combinations of tasks, including imputation/normalization, cluster-
ing, dimensionality reduction, pseudotime and trajectory inference 
and visualization. These methods often have many tunable param-

eters, produce outputs in abstract spaces that lack clear biological 
meaning and are often even stochastic, giving varying outputs when 
run on the same data with the same parameters. For example, the 
popular t-SNE26 and UMAP27 visualization tools are both stochastic 
and highly dependent on parameter settings, and position cells in a 
space whose dimensions lack biological interpretation.

Here, we focus on the basic task of normalization/imputation of 
single-cell gene expression states from raw scRNA-seq transcript 
counts. Using only minimal assumptions, we derive from first prin-
ciples a Bayesian method that corrects not only for the finite sam-
pling associated with the capture and sequencing of mRNAs but also 
for the Poisson noise inherent in the gene expression process itself. 
Our method, which we call Sanity (SAmpling-Noise-corrected 
Inference of Transcription activitY), is deterministic, has no tunable 
parameters and provides error bars for all of its estimates.

We compare Sanity with a selection of popular methods for 
imputation/normalization from the recent literature28–34 (see 
Methods) and show that only Sanity can effectively remove Poisson 
sampling fluctuations to infer the true variation in gene expres-
sion of each gene across cells. In addition, we show that all other 
methods we tested introduce severe distortions of the data, such 
as inducing strong correlations between expression estimates and 
total UMI counts of cells or inferring strong coexpression between 
large numbers of genes when none is evident in the data. Finally, we 
show that expression levels estimated by Sanity outcompete those 
of other methods in downstream analysis tasks, such as finding 
nearest-neighbor cells and clustering.

Results
Sanity’s approach, which is detailed in the Methods, is summarized 
in Fig. 1. Although it is tempting to simply consider the gene expres-
sion state of a cell to correspond to the vector of its mRNA counts, 
these mRNA counts will exhibit Poisson fluctuations from cell to 
cell, even if the rates of transcription and mRNA decay are constant 
across cells and time. We thus argue that changes in expression 
state should only reflect changes in transcription and decay rates of 
mRNAs, and should correct for intrinsic noise in gene expression. 
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The crucial insight is that even if transcription and mRNA decay 
rates vary with time in an arbitrary way in a given cell, the mRNA 
count mg of each gene g is still a Poisson sample of a single effective 
‘transcription activity’ ag, which is a weighted average of its recent 
transcription and mRNA decay rate in the cell (Fig. 1a,b). Sanity 
represents the expression state of a cell by a vector of transcription 
quotients αg corresponding to these relative transcription activities 
(Fig. 1b,c). As shown in the Methods and Supplementary Methods, 
the probability of the raw UMI counts of a cell given its transcrip-
tion quotients is a product of Poisson distributions (Fig. 1d).

To infer the log transcription quotients (LTQs) of each gene in 
each cell from the UMI counts, Sanity makes as few prior assump-
tions as possible about how LTQs might vary across genes and cells. 
In particular, it only assumes that, for each gene g, the distribution 
of its LTQs across cells can be characterized by an unknown mean 

μg and variance vg. Given this, the entire inference procedure follows 
from first principles, without any tunable parameters.

As detailed in the Methods, we use seven real and two simulated 
scRNA-seq datasets to compare Sanity’s performance with those of 
two basic normalization methods that simply log transform raw or 
normalized UMI counts (called RawCounts and TPM, respectively) 
and seven other recently proposed normalization methods (DCA28, 
Deconvolution29, MAGIC30, SAVER31, scImpute32, sctransform33  
and scVI34).

Sanity accurately corrects for Poisson fluctuations to identify 
true variance in gene expression. A key aim of Sanity’s normal-
ization is to correct for both biological and technical sampling 
noise to quantify the true biological variation in gene expression 
across cells. Testing this is challenging because the true expression  
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Fig. 1 | Summary of the Sanity approach. a, Cartoon of the flow of causality from the physical state of the cell to gene expression patterns. The 
concentrations of transcription factors (TFs), chromatin modifiers and other regulatory factors determine changes in chromatin state, three-dimensional 
(3D) organization of the chromosomes, binding and unbinding of TFs to promoters and enhancers, and so on. These determine the time-dependent rate 
λg(t) at which gene g was described a time t in the past. Similarly, the concentrations of microRNAs, RNases and other RNA-binding proteins determine 
the time-dependent rate μg(t) at which mRNAs of gene g decayed at time t in the past. b, The transcription activity ag of gene g is defined as the expected 
number of mRNAs and is a weighted average of its transcription and decay rates in the past. We define the expression state of the cell as the vector −→α  
of relative transcription activities of all genes. c, Logical flow from expression state −→α c to observed UMI counts −→n c. The expression state −→α c and total 
transcription activity Ac determine the transcription activities agc. For each gene g, the probability P(mgc∣agc) of having mgc mRNAs is a Poisson distribution 
with mean agc. Assuming each mRNA in cell c has a probability pc of being captured and sequenced, the probability P(ngc∣pc, agc) of obtaining ngc UMIs 
is a Poisson distribution with mean pcagc. d, The probability of obtaining the UMI counts −→n c given the cell state −→α c is a product over genes of Poisson 
distributions with means Ncαgc, where Nc is the total UMI count in cell c.
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variability of each gene is generally unknown. To address this 
issue, we first analyzed a carefully designed study of mouse embry-
onic stem cells (ESCs) from Grün et al.35 in which not only were 
scRNA-seq measurements taken for cells cultured in both 2i and 
serum conditions, but the same measurement protocol was applied 
to single-cell equivalent aliquots from pooled RNA. The expres-
sion variation in these aliquots thus solely derives from technical 
sampling noise. In addition, these ESCs are highly homogeneous, 
so little true expression variation is expected for ESCs in the  
same condition.

Fig. 2a shows box plots of the distributions of coefficients of vari-
ation (CVs) across genes for each of the four datasets, as calculated 
from the expression estimates of each of the normalization methods 
(except for sctransform, which does not report estimated expression 
values). Analogous results using s.d. in LTQ (which is equivalent to 
the CV when the CV is small; Supplementary Text 1) are shown in 
Supplementary Fig. 1.

Ideally, the methods should infer that there is no true variability 
at all for the aliquots and relatively little variability for the ESCs. 
However, although all methods infer that CVs are slightly larger 
in cells cultured in serum than in 2i, which is in line with a previ-
ous analysis35, most methods infer substantial variability for most 
genes. In particular, methods that do not correct for Poisson noise 
(RawCounts, TPM, Deconvolution and scImpute) infer CVs larger 
than 0.5 for the large majority of genes in both cells and aliquots. 
By contrast, the CVs that Sanity infers are at least twofold lower 
than those of all other methods, and only Sanity correctly infers that 
there is no expression variability in the aliquots, that is, with CVs 
less than 10% for almost all genes.

There is no reason to expect that CVs in expression should cor-
relate with mean expression, and, in bulk RNA-seq, there is indeed 
no correlation between mean log expression and variance in log 
expression across conditions (Supplementary Fig. 2). However, at 
the single-cell level, the intrinsic Poisson fluctuations will add a 
term 1/

√

mean to the CV, as is well appreciated in the scRNA-seq 
literature (for example, see36). Thus, systematic correlations between 
CVs and the mean of normalized expression levels reflect to what 
extent a method has failed to correct for Poisson sampling noise. 
Fig. 2b shows scatter plots of CVs against mean expression for all 
methods, and we see that, with the exception of Sanity and MAGIC, 
all other methods show a strong negative correlation between CV 
and mean, indicating that Poisson sampling noise dominates the 
observed variability for all but the most highly expressed genes. 
These observations apply to all datasets (Supplementary Fig. 3), 
including the simulated dataset that we discuss next.

To more directly test the accuracy with which different methods 
estimate the expression variance of each gene, we constructed a sim-
ulated dataset for which the true mean and variation in LTQ across 
cells is known for each gene (see Methods and Supplementary Fig. 4).  
Comparing the true CVs of genes with those inferred by each 
method (Supplementary Fig. 5) shows that only Sanity and, to a 
lesser extent, SAVER exhibit a good correlation between true and 
inferred CVs. A comparison of true and inferred variances in LTQs 
confirms this overall picture (Supplementary Fig. 6). Notably, for all 
methods except Sanity, the Poisson noise causes the inferred CVs of 
genes with low expression to be systematically higher than their true 
CVs, resulting in an almost complete loss of correlation between 
true and inferred CVs across genes for most methods. For genes 
with very low expression, the expression data are so sparse that it is 
only possible to estimate an upper bound on expression variability 
(see Supplementary Text 1), and Sanity conservatively infers that 
the true expression variability is low so that these genes will not sub-
stantially contribute to most downstream analyses.

In summary, Sanity is the only normalization method that can 
reliably correct for Poisson sampling noise to estimate the true 
expression variability of each gene.

The accuracy of gene expression estimates strongly depends 
on the depth of coverage. Gene expression measurement noise is 
expected to scale inversely proportional to absolute expression; that 
is, for a gene with 〈n〉 expected UMIs in a cell, the Poisson noise will 
cause the measured log expression log (n) of a gene to differ from 
the true log expression log (〈n〉) by a term of order 1/

√

n. We thus 
used the same simulated dataset to compare the accuracy of gene 
expression estimates of the different methods as a function of depth 
of coverage. In particular, we stratified all genes into bins accord-
ing to their absolute expression (average number of UMIs per cell) 
and calculated the accuracy of various expression estimates for each 
method and each bin (Fig. 3).

First, while most methods accurately estimate mean log expres-
sion levels for genes with at least 0.1 UMIs per cell, DCA, scVI, 
sctransform and scImpute never do (Fig. 3a). Second, although 
Sanity is essentially the only method that can accurately estimate 
the true variance in log expression levels across cells, even Sanity 
can only reliably estimate the true variance in LTQ for genes that 
have at least 1 UMI per cell on average (Fig. 3b). Third, Pearson 
correlations between true and estimated log fold changes quantify 
how accurately each method identifies in which cells a gene has 
highest and lowest expression (Fig. 3c). We observed that Pearson 
correlations systematically increase with absolute expression, with 
Sanity performing best at each expression level, followed closely by 
TPM, Deconvolution and SAVER. By contrast, the log fold changes 
predicted by MAGIC, DCA and scVI show almost no correlation 
with the true log fold changes, even for highly expressed genes, sug-
gesting that these methods systematically distort expression levels. 
However, even for the best methods, correlations are only consis-
tently high for genes with at least 1 UMI per cell and are consistently 
low for genes with less than 0.1 UMI per cell.

As discussed in Supplementary Text 1, with current capture 
efficiencies, the vast majority of genes have less than 1 UMI per 
cell (Supplementary Fig. 26). As accurate estimates of expression 
levels are only guaranteed for genes with at least 1 UMI per cell  
(Fig. 3), this implies accurate estimates of expression patterns for 
only a few hundred genes. Consequently, if it were possible to sub-
stantially raise capture and sequencing efficiencies, then the number 
of genes for which we would be able to obtain accurate expression 
estimates could be dramatically increased (Supplementary Fig. 26).

Many normalization methods introduce spurious correlations. 
Due to variations in cell size, mRNA capture efficiency and sequenc-
ing depth, the total number of UMIs can fluctuate significantly 
from cell to cell. Therefore, most scRNA-seq processing methods 
normalize expression levels for the total number of mRNAs (that is, 
UMIs) that were captured from a given cell. The simple TPM pro-
cedure does so by dividing the observed counts for each gene by the 
total UMI count of the cell, and Deconvolution accomplishes the 
same normalization using a more sophisticated approach. With the 
exception of RawCounts and scImpute, all other methods normal-
ize for total UMI count.

If the normalization for total UMI count were successful, we 
would expect no systematic correlation between inferred expression 
levels and total UMI counts across cells for most genes. However, 
this is not what we observe. For each method and gene, we calcu-
lated the Pearson correlation between the inferred log expression 
levels and log total UMI counts. Using the Zeisel dataset as an exam-
ple, Fig. 4a,b shows the distribution of Pearson correlations, as well 
as raw scatters of the normalized expression levels as a function of 
log total UMI count for one example gene (Zbed3).

As expected, because RawCounts and scImpute do not normal-
ize for total UMI count Nc, most genes show a positive correla-
tion between the inferred expression levels and log (Nc) with these 
methods. By contrast, the simple TPM method, Deconvolution 
and especially Sanity and sctransform successfully remove this  
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correlation. However, although DCA, SAVER, MAGIC and scVI 
also intend to normalize for total UMI counts, their normalized 
expression levels show even stronger correlations with log (Nc) than 
the non-normalized RawCounts. Scatters with inferred expression 

levels for the gene Zbed3 as a function of log (Nc) illustrate how dra-
matically some normalization methods transform the input data. 
The RawCounts results show that this gene has fairly low expression, 
with 0 or 1 UMIs observed in most cells, and with a slightly higher 
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chance to observe 1 or 2 UMIs when the total UMI count Nc is larger. 
However, DCA, MAGIC, SAVER and scVI completely transform 
this input data into a scatter of continuously varying expression lev-
els that either correlate negatively (DCA, SAVER, scVI) or strongly 
positively (MAGIC) with total UMI count. These observations again 
generalize to all other datasets (Supplementary Fig. 7).

In many studies, systematic analysis of coexpression of pairs of 
genes is used to identify co-regulated pathways or regulatory mod-
ules. For such applications, it is thus crucial that the pairwise corre-
lations of the expression profiles accurately reflect the coexpression 
evidence in the data. To investigate this, we calculated Pearson 
correlations of the normalized log expression levels of all pairs of 
genes and then compared these pairwise correlation coefficients 
across the various methods, using the Baron dataset as an example  
(Fig. 4c–g). The pairwise correlations by and large agree between 
Sanity and the simple TPM method (Fig. 4c), and this agreement is 
also observed for Deconvolution and sctransform (Supplementary 
Fig. 8). Although Sanity and scImpute also largely agree on which 
pairs of genes are most strongly positively or negatively correlated 
(Fig. 4d), scImpute predicts moderate positive correlations for 
many gene pairs for which Sanity predicts no correlation at all. This 
behavior results from scImpute not normalizing for total UMI count 
and is indeed also observed for RawCounts (Supplementary Fig. 8).

A very different pattern is observed for the comparison between 
Sanity and MAGIC (Fig. 4e). For many of the pairs of genes for 
which Sanity infers no coexpression (that is, zero correlation), 
MAGIC infers a broad range of correlations, running from almost 
perfect anticorrelation to perfect correlation. To further investigate 
this, we focused on a subset of 4,360 pairs of genes within the red 
rectangle of Fig. 4e for which MAGIC predicted nearly perfect cor-
relation and Sanity almost none. Summing across all 4,360 pairs of 
genes and all cells, we found that there was not a single example for 
which both genes in a pair were observed in the same cell (Fig. 4f). 
That is, although MAGIC infers that these 4,360 pairs of genes are 
almost perfectly coexpressed, none of them are ever observed to be 

present at the same time in any cell. By contrast, for the small set 
of pairs for which Sanity infers coexpression whereas MAGIC does 
not, we do generally find evidence of coexpression (Fig. 4g). This 
same pattern is observed for the comparisons of Sanity’s pairwise 
correlations with those of DCA, SAVER and scVI (Supplementary 
Fig. 9). That is, these methods all infer large numbers of highly cor-
related or anticorrelated pairs of genes, whereas there is no evidence 
at all of coexpression in the raw counts of these pairs. Consistent 
with these observations, these methods show very wide distribu-
tions of pairwise correlations on each dataset, whereas correlations 
are highly peaked around zero for Sanity, TPM, Deconvolution 
and sctransform (Supplementary Fig. 10). Moreover, although our 
simulated dataset contains no correlations by construction, DCA, 
MAGIC, scVI and to a lesser extent SAVER also predict a wide 
range of correlations on these data (Supplementary Fig. 11).

We believe that these pervasive spurious correlations result 
from the fact that these methods map the expression data 
to a lower-dimensional manifold. Indeed, if we project the 
TPM-normalized results from the simulated data on the first n 
principal component analysis (PCA) components, the amount of 
spurious correlations systematically increases with decreasing n 
(Supplementary Fig. 12). Comparison of Supplementary Figs. 11 
and 12 shows that the amount of spurious correlations in SAVER’s 
results is equivalent to projecting on the first 100−200 PCs, the first 
20−30 PCs for DCA and scVI, and the first 5−10 PCs for MAGIC.

Sanity outperforms other methods on identifying 
nearest-neighbor cells. Many downstream scRNA-seq analyses, 
including clustering and trajectory reconstruction, require estimat-
ing the distances between cells in gene expression space. In particu-
lar, many methods involve identifying the k nearest neighbors of 
each cell with the most similar expression profiles (with k typically 
in the range of 3−30). Assessing the accuracy of different methods 
in identifying nearest-neighbor cells on real data is challenging 
because it is not known which cells are truly nearest neighbors. We 
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thus created a simulated dataset in which cells are distributed along 
a tree that was constructed by performing a branched random walk 
through gene expression space, that is, setting the true LTQs of each 
cell equal to those of the previous cell plus a small random perturba-
tion to the LTQ of each gene (see Supplementary Methods).

For each method, we calculated the Euclidean distances between 
the normalized log expression vectors of all pairs of cells and 
determined the k nearest neighbors of each cell. For Sanity, we 
also estimated cell-to-cell distances using a Bayesian method that 
incorporates Sanity’s error bars, which automatically causes genes 
with large error bars ϵgc to contribute less to the distance estimate 
(Supplementary Methods). For each method, we then calculated the 
fraction of predicted k nearest neighbors that belong to the set of 
true k nearest neighbors as a function of k (Fig. 5a).

Sanity clearly performs best in identifying the k nearest neigh-
bors, but when its error bars are ignored, the performance is 
much reduced, highlighting the value of incorporating error 
bars. This reduction in performance is due to the noisy estimates 
of the LTQs of genes with low expression because, if we calculate 
distances based only on the genes with at least 1 UMI per cell on 
average, Sanity’s performance without error bars is dramatically 
improved, approaching the performance incorporating error bars 
for large k (Fig. 5b). Other normalization methods (for example, 
TPM and sctransform) also perform much better when distances 
are only estimated from genes with at least 1 UMI per cell. By con-
trast, the performance of scVI and DCA is not sensitive to exclud-
ing low-expression genes, suggesting that, for these methods, the 
expression levels of low-expression genes are effectively determined 
by the expression levels of high-expression genes. Notably, whereas 
DCA and scVI performed poorly on previous tests concerned with 
the accuracy of inferred gene expression levels, here, they are the 
best-performing methods after Sanity and also perform well at esti-
mating distances between all pairs of cells (Supplementary Figs. 13 
and 14). This shows that these methods are optimized to correctly 
estimate distances between cells at the expense of severely distorting 
the expression patterns of individual genes.

To give a visual impression of the accuracy with which differ-
ent methods are able to capture the local structure in the data, 
Supplementary Fig. 15 shows t-SNE visualizations of the matrices of 
true cell-to-cell distances and cell-to-cell distances as estimated by 
each of the methods. It is notable that, even though the data corre-
spond to a complex tree structure of 149 branches with 13 cells each, 
Sanity’s estimates of the cell-to-cell distances allow for a reasonably 
accurate reconstruction of this complex structure.

Sanity outperforms other methods on clustering cells into sub-
types. One of the main applications of scRNA-seq is to identify 
(novel) cell types, and this is generally done by clustering cells 
based on their gene expression patterns. For six of our test data
sets, the corresponding study reported an annotation of cell types, 
which was typically obtained by combining automated clustering 
with analysis of marker gene expression and hand curation using 
prior knowledge. Taking the Zeisel dataset as an example37, Fig. 5c 
visualizes the clustering structure implied by the different meth-
ods by applying the popular t-SNE algorithm26 to the normalized 
expression values of each method. Although it is well known that, 
beyond reasonably conserving which cells are nearest neighbors, it 
is difficult to interpret these visualizations, the visualization does 
suggest that there is considerable disparity between normalization 
methods. In particular, Sanity, TPM and Deconvolution appear to 
separate the cell types more reliably than MAGIC, RawCounts and 
scImpute, and similar observations can be made on the other datas-
ets (Supplementary Figs. 16–20).

Rigorously benchmarking the performance of normalization 
methods on clustering is challenging because the ground truth is 
again not known. While the provided reference annotations are likely  

reasonable, it is by no means clear that these annotations are opti-
mal. In addition, clustering performance will also depend on what 
clustering algorithm is used and even what similarity measure is 
used to compare clusterings. We thus chose to assess the qual-
ity of each normalization method by its performance across all six 
datasets using three different clustering algorithms (K-means38, 
Ward39 and Louvain40) and using four different similarity measures 
(Supplementary Methods), giving 72 comparisons of similarity 
scores across methods (Supplementary Fig. 21). To summarize these 
results, we calculated the number of times each method was the 
best-performing method (Fig. 5d). In addition, we calculated how 
close each method comes to the best-performing method across the 
72 combinations (Fig. 5e). Sanity clearly outperforms the other meth-
ods; it was the best-performing method on more than half of the com-
binations and scored close to the best-performing method on a large 
majority of combinations. TPM, Deconvolution, DCA and scVI also 
perform robustly, typically scoring within 10% of the best method.

As a final example of downstream analysis, we tested the abil-
ity of the normalized expression values to identify genes that 
are significantly upregulated in particular subtypes of cells, as 
detailed in Supplementary Text 1. Here too, we found that Sanity 
performed best, although sctransform, TPM and Deconvolution 
achieved almost equal performance, whereas MAGIC, DCA and 
scVI typically performed poorly on this task (Supplementary  
Fig. 22). Supplementary Text 1 provides additional in-depth discus-
sion of Sanity’s features and limitations, including its performance 
for genes with very low or multimodal expression (Supplementary 
Figs. 23 and 24) and how observed absolute expression distributions 
(Supplementary Fig. 25) and sequencing depth determine the accu-
racy of expression estimates across genes (Supplementary Fig. 26).

Discussion
In this work we developed a new normalization procedure for 
scRNA-seq data from first principles using only two basic assump-
tions. First, we characterize a cell’s gene expression state by the vec-
tor of LTQs across genes, that is, the logarithms of the expected 
fractions of the transcript pool for each gene. Second, to estimate 
these LTQs from the raw UMI count data, we characterize the 
prior distribution of LTQs of each gene only by its mean and vari-
ance across cells. Given these two assumptions, the entire proce-
dure follows from first principles without any tunable parameters 
and returns estimated LTQs that correct both for the Poisson noise 
that is intrinsic to the process of transcription and for the sampling 
noise of the scRNA-seq measurements. Consequently, variation in 
the inferred LTQs reflects changes in the rates of transcription and 
mRNA decay of each gene.

Although our procedure makes only minimal assumptions, one 
may still ask how arbitrary these assumptions are. If one accepts that 
biological and technical sampling noise do not reflect changes in 
gene expression state, that expression changes should be measured 
in terms of fold changes rather than absolute changes and that res-
caling the expression levels of all genes by a common factor does not 
change expression state, then LTQs naturally follow as the most gen-
eral representation of a cell’s expression state. Similarly, our prior 
distribution over LTQs of a gene also aims to minimize the strength 
of our method’s assumptions by using the least-assuming (that is, 
maximum entropy) distribution consistent with a given mean and 
variance. Improving on these assumptions would require specific 
biological information to determine more informative priors on the 
gene expression states that cells can take on.

Our benchmarking tests indicate that Sanity’s normalized 
expression values outperform those of other methods on basic 
downstream processing tasks, such as clustering cells into subtypes 
and identifying nearest-neighbor cells. More importantly, we show 
that all other methods produce a representation of the data that is 
distorted in one or more respects.
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The simple TPM and closely related Deconvolution methods pro-
duce representations of the data that are generally reasonable and 
perform quite well on downstream tasks, such as clustering and iden-
tification of differentially expressed genes. The main problem with 
the TPM method is that the variation in normalized expression levels 
is dominated by Poisson fluctuations for most genes and that genes 
with low expression are predicted to be the most variable, whereas 
in reality these have the least evidence of true variability. This also 
causes the TPM and Deconvolution methods to perform poorly in 
identifying nearest-neighbor cells, although this can be mitigated to 

some extent by only considering highly expressed genes. The simple 
RawCounts method and the similarly performing scImpute method 
suffer from these same problems, and additionally have the problem 
of not correcting for variation in total UMI count across cells.

The sctransform method outputs z-statistics rather than gene 
expression estimates. Although this has some advantages (for exam-
ple, the method performs well in identifying differentially expressed 
genes), the clear drawback is that it cannot accurately predict log 
fold changes in expression levels and performs quite poorly in iden-
tifying nearest-neighbor cells.
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The sophisticated scVI and DCA methods that use autoencod-
ers to map the data to a low-dimensional manifold perform well on 
estimating distances between cells but do this at the cost of strongly 
distorting the expression levels of individual genes. These meth-
ods poorly estimate log fold changes of genes across cells, produce 
strong artifactual correlations of the normalized expression values 
with the total UMI count in each cell and spuriously predict large 
numbers of coexpressed genes. Although SAVER performs better in 
estimating the variances and log fold changes of genes across cells, 
it suffers from the same spurious prediction of correlations as does 
MAGIC, which, in our hands, performed poorly on most tests.

The fact that such spurious correlations are also induced when 
the TPM-normalized expression values are projected onto the top 
PCA components suggests that they generically result from fit-
ting the data to a lower-dimensional representation. Although 
it is reasonable to assume that the space of gene expression states 
that cells take on has much lower dimensionality than the full 
dimensionality of the transcriptomic data, the task of finding such 
lower-dimensional representations should be clearly distinguished 
from normalization and noise correction. Because Poisson sam-
pling noise scales with absolute expression levels, different genes 
and cells are affected to different extents, and this may be errone-
ously mistaken for ‘structure’ in the data. Thus, unless the process of 
noise removal and normalization is carefully separated from fitting 
of the data to lower-dimensional representations, artifactual corre-
lations are likely to be introduced.

Finding biologically meaningful lower-dimensional representa-
tions of genome-wide gene expression states is one of the most impor-
tant challenges in the field. However, it is likely a very hard problem 
in general, and it is unclear to us whether the problem is even solv-
able with current data. For example, we are not aware of mathemati-
cal results that show under what conditions a lower-dimensional 
manifold embedded in a very high-dimensional space can be reli-
ably reconstructed from a limited number of noisy measurements. 
We believe that rather than black box procedures for dimensionality 
reduction, progress in understanding the genome-wide structure of 
expression data will crucially depend on connecting transcriptomic 
data to the underlying biophysical mechanisms (for example, the 
dynamics of the chromosome, chromatin accessibility at enhancers 
and promoters, the binding and unbinding of transcription factors, 
recruitment of the transcriptional machinery and the mechanisms of 
transcription initiation). However, whatever approach is taken to find-
ing lower-dimensional representations of gene expression states, a pre-
requisite is that the raw data are carefully normalized and corrected for 
both biological and technical sampling noise. The Sanity method that 
we present here aims to provide such a normalization methodology.
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Methods
A Bayesian method for inferring gene expression states from count data. After 
motivating how we represent gene expression states of single cells and to what 
concrete physical quantities these gene expression states correspond, we introduce 
our probabilistic model of an scRNA-seq experiment and calculate the probabilities 
of the observed raw transcript counts as a function of each cell’s expression state. 
We then explain the Bayesian procedure by which the gene expression states are 
inferred from the sequencing data and the outputs that the method provides. 
Additional discussion of the properties and limitations of Sanity’s model are 
provided in Supplementary Text 1, including a discussion of how Sanity can be 
used to correct for technical batch effects.

Defining gene expression states. For any given cell c, we want to represent its  
‘gene expression state’ by a vector ⃗ec, whose components egc quantify how  
strongly each gene g is expressed. These gene expression states should satisfy  
two basic desiderata. First, gene expression states should have a concrete  
physical interpretation. Second, for each gene g, the difference egc − egc′  
should meaningfully reflect the change in its expression between cells c and c′.

One might think that we could simply take the vector −→mc of the actual number 
of mRNAs mgc that exist in cell c for each gene g as the gene expression state of the 
cell. However, the gene expression process is inherently stochastic due to thermal 
noise and the low molecule numbers involved; for example, there are only 1 to 2 
copies of each promoter in a given cell, causing mRNA counts to fluctuate even 
between cells that are in the same state. To illustrate this, let us imagine a gene that 
is transcribed at a constant rate λ and whose mRNAs decay at a constant rate μ in 
every cell. This is the closest that one can come to having no variation in expression 
state across cells. However, even in this case, the actual number of mRNAs m for 
this gene will fluctuate across cells according to a Poisson distribution with mean 
a = λ/μ. That is, the probability of finding m mRNAs is Pm = ame−a/m!, which has 
mean 〈m〉 = a and variance var(m) = a. Thus, instead of interpreting any change 
in mRNA number m as a change in gene expression state, it makes more sense to 
identify changes in gene expression state with changes in the transcription and 
decay rates λ and μ, respectively.

In general, for a given gene g in a given cell, the transcription rate λg and decay 
rate μg of its mRNAs will vary with time t in a potentially complex manner. As 
illustrated in Fig. 1a, a large array of different biophysical processes can affect the 
transcription rate of a given gene, including changes in the chromatin state around 
its locus, the binding and unbinding of TFs to promoters and enhancers, changes 
in the 3D organization of the chromosome and so on. Together, these processes 
will determine a time-dependent transcription rate λg(t). Similarly, the rate μg(t) 
at which mRNAs for gene g decay will depend on the concentrations of RNases, 
microRNAs, various RNA-binding proteins and so on. If, at some point in time, 
cell c is sampled and its mRNAs are extracted, then the number of mRNAs mgc that 
one finds for gene g will depend on what the transcription rate λg(t) and decay rate 
μg(t) were in the recent past of this cell.

In particular, if we denote the time point at which the cell is sampled as t = 0 
and denote by λg(t) and μg(t) the transcription and decay rates at a time t in the past 
of the cell, then the expected number of mRNAs 〈mgc〉 is given by

⟨mgc⟩ =

∫

∞

0
λgc(t) exp

[

−

∫ t

0
μgc(τ)dτ

]

dt ≡ agc (1)

We call agc the transcription activity of gene g in cell c (Fig. 1b). Note that agc is a 
weighted average of the transcription rates in the past of the cell, where the weights 
correspond to the probability that an mRNA that was described a time t in the past 
has survived until now.

Crucially, independent of how λgc(t) and μgc(t) have fluctuated in time, the 
probability of seeing mgc mRNAs for gene g in cell c is still given by a Poisson 
distribution with mean agc (ref. 41) (Fig. 1c); that is:

P(mgc|agc) =
(agc)mgc

mgc!
e−agc (2)

Thus, independent of how λgc(t) and μgc(t) have fluctuated in the cell’s past, the 
number of mRNAs mgc depends on these rates only through transcription activity 
agc. Vice versa, all information about the time-dependent rates λg(t) and μg(t) 
that is contained in measurements of mRNA counts in cell c is contained in the 
transcription activities agc for each gene. Thus, we propose to characterize the 
expression state of a cell by the vector ⃗ac of its transcription activities. Note that, as 
discussed in Supplementary Text 1, it is, in principle, possible to learn more about 
the functions λgc(t) and μgc(t) by also incorporating information from intronic 
UMIs of each gene g (for example, as done in the RNA velocity approach42,43). 
Although this is an interesting direction for future extensions of Sanity, here, we do 
not yet incorporate information from intronic UMIs.

Next, we propose that, rather than directly representing the gene expression 
state of the cell by the vector ⃗ac of absolute transcription activities agc, it is 
beneficial to use the vector α⃗c of relative transcription activities, defined as

αgc =
agc

∑

g′ag′c
, (3)

which we will refer to as transcription quotients and which correspond to the 
expected proportions of mRNAs in the cell (Fig. 1b). First, it has been shown 
that as cell volume increases, cells globally upregulate transcription to maintain 
approximately constant mRNA concentrations44 so that transcriptional activities agc 
of all genes are generally expected to scale with cell volume. We argue that a global 
change in transcriptional activities by a common scale factor S, that is, agc → Sagc 
for all genes, does not correspond to a change in gene expression state but just to a 
change in cell size. Second, it is well known that in current scRNA-seq protocols, 
the rate of capture and sequencing of mRNAs varies significantly across cells35,45 
so that there is only a weak quantitative relationship between the total number of 
sequenced mRNA molecules and the true total mRNA content of a cell. Although 
it is possible to estimate capture and sequencing efficiencies, at least to some 
extent, using RNA spike-in controls35,36, most experiments are performed without 
such controls. Therefore, for most scRNA-seq datasets, it is unclear to what extent 
variations in total sequenced mRNAs across cells represent biological variability 
as opposed to technical variability. Consequently, transcription quotients αgc can 
generally be much more accurately estimated than absolute transcription activities 
agc because they do not directly depend on capture efficiency. Note that quantifying 
gene expression by quotients (that is, transcripts per million transcripts) is also the 
standard approach in bulk RNA-seq experiments.

Finally, we note that if we were to use differences in transcription quotients of 
mRNAs αgc − αgc′ to quantify the change in expression of gene g between cells c 
and c′, then this change would be proportional to the overall expression level of the 
gene. That is, a change from 20 to 40 transcripts per million would be considered 
ten times as large as a change from 2 to 4 transcripts per million. Since the early 
days of transcriptomics it has been observed46 that, as would be expected from the 
multiplicative effects of fluctuations in rates of various biochemical reactions47, 
the relative expression levels of genes in a sample follow a roughly log-normal 
distribution that covers several orders of magnitude, and the variance in absolute 
expression of a gene across conditions scales with the square of its means 
expression (Supplementary Fig. 2). Consequently, if we were to quantify expression 
changes directly by the changes αgc − αgc′, the expression changes between two 
cells would be dominated by those of the most highly expressed genes. Therefore, 
it has long become standard to instead use logarithms of expression levels. Indeed, 
in bulk RNA-seq experiments, one also generally finds that the variance in log 
expression of a gene across conditions is uncorrelated with its mean expression 
(Supplementary Fig. 2).

Thus, we propose to quantify the gene expression state of a cell by LTQs 
log (αgc) so that an x-fold change in quotient αgc → αgc′ = xαgc corresponds to the 
same additive change log (αgc) → log (αgc) + log (x) in LTQ independent of the 
absolute value of the quotient αgc.

To define an overall change in expression state between two cells, we still  
have to combine the changes in LTQ of all genes into a total ‘distance’. As  
motivated in more detail in Supplementary Text 1, we will follow the generally 
accepted practice of calculating simple Euclidean distances in the space of LTQ 
vectors, that is, the squared distance d2cc′ between a pair of cells c and c′ is  
defined as

d2cc′ =
∑

g

[

log (αgc) − log (αgc′ )
]2 (4)

A probabilistic model for a scRNA-seq experiment. The initial steps of scRNA-seq 
analysis involve basic processing of the raw sequencing reads, such as quality 
control, identification of barcodes to identify the library, the individual cell 
and the unique mRNA molecule (if available), and mapping each read to the 
corresponding genome or transcriptome. The methods used in these steps are 
similar to methods used for bulk RNA-seq and ChIP–seq and have matured to the 
point that there is little variability in the results from commonly used tools (for 
example, see48–51).

The introduction of UMIs52 was an important development in scRNA-seq 
technology in that it avoids PCR amplification noise and allows for the 
determination of the number of unique mRNA molecules that were captured for 
each gene. It is currently unclear how to realistically model the noise statistics of 
protocols that do not incorporate UMIs, and we will here focus on scRNA-seq 
protocols that use UMIs.

After basic processing of the raw sequences, the data will consist of a matrix 
of integers ngc, giving the number of captured mRNA molecules for each gene g in 
each cell c. The key assumption of our probabilistic model is that in an scRNA-seq 
experiment, each mRNA molecule in a given cell c has the same probability pc to 
be captured and sequenced. This capture probability varies from cell to cell and 
has been estimated to be in the range of 10% to 15% (ref. 53) and up to 30% with 
most recent protocols54. Under this assumption, the probability of the observed 
UMI counts ngc in cell c given the transcription quotients αgc is given by a product 
of Poisson distributions (Fig. 1c and Supplementary Methods). Finally, if we 
marginalize over the unknown capture efficiency pc, we obtain (see Supplementary 
Methods)

P(⃗nc |⃗αc) =
∏

g

[

(

Ncαgc
)ngc

ngc!
e−Ncαgc

]

(5)
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where ⃗nc is the vector of UMI counts in cell c, α⃗c is the vector of transcription 
quotients in cell c and Nc is the total number of UMIs in cell c (Fig. 1d). Crucially, 
the convolution of the biological Poisson noise and the sampling noise introduced 
by the scRNA-seq measurement together still lead to a simple Poisson distribution 
in terms of the transcription quotients αgc (Supplementary Methods).

Prior probabilities and the Bayesian solution. Having argued that we want to 
characterize each cell’s gene expression state by the vector of LTQs log (αgc) 
and having determined how likely it is to observe UMI counts n⃗c given the 
transcription quotients α⃗c (that is, equation (5)), we now want to invert this 
relation and estimate the LTQs from the observed UMI counts. The uniquely 
consistent set of mathematical procedures for doing this is generally referred to as 
Bayesian probability theory55.

This calculation requires that we specify a prior probability distribution that 
represents the prior information we want to assume about how LTQs may vary 
across cells before obtaining expression data. As we aim to minimize the number 
of assumptions, our model will not assume any dependence structure between the 
LTQs of different genes, that is, we will not assume a priori that the gene expression 
data derive from a low-dimensional manifold. We will also not assume that the 
LTQs of a gene across cells follow a particular distribution. The only thing that we 
will assume is that for each gene, the prior distribution of LTQs log (αgc) can be 
characterized by its mean μg and variance vg.

Without loss of generality, we rewrite the transcription quotients αgc in 
terms of an average log quotient μg and cell-specific log fold changes δgc, that 
is, αgc = eμg+δgc. With this reparametrization, the δgc values derive from a prior 
probability distribution with mean zero and variance vg. Given that we only 
specify the variance of the distribution of the δgc to be vg, this implies that the prior 
corresponds to the maximum entropy distribution consistent with this constraint, 
which is a Gaussian distribution55. Importantly, this does not mean that we 
assume that the log fold changes δgc follow a Gaussian distribution. Indeed, as we 
demonstrate in Supplementary Text 1, the δgc values that our method infers upon 
seeing the data do not necessarily follow Gaussian distributions. For example, 
if a gene is bimodally distributed, the method correctly infers this in general 
(Supplementary Fig. 23).

In the Supplementary Methods, we show in detail how this model can be solved 
to estimate the following for each gene g:

	1.	 The mean LTQ μg and its error bar δμg

	2.	 The variance vg of the changes in LTQs δgc across cells
	3.	 For each cell c, the log fold changes δ∗

gc and an error bar ϵgc on each  
of these.

Note that the δ∗

gc values provide estimates for how much the transcription and 
decay rates of each gene g in cell c differ from their average rates and thus correct 
for both the intrinsic biological Poisson fluctuations as well as the finite sampling 
fluctuations inherent in scRNA-seq measurements.

Other methods for scRNA-seq normalization. To assess the performance of 
Sanity, we compared it to a number of other methods for normalization/imputation 
from scRNA-seq data. Here we introduce these other methods and highlight  
the ways in which their approaches differ from Sanity’s. Apart from tools  
from the recent literature, we include two basic normalization procedures  
that are widely used. First, the simplest approach to estimating gene expression 
levels egc from scRNA-seq data is to simply log transform the observed number  
of UMIs ngc after adding a pseudocount p to avoid problems with zero counts 
ngc = 0, that is,

egc = log (ngc + p) (6)

A typical choice for the pseudocount is p = 1 because it attenuates fluctuations in 
ngc on the order of magnitude corresponding to the resolution of the experimental 
measurements. We refer to this normalization with p = 1 as the RawCounts 
normalization because it essentially just log transforms the raw UMI counts.

However, the total number Nc of mRNAs captured and sequenced from an 
individual cell c can vary substantially due to fluctuations in capture efficiency and 
sequencing depth as well as differences in cell size. Consequently, the RawCounts 
procedure introduces systematic correlations between the expression levels egc 
and the total number of UMIs Nc that were sequenced from cell c. Thus, the most 
commonly used normalization approach is to first divide the raw UMI counts ngc 
by the total count Nc and then multiply by a typical total count N before adding a 
pseudocount and log transforming, that is,

egc = log
[ ngc
Nc

N + 1
]

(7)

Here, we take for the typical total count N the median of the counts Nc across all 
cells. In a slight abuse of terminology, we will call this normalization the TPM 
normalization because of its close connection to the transcripts per million 
normalization used in bulk RNA-seq (which corresponds to setting N = 106).

Given the definition of the LTQs as logarithms of relative expression levels, a 
reader may wonder how our approach is different even from this standard TPM 

procedure. Indeed, for a cell with total count Nc and LTQs log (αgc) = μg + δgc, the  
expected number of UMIs is

⟨ngc⟩ = Nceμg+δgc (8)

This might suggest that if we simply divide ngc by Nc and log transform the result, 
we would end up with the LTQ μg + δgc. However, the actual UMI counts ngc are 
not the same as the expectations 〈ngc〉. That is, the ngc are measured quantities that 
contain Poisson noise due to both the intrinsic stochasticity of gene expression and 
the measurement process. Importantly, instead of ngc differing from 〈ngc〉 by noise 
of a constant size, the size of the Poisson noise depends on the expected count 〈ngc〉 
itself. In addition, because UMI counts ngc are very small for most genes, the noise 
is typically larger than the true variation in LTQ across cells. Therefore, to estimate 
the LTQ of each gene in each cell, it is crucial to account for this Poisson noise, and 
this is one of Sanity’s main aims.

Beyond the simple RawCount and TPM normalization methods, we compare 
Sanity’s performance with those of the following recently published tools:

	1.	 DCA28, which uses an autoencoder based on deep learning together with a 
zero-inflated negative binomial noise model

	2.	 Deconvolution29, which is similar to the TPM method but uses a more 
sophisticated approach to normalize for the variation in sequencing depth 
across cells

	3.	 MAGIC30, which uses diffusion of measured gene expression states between 
cells with similar expression profiles

	4.	 SAVER31, which assumes negative binomial count distributions ngc and  
models the underlying rates using Poisson LASSO regression with the  
expression levels of other genes

	5.	 scImpute32, which focuses mainly on correcting ‘dropouts’, that is, data points 
for which ngc = 0

	6.	 sctransform33, which uses regularized negative binomial regression and 
reports Pearson residuals of this regression rather than estimated expression 
values

	7.	 scVI34, which uses an autoencoder based on deep neural networks together 
with a zero-inflated negative binomial noise model

Note that, with the exception of RawCounts and scImpute, all these methods 
seek to normalize the expression levels for the total UMI count per cell. In contrast 
to Sanity, RawCounts, TPM and Deconvolution, all other methods seek to remove 
noise by fitting the data to lower-dimensional representations. Specifically, in 
SAVER and sctransform, the parameters of each gene’s negative binomial model 
are fitted by using information from other genes; in scImpute, zero values are 
corrected for by using information from neighboring cells; in MAGIC, the entire 
expression profile of each cell is estimated using information of neighboring cells 
and in DCA and scVI the autoencoders effectively force a lower-dimensional 
representation of the distribution of cells in gene expression space.

Many of the models above use a negative binomial or zero-inflated negative 
binomial to model the distribution of UMI counts of a gene across cells, and 
the reader may wonder how Sanity’s noise model relates to these models. In 
Supplementary Text 1, we explain why, as discussed recently56, no zero inflation 
is necessary and discuss the relationship of Sanity’s model with negative binomial 
noise models.

We used default parameters for all methods except for scVI, where we adapted 
settings based on direct feedback from the scVI developers (the default parameter 
n_epochs=20 was increased to 400, and we used the recently added get_sample_
scale instead of the imputation method to get predicted expression values).

Because all methods report expression values in linear space, we log 
transformed all expression values. MAGIC sometimes reports 0 or even negative 
values and, as suggested by its developers, we first set all negative values to 0 and 
then added a pseudocount of 1 to all expression values (including the non-zero 
ones) before log transforming. Similarly, scImpute reports some zero values, and 
we added a pseudocount of 1 to all the expression values.

Directly comparing the results of sctransform with those of the other methods 
is complicated by the fact that, in contrast to all other methods, sctransform does 
not provide estimated gene expression values but z-statistics zgc that quantify 
how significantly the expression of gene g in cell c deviates from what would 
be expected from the negative binomial model. The authors of the sctransform 
paper suggest that these z-statistics should be used for downstream analyses. 
Because the z-statistics are variance normalized and centered around zero, we use 
the z-statistic zgc equivalently to the log fold changes δgc. Finally, in the negative 
binomial fit, sctransform fits the expected mean log expression μgc of gene g in cell 
c to a function of the form μgc = β0 + β1log (Nc), with Nc representing the total 
UMI count of cell c. To calculate a predicted average expression for gene g, we use 
μg = β0 + β1log (N), with N representing the median total UMI count.

Test datasets. To assess the performance of the different methods, we used 
a collection of datasets for which annotation of the sequenced cell types was 
available. These were (labeled by the first author of the publication):

	1.	 Grün: 160 mouse ESCs and 160 corresponding aliquots consisting of 80 cells 
from culture in 2i medium, 80 cells from culture in serum and 80 aliquots for 
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each condition that were created by pooling RNA from the cells and splitting 
the pool into single-cell mRNA equivalents35

	2.	 Zeisel: 3,005 cells from the somatosensory cortex and from the CA1 region of 
the mouse hippocampus annotated into seven cell types37

	3.	 Baron: 1,937 human pancreatic cells annotated into 14 cell types57

	4.	 Chen: 14,437 adult mouse hypothalamus cells annotated into 15 clusters58

	5.	 Three datasets from LaManno59: 
	(a)	� LaManno/Embryo: 1,977 ventral midbrain cells from human embryo 

annotated into 25 classes
	(b)	 LaManno/ES: 1,715 human ESCs annotated into 17 classes
	(c)	� LaManno/MouseEmbryo: 1,907 ventral midbrain cells from mouse 

embryos annotated into 26 classes
In addition to these real datasets, we also constructed two simulated datasets, as 

detailed in the Supplementary Methods. The distributions of means and variances 
in log expression as well as the distribution of total UMI count per cell were chosen 
so as to mimic the statistics of an arbitrarily chosen real dataset, for which we 
chose the Baron dataset (see Supplementary Fig. 4). In the first simulated dataset, 
the expression profiles of all genes were drawn randomly and independently so 
that there were no expression correlations by construction. We used this dataset 
to test the ability of different methods to correctly estimate true means, variances 
and log fold changes in the expression of each gene and to assess the extent to 
which different methods spuriously predicted coexpression of genes. The second 
simulated dataset was constructed by performing a branched random walk in the 
high-dimensional gene expression space so that the true expression profiles of the 
cells fall on a tree. We used this dataset to test the ability of different methods to 
identify the k nearest-neighbor cells of each cell.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw UMI count tables for each of the scRNA-seq datasets as well as all 
normalized expression values as inferred by each of the methods are freely available 
from https://doi.org/10.5281/zenodo.4009187.

Code availability
Sanity was implemented in C and is freely available for download at https://github.
com/jmbreda/Sanity. Besides Sanity itself, we also provide code for estimating 
pairwise distances between cells. In addition, at the same GitHub site, we provide a 
collection of scripts and supplementary files that should allow other researchers to 
reproduce the results presented in this publication.
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