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Abstract13

Despite the sequencing revolution, large swaths of the genomes sequenced to date lack any14

information about the arrangement of transcription factor binding sites on regulatory DNA.15

Massively Parallel Reporter Assays (MPRAs) have the potential to dramatically accelerate our16

genomic annotations by making it possible to measure the gene expression levels driven by17

thousands of mutational variants of a regulatory region. However, the interpretation of such data18

often assumes that each base pair in a regulatory sequence contributes independently to gene19

expression. To enable the analysis of this data in a manner that accounts for possible20

correlations between distant bases along a regulatory sequence, we developed the Deep learning21

Adaptable Regulatory Sequence Identifier (DARSI). This convolutional neural network leverages22

MPRA data to predict gene expression levels directly from raw regulatory DNA sequences. By23

harnessing this predictive capacity, DARSI systematically identifies transcription factor binding24

sites within regulatory regions at single-base pair resolution. To validate its predictions, we25

benchmarked DARSI against curated databases, confirming its accuracy in predicting26

transcription factor binding sites. Additionally, DARSI predicted novel unmapped binding sites,27

paving the way for future experimental efforts to confirm the existence of these binding sites and28

to identify the transcription factors that target those sites. Thus, by automating and improving29

the annotation of regulatory regions, DARSI generates experimentally actionable predictions that30

can feed iterations of the theory-experiment cycle aimed at reaching a predictive understanding31

of transcriptional control.32

33

Introduction34

A central challenge in biology is to accurately predict gene regulatory programs and their functions35

from knowledge of genome sequences (Pennacchio et al., 2013; Phillips et al., 2019; Bintu et al.,36

2005). These programs are governed, in large part, by DNA regulatory regions containing bind-37

ing sites for transcription factors. These proteins interact with the transcriptional machinery to38
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modulate gene expression by enhancing or repressing transcription.39

Achieving such predictive understanding of transcriptional regulation requires addressing two40

key challenges: (i) identifying and characterizing transcription factor binding sites within regula-41

tory regions and (ii) integrating this knowledge into theoretical models capable of quantitatively42

predicting how the number, placement and affinity of these binding sites dictate gene expression43

(Stormo, 2000; Phillips et al., 2019; Bintu et al., 2005). Thus, the foundational step toward predict-44

ing the regulatory outcomes encoded by DNA regulatory regions involves determining the location45

and identity of transcription factor binding sites.46

Despite the key need to map transcription factor binding sites in regulatory regions, our ability47

to accurately identify these sites is still lacking (Minchin and Busby, 2009; Santos-Zavaleta et al.,48

2018). For instance, in the bacterium Escherichia coli, one of the most thoroughly studied model or-49

ganisms, binding sites regulating only about 33% of genes have been mapped to date (Tierrafría50

et al., 2022; Ireland et al., 2020; Santos-Zavaleta et al., 2018). While some genes may not be51

transcriptionally regulated and thus lack transcription factor binding sites, this figure more likely52

reflects the limited number of detailed case studies conducted so far. The challenge is even more53

pronounced in multicellular organisms, such as the fruit fly Drosophila melanogaster, where regu-54

latory networks are considerably more intricate and less well characterized (Keränen et al., 2022).55

Classic approaches for finding and validating binding sites within regulatory regions are typi-56

cally manual and, therefore, low-throughput. Specifically, these approaches rely on the creation of57

reporter constructs where suspected binding sites are mutagenized. By correlating DNA sequence58

with the resulting reporter expression level, transcription factor binding sites can be validated. As59

a result of the low-throughput nature of this pipeline, the binding sites controlling only a handful60

of genes in model organisms have been mapped in detail (e.g., Müller-Hill (1996); Schleif (2003);61

Ptashne (2004);Weickert and Adhya (1993); Levine (2010)).62

Massively Parallel Reporter Assays (MPRAs) have recently emerged as a powerful tool for map-63

ping regulatory sequences (Patwardhan et al., 2009; Kinney et al., 2010; Patwardhan et al., 2012;64

Melnikov et al., 2012; Kwasnieski et al., 2012; Kreimer et al., 2022; Zheng and VanDusen, 2023; Ire-65

land et al., 2020; Belliveau et al., 2018). These assays involve synthesizing a large library (>1,000s)66

of mutagenized variants of a regulatory region and incorporating them into plasmids (Fig. 1A,B).67

The plasmid library is then transfected into cells, where, after cell lysis, gene expression levels for68

each variant are measured in high-throughput using sequencing (Fig. 1C,D).69

By linking the sequences of these mutated regulatory regions to their corresponding gene ex-70

pression levels (Fig.1E), MPRAs allow for the identification of positions within the sequence that71

influence gene expression when mutated. As illustrated in Figure 1F, this approach makes it possi-72

ble to pinpoint transcription factor binding sites in uncharacterized regulatory regions: mutations73

in activator binding sites typically decrease gene expression, whereas mutations in repressor bind-74

ing sites tend to increase expression (Ireland et al., 2020; Belliveau et al., 2018).75

While MPRAs have significantly advanced the study of regulatory sequences (Kreimer et al.,76

2022; Zheng and VanDusen, 2023), key challenges remain in systematically analyzing the resulting77

datasets to reveal transcription factor binding sites. For example, an important potential limitation78

lies in the reliance of these analyses on metrics such as gene expression sensitivity to mutation79

(Fig. 1F) ormutual information between gene expression and base pair identity (Kinney et al., 2010;80

Ireland et al., 2020). These measures often assume that base pairs contribute independently to81

gene expression: because these metrics evaluate the impact of mutations at specific positions by82

effectively averaging their effects across all other positions in the sequence, they potentially ignore83
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Figure 1. Schematic example of a massively parallel reporter assay to dissect regulatory regions in E.
coli. (A) A library of mutated versions of a previously uncharted regulatory sequence is synthesized. (B) Eachsequence is barcoded and incorporated into constructs that drive the expression of a reporter gene, forminga plasmid library. (C) The plasmid library is transformed into cultured cells such as E. coli. (D) After cell lysis,the reporter mRNA is extracted and quantified by sequencing. (E) An illustrative example showing thecorrelation between the regulatory sequence variants and their corresponding gene expression levels. (F)These data make it possible to capture the shift in gene expression upon mutagenesis of each base pair alongthe sequence, leading to the identification of activator and repressor binding sites.

nucleotide interactions within the regulatory sequence.84

In this study, we address the challenges of finding binding sites and developing predictive mod-85

els in a manner that can account for potential spatial correlations along DNA sequences by intro-86

ducing a novel computational framework, the Deep Learning Adaptive Regulatory Sequence Identi-87

fier (DARSI). DARSI capitalizes on recent advancements in convolutional neural networks and deep88

learning (Alzubaidi et al., 2021; LeCun et al., 2015; Park and Kellis, 2015; de Almeida et al., 2022;89

Avsec et al., 2021a; Kelley et al., 2018; Zrimec et al., 2021) to capture nucleotide interactions dis-90

tributed throughout the sequences assayed by MPRAs. DARSI makes it possible to predict gene91

expression levels—albeit these levels are discretized—from raw regulatory sequences without re-92

lying on prior knowledge of the underlying regulatory architecture.93

The predictive power enabled by DARSI, although far from the predictive understanding we ul-94

timately seek through physical models (Barnes et al., 2019; Kinney et al., 2010; Belliveau et al.,95

2018; Tareen et al., 2022; Pan et al., 2024; Lagator et al., 2022), makes it possible to obtain detailed96

insights into the number and spatial arrangement of transcription factor binding sites within reg-97

ulatory sequences. Hypothesized binding sites are identified through the integration of saliency98

mapping techniques—akin to an in silicomutagenesis experiment—which allow us to interpret the99

impact of specific nucleotide sequence changes on gene expression outcomes.100

We applied DARSI to MPRA data from 95 operons in E. coli published by Ireland et al. (2020).101

First, we demonstrate that the trained networks achieve an average accuracy of ∼80% in predicting102

the expression levels of the reporter gene directly from the raw sequences. Building on this pre-103

dictive power, we show that the networks can be leveraged to identify transcription factor binding104

sites. Specifically, DARSI identified over 170 binding sites, including more than 88% of the pre-105

viously mapped sites (Tierrafría et al., 2022), and uncovered 73 new hypothesized binding sites106
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across these operons. Thus, we demonstrate that the convolutional neural network architecture107

within DARSI can be used to augment analyses of gene expression MRPA data to both achieve108

predictive power and identify binding sites that can guide further experiments.109

Results110

DARSI: A Convolutional Neural Network for Gene Expression Prediction fromMPRA111

Data112

To reach predictive power over regulatory regions and capture correlations between nucleotides113

fromMPRAdata, wedeveloped a convolutional neural network. The convolutional filterswithin this114

network are capable of modeling interactions between distant base pairs (Alipanahi et al., 2015),115

potentially making it possible to identify regulatory features that span different regions of the DNA116

sequence. The network takes as input sequence variants of a given operon and corresponding117

expression levels of the reporter gene. The architecture we converged on after optimization (see118

“DARSI Architecture and Training” section of the Supplementary Information) consists of 12 layers119

and is similar to previously established models in the field (Avsec et al., 2021a,b; Alipanahi et al.,120

2015).121

As a case study, we utilized data from a recent MPRA study conducted by Ireland et al. (2020)122

in E. coli. This work dissected the regulatory information of 114 bacterial operons by randomly mu-123

tating a 160 bp region upstream of the transcription start site of each operon at a mutation rate of124

10%. This process generated a dataset akin to that featured in the schematic shown in Figure 2A125

that correlates sequence and gene expression. To ensure sufficient coverage of mutations, we se-126

lected operons with at least 1,000 sequence variants. This number guaranteed that, for every base127

pair along the sequence, our dataset contained at least 100 sequence variants in which that base128

pair is mutated. We further cross-referenced all sequences with the annotated E. coli genome avail-129

able on EcoCyc (Moore et al., 2024) to verify that the sequences encompassed regions upstream of130

the genes. The lower bound used for number of variants and the cross-validation of the data with131

annotated databases reduced the dataset to 95mutagenized operons, each originating from E. coli132

colonies cultivated in LB medium. Across the 95 operons, the mean number of unique sequences133

per operon is 2083±960, with 847±193 unique barcodes per operon. This results in an overall mean134

of 8313± 3228 sequence variants across all operons. The sequence data for each operon served as135

input to the network, while discretized normalized mRNA counts (described below) were used as136

the output. A separate convolutional neural network was trained for each operon, resulting in a137

total of 95 independently trained networks.138

Convolutional neural networks are designed to take images or matrices as inputs. Thus, to139

prepare the DNA sequence data for use as input to our networks, we transformed the sequences140

into a two-dimensional matrix representation. Specifically, each 160 bp regulatory sequence from141

theMPRAdatasetwas encoded as a 4×160binary imageusing a so-called one-hot encoding scheme,142

as illustrated in Figure 2B and detailed in the “One-Hot Encoding” section of the Materials and143

Methods. Consequently, the data for each operon is represented as a stack of 4× 160 images, with144

each image corresponding to a specific sequence variant for that operon.145

As output from the network, we separated gene expression levels into discrete bins. We then146

used the networks to predict which gene expression bin regulatory sequences correspond to. Be-147

fore discretization, we first normalized mRNA counts by dividing the number of sequenced mR-148

NAs by the copy number of each regulatory sequence reported by DNA sequencing of the library149

(Fig. 2A). The objective of this normalization is to account for the fact that different regulatory se-150

quences will be present at different copy numbers in the library.151
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To train a convolutional neural network to classify sequences based on their corresponding152

gene expression levels, we categorized the normalized expression counts into discrete bins, re-153

ferred to as “classes”. Mutations within the sequences can lead to various outcomes, such as a154

complete absence of detectable gene expression, a measurable reduction, or an increase in gene155

expression compared to typical levels observed across the sequence variants for each operon. To156

capture this variation in expression level, we examined the distribution of the logarithm of the nor-157

malized expression counts. Based on this distribution, we defined three distinct expression classes:158

(1) sequences resulting in no detectable gene expression (zero expression bin), (2) sequences yield-159

ing low but measurable levels of gene expression (low expression bin), and (3) sequences associ-160

ated with high levels of gene expression (high expression bin). While the decision to use three bins161

was informed by the natural clustering of data in the logarithmic space, this choice is ultimately a162

simplification that, as we will show in the next sections, can still lead to predictive power and the163

ability to identify transcription factor binding sites.164

For each operon we determined the thresholds of log(normalized mRNA count) for each bin to165

partition the gene expression counts into the three classes. The zero gene expression bin corre-166

sponds to sequences that yielded no detectable mRNA. The threshold between the low and high167

gene expression bins were chosen so as to lead to statistically significant differences in mean gene168

expression levels between these two classes, as described in detail in the “RNA count labeling” sec-169

tion of theMaterials andMethods. Figure 2C shows thedistribution of log(normalized mRNA count)170

and the associated bins color-coded for the illustrative yqhC operon from the MPRA dataset by Ire-171

land et al. (2020). This operon is used throughout the text to illustrate our pipeline and its results,172

as it represents the average performance of the pipeline. Similar plots to Figure 2C, showing the173

distribution of expression counts for the rest of the operons in the dataset can be accessed through174

our GitHub repository.175

The number of observations in each expression bin vary significantly. Indeed, as shown in Fig-176

ure 2C, the bin corresponding to zero gene expression was typically overrepresented with respect177

to the low and high gene expression bins. To account for this over-representation, the zero gene178

expression bin was under sampled when training the networks, while the low and high bins were179

over sampled to create an evenly split processed dataset (Bowyer et al., 2011;He and Garcia, 2009).180

Training for each network utilized 70% of the processed data, following adjustments for data181

imbalance. Training was conducted inMATLAB using standard optimization toolboxes, with param-182

eters optimized via stochastic gradient descent (MathWorks, 2022; Bottou, 1998; Sra et al., 2011).183

An additional 15% of the data (3,000–5,000 variants across the 95 operons) was reserved for valida-184

tion during training, serving to optimize network architecture as discussed below. The remaining185

15% of the data was allocated for final evaluation of the predictive power of each network.186

Before engaging in the training of all 95 networks, we optimized the overall network architec-187

ture for accuracy in predicting gene expression in our dataset. While adding more convolutional188

layers should allow the network to extract longer-range interactions between nucleotides along189

the sequence, increasing the depth of the network leads to a substantial rise in the number of190

trainable parameters, potentially resulting in overfitting (Alzubaidi et al., 2021). As a result, we sys-191

tematically and iteratively modulated the network architecture to assess its impact on prediction192

accuracy.193

To optimize the network architecture, we focused on data from the 10 operons with the largest194

number of sequence variants. As expected, our optimization revealed that increasing model com-195

plexity (e.g., by adding layers and channels) generally improves training accuracy but can lead to196
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Figure 2. The DARSI pipeline. (A)MPRA dataset that makes it possible to correlate regulatory sequence withgene expression. (B) One-hot encoding scheme used to convert each DNA sequence into a binary image. (C)Distribution of the log(normalized mRNA count) together with the bin of gene expression assigned to eachvalue for the illustrative case of the yqhC operon. Note that the overlap observed between the low and highexpression bins is an artifact of the histogram binning and does not reflect an actual overlap between theclasses of expression. (D) The images and the corresponding gene expression bins constitute the inputs andoutputs of our convolutional neural network, respectively.

overfitting, where the model performs poorly when validated using unseen data (Fig. S1). We con-197

verged onto an optimal architecture, detailed in Table S2, that strikes a balance between model198

complexity and performance. This chosen architecture is consistent with similar networks imple-199

mented in prior studies (Avsec et al., 2021a,b; de Almeida et al., 2022). Using this optimized archi-200

tecture, we independently trained 95 convolutional neural networks, one for each operon in our201

dataset. Further details on the DARSI architecture, its optimization, and training specifications can202

be found in the “DARSI Architecture and Training” section of the Supplementary Information.203

DARSI Can Predict Gene Expression from Raw Sequence204

As outlined above, each trained network, corresponding to an individual operon in the dataset,205

was evaluated using the reserved 15% of the processed data designated as the test set. For each206

operon, raw sequences from the test partition were input into the trained network, which then pre-207

dicted the corresponding output gene expression bin. The predicted bins were compared against208

the experimentally measured gene expression values to calculate an accuracy score for each net-209

work. As illustrated in Figure 3A, the networks achieved an average predictive accuracy of 79.8%210

across all 95 operons.211

Tomore rigorously evaluate the effectiveness of our DARSImodel in predicting gene expression212

from raw sequence input, we generated confusion matrices. In these matrices, each column rep-213

resents predicted expression bin (i.e., zero expression, low expression or high expression), while214
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each row indicates the actual bin to which the sequences belong as reported by measurements.215

Each entry within the matrix indicates the number of sequences belonging to each combination of216

predicted and measured gene expression bins. Consequently, these matrices provide a summary217

of false positives, false negatives, true positives, and true negatives for each of the three discrete218

expression bins.219

The confusionmatrix for the yqhC operon is displayed in Figure 3B. Thismatrix indicates that the220

trained model classifies the majority of unseen data for each operon with high specificity (low false221

positive rate) and high sensitivity (low false negative rate), as evidenced by the diagonal dominance222

and the row and column projections shown in Figure 3B. To access a full list of confusion matrices223

for all the models trained, the reader is referred to the GitHub repository.224

To evaluate the the overall performance of DARSI across all 95 operons, we computed the av-225

erage F1 score for each expression bin. The F1 score is a metric that assesses both specificity and226

sensitivity of classifiers, and is commonly employed to gauge classifier performance (Sokolova and227

Lapalme, 2009; Powers, 2020; Alzubaidi et al., 2021; Aloysius and Geetha, 2017). The F1 score for228

a given bin of expression is defined as229

F1 =
true positive

true positive + 1
2

(false positive + false negative) , (1)
where, for example, “true positive” indicates the number of true positives resulting from ourmodel230

for a specific bin. According to this definition, an ideal classifierwith 100% true positive and 0% false231

positive and false negative rates will have an F1 score of one. True positives, false negatives, and232

false positives have been highlighted for the zero gene expression bin of the representative yqhC233

operon in Figure 3B, leading to an average F1 score of 0.64 across the three bins for this operon.234

By averaging the F1 score of all DARSI networks, we can compare the average network perfor-235

mance to that of an ideal classifier. Figure 3C presents the F1 score values for the zero expression236

bin (0.76 ± 0.10), low expression bin (0.77 ± 0.09) and high expression bin (0.80 ± 0.09) averaged over237

all 95 trained convolutional neural networks, where the error bars indicate the standard deviation.238

The F1 scores for all three expression bins exceed the threshold of 0.7 that is commonplace inmost239

fields (Lipton et al., 2014; Hicks et al., 2022), indicating that the model effectively distinguishes se-240

quences within these bins with high specificity and sensitivity. Thus, we deemed the gene expres-241

sion predictions made by the trained DARSI models to be reliable for them to be leveraged in our242

exploration of regulatory architectures in E. coli.243
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Uncovering Binding Sites Using Saliency Maps244

We next leveraged the predictive power of our networks to identify transcription factor binding245

sites within unmapped regulatory regions. To achieve this task usingMPRA datasets, existingmeth-246

ods typically analyze the mutual information or the shift in gene expression resulting from muta-247

tions at individual base pairs (Fig. 1F; Ireland et al. (2020); Pan et al. (2024); Belliveau et al. (2018);248

Kheradpour et al. (2013)). These analyses aim to isolate the impact ofmutations at each nucleotide249

on the overall gene expression levels. Tomake this possible, the contributions of mutations across250

all other nucleotides within the sequence are averaged. Consequently, these approaches assume251

that the contributions of individual base pairs to gene expression are independent from one an-252

other. In contrast, the convolutional neural network architecture employed in this study makes it253

possible to account for spatial correlations between nucleotides throughout the sequence.254

To examine the capacity of our networks to identify clusters of nucleotides corresponding to255

binding sites, we created so-called saliency maps. These saliency maps are better understood256

in the context of convolutional neural networks for image classification. For example, a neural257

network can be trained to classify images between those featuring a dog and those not featuring258

a dog (Russakovsky et al., 2015; Selvaraju et al., 2017; Vinogradova et al., 2020). A saliency map is259

a heat map that reports on how important each pixel within an image was in making the decision260

of how to classify that image. In the specific case of the classification of images featuring a dog, we261

would expect pixels that fall within the dog to carry more information than those pixels that are in262

the background of the image.263

Similarly, because regulatory sequences (Fig. 4A) are represented as images using the one-hot264

encoding approach (Fig. 4B), the saliency map of each sequence describes how important each265

pixel within the image—a binary pattern unique to each sequence—is for determining the gene266

expression bin corresponding to that sequence (Fig. 4C). As a result, these saliency maps can be267

loosely thought of as heatmaps reporting on the sensitivity of the predicted gene expression level268

tomutating each nucleotide at every position along the regulatory sequence. As described in detail269

in the “SaliencyMaps” section of theMaterials andMethods, the generation of thesemaps involves270

calculating the derivative of the network loss function—a measure of how well the network does271

at predicting output gene expression—with respect to each pixel of the images encoding for the272

DNA sequence in the binary input layer of the network.273

By applying this process to all sequence variants of a given operon in the test dataset, we gen-274

erated an ensemble of saliency maps, one for each sequence variants. These maps are then av-275

eraged to produce a final saliency map for the operon. As shown in Figure 4D, the saliency map276

for the illustrative yqhC operon used throughout this study reveals several segments along the se-277

quence that exhibit higher information content for predictions made by the trained DARSI model.278

Notably, minimal variation is observed along individual columns, suggesting that the network pri-279

marily considers the positional context of the base pair rather than its specific nucleotide identity280

when classifying expression levels. These clusters of highly sensitive positions form the initial hy-281

potheses for the locations of binding sites within the sequence.282

To interpret the information encoded within the saliency maps, the maximum saliency value283

among the four nucleotides at each position along the regulatory sequence—that is, along each284

column of the saliency map—is calculated. The result is a saliency vector that reports on the sensi-285

tivity of output gene expression tomutation along the regulatory sequence. Note that the absolute286

values of saliency maps generated by the network are not inherently interpretable; only relative287

changes in these values aremeaningful. As a result, we normalize the saliency vector by subtracting288

its mean and dividing by its standard deviation. Subsequently, the normalized saliency vectors are289
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exponentiated to represent likelihoods or probabilities (see the “Binding Site Identification” section290

in the Materials and Methods). These processed values are visualized as “gene expression sensi-291

tivity to mutation” plots. Figure 4E shows an example of this plot for the yqhC operon. Because we292

are after binding site-sized features within these plots, we smoothed the curve by averaging the293

data using a sliding window of size 5 bp as in previous studies (Ireland et al., 2020).294

To identify transcription factor binding sites, we examined the smoothed values of the gene295

expression sensitivity tomutation shown in Figure 4E. Here, red bars correspond to positions along296

the sequence where mutations led to an increase in expression, suggesting potential repressor297

binding sites. Conversely, blue bars represent nucleotides where mutations resulted in decreased298

expression, indicating potential activator binding sites.299

To predict binding sites along regulatory sequences, we identify clusters of base pairs with high300

sensitivity. Specifically, following the approach of Robison et al. (1998), we detect positions where301

the maximum sensitivity exceeds one standard deviation above the mean sensitivity across the302

entire sequence (horizontal line in Fig. 4E). In accordance with the minimum length of DNA bind-303

ing sites in E. coli reported by Stewart et al. (2012), Rydenfelt et al. (2015), and Ruths and Nakhleh304

(2013), potential binding sites are defined as regions exceeding this threshold and spanning at least305

10 base pairs. Figure 4F presents a filtered expression sensitivity-to-mutation plot, highlighting two306

prominent peaks (blue) corresponding to regulatory regions annotated in RegulonDB (Tierrafría307

et al., 2022). The first peak aligns with a promoter previously mapped to yqhC, while the second308

corresponds to activator binding sites that, although annotated in RegulonDB, had not been as-309

sociated with the regulation of yqhC. This finding highlights DARSI’s ability to identify functional310

connections between regulatory elements and their target genes. Notably, these activator bind-311

ing sites are not obvious when examining the mutual information (Fig. S4A), which constitutes the312

basis of previous approaches for identifying binding sites using MPRA data (Ireland et al., 2020).313

This particular example demonstrates DARSI’s capacity to reveal regulatory features overlooked314

by traditional methods. A detailed description of the filtering steps employed to generate these315

expression shift plots is provided in the “Binding Site Identification” section of the Materials and316

Methods. Further, a comparison of the sensitivity of all operons predicted by DARSI to the same317

analysis based on mutual information can be found in the GitHub repository.318

Using this pipeline, we identified a total of 172 binding sites across all 95 operons, successfully319

capturing 88.4%of the previously documented sites in published and curated databases (Tierrafría320

et al., 2022). In addition to these annotated binding sites, DARSI predicted 73 hypothetical novel321

binding sites, spanning more than one-third of the operons in the MPRA dataset (Fig. 5A). We clas-322

sify sites as promoters only if they have been previouslymapped as such; otherwise, we label them323

as activator sites. Additionally, binding sites located within 5–6 bp of each other are reported as a324

single site for a more conservative assessment.325

Figure 5B provides a detailed summary of the binding sites identified by DARSI, themissed bind-326

ing sites, and the newly predicted hypothetical sites for each operon, alongside annotations from327

the RegulonDB database (Tierrafría et al., 2022). Notably, DARSI failed to identify 13 previously328

annotated sites in RegulonDB for the ykgE, yicJ, rapA, yeiQ, ybeZ, yjjJ, tff-rpsB-tsf, poxB, rspA, ompR,329

yjiY, znuA, and leuABCD operons. These missed sites were primarily located within regulatory ar-330

chitectures containing multiple binding sites, such as the ykgE and ompR operons. Examples of331

regulatory architectures inferred through DARSI are presented in Figure S3, with comprehensive332

visualizations for all operons accessible via the GitHub repository. Further, detailed information,333

including the sequences of each binding site, their genomic coordinates, strand orientation, and334

prior annotations, is provided in the supplementary table, available for download on the GitHub335
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Figure 4. Saliency map generation and binding site identification. (caption continued on the next page)
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Figure 4. (continued from previous page) (A) Sequence variants from the test subset of a given operon, eachcontaining random point mutations, are processed through the pre-processing pipeline to generate one-hotencodings, as illustrated in (B). (C) These one-hot encoded sequences are input into the trained DARSI model,where the gradient of the network loss is computed with respect to each pixel in the input image for eachvariant. These gradients measure the sensitivity of the network output to each nucleotide. Gradients areaveraged across all variants in the test subset to generate saliency maps, which are represented as 4 × 160heatmaps. These heatmaps indicate the pixels containing the most information used by the network toclassify the gene expression bin of the input sequence. (D) An example saliency map for the illustrative yqhCoperon highlights regions of high sensitivity. Notably, the saliency values at the same sequence position arerelatively insensitive to base pair identity, suggesting that DARSI primarily relies on positional informationrather than specific nucleotide identity to predict gene expression. (E)Maximum saliency values at eachposition are normalized and exponentiated to produce unitless plots of gene expression sensitivity tomutations, as shown for the yqhC operon. (F) These sensitivity plots are further refined by filtering peaks thatexceed one standard deviation above the mean (dashed line in (E)), span at least 10 bp, and show contiguouseffects as either activators or repressors. (G) The refined plots enable the identification of potential bindingsites and operon regulatory architectures. For the yqhC operon, two previously annotated regions wereidentified: a promoter associated with the operon and an activator binding site, which, although annotated,had not been previously associated with the regulation of yqhC.

repository.336

Discussion337

MPRAs have become a fundamental experimental tool in the high-throughput dissection of the338

regulatory genome. The data stemming from these experiments has been matched by an increas-339

ingly sophisticated suite of approaches to extract as much information as possible. However, it340

is clear that there is still much room for improvement. For instance, conventional approaches for341

finding transcription factor binding sites and promoters such as mutual information rely on local342

measures and assume independence between base pairs (Ireland et al., 2020).343

This study highlights the potential of breaking free from the base pair independence assump-344

tion and accounting for possible interactions between distant base pairs in a regulatory sequence345

when finding binding sites within that sequence. In particular, we explored whether the convo-346

lutional neural network-based framework embodied in DARSI could enhance the identification of347

regulatory binding sites and improve our understanding of their roles in dictating gene expression.348

To identify binding sites within regulatory sequences using MPRA data, we first demonstrated349

that DARSI accurately predicts gene expression levels directly—albeit discretely—from raw regu-350

latory sequences. Importantly, this predictive power is achieved without any underlying assump-351

tions about the physical mechanisms and regulatory grammar dictating gene expression. Building352

on this foundation, we leveraged saliency maps to highlight regions of high information density353

that drive model predictions to infer locations of transcription factor binding sites and promoters,354

which are indistinguishable in this approach. While saliencymaps provide valuable insights, it is im-355

portant to acknowledge their limitations, particularly when applied to discrete variables like base356

pair identity, as this can introduce challenges in interpretation due to the underlying reliance on357

derivatives (Kim et al., 2019).358

Trained DARSImodels identified over 170 binding sites across all 95 operons, including 73 previ-359

ously unannotated sites and 99 previously mapped sites, accounting for approximately 90% of pre-360

viously annotated sites in curated databases. These findings establish DARSI, and convolutional361

neural networks more in general, as a valuable platform for advancing experimental studies of362

regulatory architectures. For instance, large in silico sequence libraries could be generated to com-363
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Figure 5. Benchmarking binding sites sites identified by DARSI against curated RegulonDB dataset. (A)Venn diagram showing the number of binding sites—both transcription factor binding sites andpromoters—identified by DARSI and how that number is compared to the previously known sites. DARSIidentified a total of 172 binding sites across all 95 operons, capturing 88.4% of previously known sitesdocumented in published and curated databases (Tierrafría et al., 2022), and predicted the existence of 73new binding sites. (B) Bar plots illustrating the number of sites uncovered by DARSI, the number of sitespreviously annotated in RegulonDB Tierrafría et al. (2022), and the newly identified sites and the sites missedby DARSI across all 95 operons analyzed in this study.

plement and refine in vivo experiments, facilitating the design of regulatory sequences tailored for364

specific expression levels (de Almeida et al., 2024; Rafi et al., 2024).365

To better understand the effectiveness and limitations of DARSI, we benchmarked its predic-366

tions of gene expression sensitivity to mutations against those obtained using traditional mutual367

information approaches (Ireland et al., 2020; Kinney et al., 2010). Figure S4 presents these com-368
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parisons for three representative operons. This comparison highlights how peaks are not always369

identified by both measures of MRPA data, and how those peaks can be slightly displaced and370

broader in DARSI with respect to those identified by mutual information. A detailed examination371

of these two measures—highlighting the potential advantages and challenges of DARSI with re-372

spect to mutual information—is provided in section “Comparing the DARSI and Mutual Informa-373

tion Approaches” of the Supplementary Information. While, as discussed in that section, the “black374

box” nature of machine learning models makes it challenging to dissect the source of these differ-375

ence, the ultimate proof of the usefulness of DARSI and how it compares against well-established376

approaches will have to stem from future experiments aimed at validating hypothesized binding377

sites.378

It is important to note that while DARSI effectively identifies binding sites, it does not predict379

the specific transcription factors that bind to these hypothetical sites. Addressing this limitation—380

as well as elucidating their molecular mechanisms and characterizing their biophysical properties381

such as binding affinity—remains a significant challenge that will require the integration of ad-382

ditional computational approaches and experimental validation (Belliveau et al., 2018; Ireland383

et al., 2020; Pan et al., 2024). These efforts are essential for advancing our understanding of tran-384

scriptional regulation and for improving the utility of predictive models like DARSI in functional385

genomics.386

Although this study focused on bacterial regulatory sequences, the DARSI framework is broadly387

applicable to differential expression datasets across both bacterial and eukaryotic systems. Be-388

yond gene expression and regulatory sequence activity, DARSI could be adapted for other pheno-389

typic analyses, uncovering causal links and axes of variation in sequence-to-phenotype relation-390

ships. For instance, the DARSI methodology could be used to predict protein properties such as391

solubility, hydrophobic surface composition (Sato et al., 2023), or binding affinity (Littmann et al.,392

2021; Jones et al., 2021), given appropriate training datasets.393

Importantly, as with other machine learning approaches, the efficacy of DARSI depends heavily394

on the quality and scale of its training data. Advances inmutagenesis technologies leading to larger395

MPRA datasets with higher number of variants and broader coverage promise to further amplify396

the utility of frameworks like DARSI, opening new avenues for precision in computational biology.397

In particular, our lab envisions exploringDARSI in the context of newmutagenesis technologies that398

will make it possible to implement MPRAs in multicellular organisms (Falo-Sanjuan et al., 2024).399

Materials and Methods400

MPRA Dataset from E. coli401

The dataset used throughout this article was generated through the work by Ireland et al. (2020).402

Here, as shown diagrammatically in Figure 1A, a 160-bp long region around the transcription start403

site of 114 operons in E. coli were randomly mutated at a 10% rate (i.e., each base pair along the404

sequence had a 10% chance of being mutated from its wild-type base to any of its three alterna-405

tive bases). This library was then cloned into plasmids driving the expression of a reporter gene406

(Fig. 1B,C). Plasmid libraries were transformed into cells and grown in various growth conditions407

(though in this work we only focus on bacteria grown in LB). The expression from each operon408

variant was measured by sequencing (Fig. 1C).409

To normalize for the variation in copy number for each reporter construct, DNA counts of the410

barcode were also included in the table and were used to normalize the expression counts as411

discussed in the main text. Processed dataset, therefore, provides both the sequence of the regu-412

latory region and the normalized expression count of the gene regulated by that sequence (Fig. 1E).413
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In this study, we only considered operons with enough sequence variants to ensure that, on aver-414

age, each base pair wasmutated in at least 100 variants (i.e., 100x coverage). Given a 10%mutation415

rate, this corresponds to aminimum of ∼ 1, 000 variants. Examples of some of these sequence vari-416

ants within this dataset for the yqhC operon are provided in Table S1.417

RNA-seq Raw Data Processing418

The sequencing datasets used in this work are deposited in the SRA database as PRJNA599253419

and PRJNA603368. Code for sequence processing is provided in the Github repository together420

with example datasets and Jupyter Notebooks that display how to use the data to generate, for421

example, Table S1. Here, we give a brief description of the process.422

Randombarcodeswere clonedbetween the promoter and the reporter gene in order to identify423

the promoter variant through the RNA reads, as well as provide multiple distinct data points that424

reduce possible bias introduced by barcodes. In an initial sequencing run the promoter sequence425

and barcodes were sequenced simultaneously to obtain a map that links a regulatory region vari-426

ant with the corresponding barcode. Pair end reads were merged, quality filtered, and filtered for427

read length using “fastp” (Chen et al., 2018). Promoter sequence and barcode were extracted from428

each read and the number of occurrences of each barcode and promoter combination counted.429

A promoter variant can have multiple barcodes associated with it, however, a barcode has to be430

unique. If a barcode was observed for multiple promoter variants, the barcode was then removed.431

Additionally, combinations with less than 3 reads were removed due to the possibility of sequenc-432

ing errors.433

In Reg-Seq, the promoter library is grown in various growth conditions to assess a variety of434

regulatory conditions. For the purpose of this paper, we take one of these growth conditions:435

growth in LB. Fromeach culture both RNAandDNA (plasmids) are extracted. Using specific primers,436

the reporter gene mRNA, including the barcode, is reverse transcribed and amplified to generate437

cDNA and measure gene expression. Barcodes are also amplified from plasmids using PCR in438

order to count the number of plasmids present with a specific regulatory sequence. Sequencing439

adapters are added by another PCR and both barcodes obtained from cDNA and plasmid DNA are440

sequenced. Reads are trimmed and quality filtered using ‘fastp‘ (Chen et al., 2018). The occurrence441

of each barcode is counted in the RNA-Seq and DNA-Seq datasets. Finally, using the results from442

the initial sequencing run, each corresponding promoter variant is identified through its barcode.443

One-Hot Encoding444

Every 160 bp long regulatory sequence from the MPRA dataset is converted to a two-dimensional445

binary image 𝐴 ∈ ℝ4×160, where each entry of the matrix 𝐴𝑖,𝑗 takes the form446

𝐴𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐴1,𝑗 = 1 if 𝑛𝑗 = 𝐴 0 otherwise
𝐴2,𝑗 = 1 if 𝑛𝑗 = 𝑇 0 otherwise
𝐴3,𝑗 = 1 if 𝑛𝑗 = 𝐶 0 otherwise
𝐴4,𝑗 = 1 if 𝑛𝑗 = 𝐺 0 otherwise

(2)

Here, 𝑛𝑗 is the 𝑗th nucleotide in each of the sequences. Figure 2D shows an example of these binary447

images generated for the regulatory sequences for the yqhC operon.448

RNA Count Labeling449

The RNA count corresponding to each sequence variant reports on the gene expression level driven450

by that mutated regulatory region. These values are normalized by dividing the RNA count by451
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the DNA copy number count to ensure that variability in the normalized RNA count is not due to452

variability in the plasmid copy number.453

To bin the normalized expression counts, we developed a binning algorithm to categorize se-454

quence variants into three discrete groups based on their normalized RNA counts: (1) sequences455

that resulted in zero gene expression, (2) sequences that resulted in low gene expression levels,456

and (3) sequences that resulted in high gene expression levels. The pipeline first bins all the zero457

expression counts to the zero expression bin. It then automatically determines the best thresh-458

old for separating the remaining gene expression data into the low and high gene expression bins459

based on their log(normalized mRNA count). To make this possible, a t-test is conducted on the dif-460

ference of the mean gene expression of the low and high expression bin, leading to a separation461

of data that minimizes the p-value between the bins.462

The vector 𝑖 ∈ ℝ𝑁𝑖×1 encodes for the expression bins associated with each of the𝑁𝑖 sequence463

variants for the operon 𝑖 in the dataset. Each sequence variant for a given operon 𝑖 is given a464

label from a set 𝐾𝑖 = {1, 2, 3} where 1, 2, and 3 denote the zero, low, and high expression bins465

respectively. The algorithmwe implemented attempts to partition the vector𝑖 into three bins such466

that the p-value associated with a t-test conducted between each pair of bins is minimized (Mann467

and Whitney, 1947; Fay and Proschan, 2010). The iterative algorithm used to bin the normalized468

mRNA counts is given in Algorithm 1.
Algorithm 1 RNA count binning algorithm.
1: Take vector 𝐲𝑖 ∈ ℝ𝑁𝑖×1 as input, where 𝐲𝑖 = log(normalized expression count)
2: Values that are infinite in the input vector 𝐲𝑖 are associated with a label of 1 for the zero expres-sion bin
3: Initialize best_bins as an empty cell array of size 2 to store the label associated with variant
that have finite log(normalized expression count)

4: Set best_p_values as an array of size 2 to store lowest p-values obtained throughout the algo-
rithm with all values initialized to∞

5: for iter = 1 to max_iteration (set to 10,000 in this paper) do
6: Generate random thresholds for 1 bin edge separating the low and high expression classes

in the range [min(RNA count),max(RNA count)]
7: bins ← Label observations with labels {2, 3} that fall within the thresholds for each bin
8: p-values ← the p-value associated with a t-test performed on the mean of the low and high

expression bins
9: if p_values < best_p_values then
10: Update best_p_values ← p_values
11: Update best_bins ← bins
12: end if
13: end for

469

Saliency Maps470

Trained DARSImodels demonstrate the capability to predict operon expression levels directly from471

their nucleotide sequences. Beyond prediction, these models can be utilized to identify potential472

binding sites within regulatory sequences. This is achieved by analyzing the derivative of the net-473

work’s loss function (described in detail below) with respect to the input sequence. By computing474

these gradients, the nucleotides most critical to the model’s predictive understanding of gene ex-475

pression can be identified.476
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The performance of the network is quantified using a cross-entropy loss function defined as477

𝐿(𝑝, 𝑦) =
3
∑

𝑖=1
𝑦𝑖 log(𝑝𝑖), (3)

where, 𝑦 = {𝑦1, 𝑦2, 𝑦3} denotes the ground truth label vector for each variant of a given operon.478

For instance, a variant assigned to the zero expression bin is represented as 𝑦 = {1, 0, 0}. Simi-479

larly, 𝑝 represents the probability vector predicted by the network for the same sequence. This480

three-dimensional vector specifies the predicted probabilities of the sequence belonging to each481

expression bin, as determined by the model.482

This loss functionmeasures the discrepancy between the network’s predictions and the ground483

truth, serving as an indicator of model accuracy. To assess the sensitivity of classification out-484

puts to perturbations in nucleotide sequences, we leverage the gradient-weighted class activation485

mapping (Grad-CAM) approach (Kudo et al., 1999; Vinogradova et al., 2020; Selvaraju et al., 2017).486

Grad-CAM computes the gradient of a selected, differentiable output—such as the cross-entropy487

loss—with respect to neurons or nodes in a specified layer of the network, typically a convolutional488

layer. For a toy example demonstrating the computation of saliency maps through backpropaga-489

tion, please refer to the section “Example of Saliency Map Computation Using Backpropagation” in490

the Supplementary Information.491

This method allows for the visualization of features critical to the model’s predictions by back-492

propagating the gradients through the network and overlaying them on the input sequence. The493

resulting gradient map highlights the pixels within the input image (corresponding to nucleotides494

within the sequence) that significantly contribute to the network’s decision-making process. By495

identifying these key features, Grad-CAM enhances the interpretability of deep learning models496

and provides insights into the regulatory architecture underlying gene expression (Selvaraju et al.,497

2017; Kudo et al., 1999; Vinogradova et al., 2020).498

For a two-dimensional image classifier such as DARSI, the saliency score for any given channel499

in a convolutional layer with 𝑘 channels is computed by500

𝛼𝑐
𝑘 =

1
𝑁

∑

𝑖

∑

𝑗

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖,𝑗

, (4)
where 𝑦𝑐 is the predicted posterior for the bin 𝑐, 𝐴𝑘

𝑖,𝑗 is the pixel located at (𝑖, 𝑗) position of the 𝑘th501

channel of the chosen convolutional layer, and 𝑁 is the total number of pixels (Selvaraju et al.,502

2017).503

Equation 4 generates aweighting score for every channel 𝑘within a convolutional layer. In order504

to plot this score as a heatmap for any given sequence, similar to the ones shown in Figure 4C andD,505

a weighted-average mask 𝑈 is computed such that506

𝑈 𝑐 = 𝑓

(

∑

𝑘
𝛼𝑐
𝑘𝐴

𝑘

)

, (5)
where 𝑓 represents a non-linear activation function such as the rectified linear unit function ReLU507

𝑓 = max(0, 𝑥) (Selvaraju et al., 2017). Algorithm 2 summarizes the steps that are taken to generate508

these saliency maps for each of the genes within the expression shift dataset.509

Binding Site Identification510

As discussed in Algorithm 2 above, the saliency vector 𝐵⃗𝑖 ∈ ℝ1×160 computed for a given operon 𝑖511

captures the saliency of each regulatory sequence. The vector 𝐵⃗𝑖 is normalized about its mean and512
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Algorithm 2 Saliency map generation.
1: for each operon 𝑖 do
2: Train and find the optimized DARSI model
3: Load the test subset of the data for the operon 𝑖
4: Run the Grad-CAM script to generate the masks (𝑈 𝑐 ) for each variant in the test subset
5: Overlay themask for each image to the input binary image (one-hot encoding representation

of the sequence (Fig. 4B) and plot this as a heatmap that shows the relative importance of
each base pair (Fig. 4C)

6: Compute a final saliency map by taking an average over all the maps generated across the
test data (Fig. 4D)

7: Compute a 1-dimensional saliency vector 𝐵⃗𝑖 ∈ ℝ160×1 for each operon 𝑖 from the heatmap
by taking the maximum value at each nucleotide position, namely 𝐵⃗𝑖 = max𝑈 𝑐

𝑗 for 𝑗 ∈
{1, 2,… , 160}

8: Plot each of the 𝐵⃗𝑖 as a function of base pair position (Fig. 4E and F).
9: end for

standard deviation, namely513

𝑆∗
𝑖 =

𝐵⃗𝑖 −
̄⃗
𝑖𝐵

𝜎(𝐵⃗𝑖)
, (6)

where ̄⃗
𝑖𝐵 and 𝜎(𝐵⃗𝑖) are the mean and standard deviation of the vector 𝐵⃗𝑖, respectively.514

The vector 𝑆∗
𝑖 represents a difference from the mean in sensitivity of expression level to muta-515

tion at any given position 𝑗. Therefore we assume that this vector is proportional to the derivative516

of the dissociation constant with respect to that nucleotide, or more formally517

𝑆∗
𝑖 (𝑗) ∝

𝜕𝐾𝐷

𝜕𝑛𝑗
, (7)

where 𝐾𝐷 and 𝑛𝑗 are the dissociation constant and nucleotide at position 𝑗, respectively.518

Finally, we used this proportionality to estimate the probability of occupancy 𝑃 (𝑗)𝑖 as519

𝑃𝑖(𝑗) ∝ exp (|𝑆∗
𝑖 (𝑗))|, (8)

where | ⋅ | denotes the absolute value. The use of absolute values is necessary due to prior normal-520

ization of the vector 𝑆∗
𝑖 (𝑗), which ensures that both strongly negative and strongly positive normal-521

ized values contribute to the probability estimate. This adjustment is crucial to account for regions522

associated with activators (negative values) and repressors or other functional elements (positive523

values), ensuring a strong signal is captured in both cases.524

The probability was computed for every position 𝑗 for every operon 𝑖 and was plotted as bar525

charts to show the expression shift (Fig. 4E). The peaks in probability that were more than one526

standard deviation from the mean were selected (Fig. 4F). These filtered peaks were then passed527

through a secondary filter to select only regions where the length of a continuous region of repres-528

sion or activation (i.e. the predicted binding site) is more than 10 bp long—the minimum length of529

the binding sites in E. coli (Stewart et al., 2012; Rydenfelt et al., 2015; Ruths and Nakhleh, 2013).530

The process for generating filtered expression shift plots is shown in Algorithm 3.531

The DARSI Pipeline Repository532

To enhance the accessibility and usability of DARSI for gene expression prediction and related533

applications, we have designed the implementation with a modular architecture. Each MATLAB534
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Algorithm 3 Binding sites identification.
1: for Each operon 𝑖 do
2: Generate saliency map 𝐵⃗𝑖 ∈ ℝ1×160.
3: Normalize vector 𝐵⃗𝑖 using equation 6 to generate vector 𝑆∗

𝑖 .
4: Generate an exponential vector 𝐸⃗𝑖 = exp |𝑆∗

𝑖 |.
5: Find elements within 𝐸⃗𝑖 that are one standard deviation above the mean of ̄⃗

𝑖𝐸
6: Initiate an empty vector 𝐹𝑖 ∈ ℝ1×160 to store final expression shift data.
7: for Each peak 𝑘 found in previous step do
8: Check that the region around the peak is continuous in either repression or activation

using the sign of the normalized saliency vector 𝑆∗
𝑖 and that the region is larger than 10

nucleotide
9: If a region is found to be above 10 bp long, store the region 𝑆𝑖(𝑗 ∶ 𝑗 + 𝑙) into the final

expression shift vector 𝐹𝑖

10: end for
11: Plot 𝐹𝑖 for the operon 𝑖
12: end for

script operates independently, accompanied by comprehensive documentation for ease of under-535

standing. A master script is also provided to sequentially execute the necessary functions, offering536

detailed guidance on processing raw RNA-Seq data and training a DARSI model.537

The complete set of scripts is available in a dedicatedGitHub repository. The repository includes538

modules for processing raw RNA-Seq data, generating expression shift datasets, training DARSI539

models, performing cross-validation, evaluating model performance, and identifying binding sites.540

Additionally, all data used to train the DARSI model, along with outputs such as saliency maps,541

confusion matrices, and expression shift plots, are made available in the repository.542
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Supplementary Information708

Supplemental methods709

MPRA Dataset Example710

The raw RNA-Seq data from E. coli cultures is processed as described in the “RNA-seq Raw Data711

Processing” section of the Materials and Methods. The processed data is tabulated to form what712

is referred to as the MPRA dataset throughout this work. Table S1 shows a few rows of this type of713

data for the illustrative yqhC operon.714

Table S1. Illustrative example of the differential expression dataset used throughout this work. This tablefeatures processed MPRA data for the yqhC operon. Each row represents a uniquely mutated 160 bp-longpromoter sequence. The dataset includes the following columns: 1) DNA Sequence: The 160 bp-long DNAsequence of the mutated promoter. 2) RNA count: The measured expression level of the reporter gene, asquantified by RNA-Seq. This reflects the transcriptional activity associated with the promoter sequence. 3)DNA count: The count of DNA barcodes corresponding to the copy number of each sequence in the library.This serves as a measure of the copy number of the plasmid containing each regulatory sequence. 4)
log

( RNA countDNA count
): A normalized measure of expression, calculated by dividing the RNA count by the DNA

count and taking the logarithm of the result. This normalization accounts for variations in sequenceabundance and enables direct comparison of transcriptional activities across sequences. 5) Label: Adiscretized classification assigned to each sequence, derived from binning the normalized log-expressionvalues into categories based on a binning algorithm (1: zero expression bin, 2: low expression bin, 3: highexpression bin) as described in the “RNA Count Labeling” section of the Materials and Methods. This tableformat is applied consistently across all operons analyzed in this study, allowing for a systematic comparisonof promoter sequence variants and their transcriptional activities.
DNA sequence RNA count DNA count log

( RNA count
DNA count

) label
CTGCGCAGATTACAGTTGTTCATTACTTCC... 64 1 4.16 3
GTCTGCAGCGTAAACTCGTTCATGACTTGG... 3 36 -2.48 2
CGGTGCAGATTATAGATGTTCATTTCATGC... 5 7 -0.34 3
GTGTGCACATTAAAGTTGTTCATTACTTGC... 1 33 -3.50 2
GTGTGCAGTTGAAAGTTGTTCATTCCTTGA... 3 14 -1.54 2

DARSI Architecture and Training715

The convolutional layers used inDARSI have filters spanning a 5-bp range to capture local sequence716

patterns andnucleotide interactions. While these filters operate on short sequencewindows, stack-717

ing multiple convolutional layers extends the effective receptive field, allowing the network to718

model higher-order interactions and long-range dependencies across the regulatory sequences.719

In principle, this architecture enables DARSI to detect complex regulatory features, such as distant720

transcription factor binding site interactions. However, the inclusion of additional convolutional721

layers increases model complexity, which can lead to overfitting.722

To determine the optimal architecture, we utilized data from the 10 operons with the largest723

number of variants (leuABCD, rumB, zupT, yncD, uvrD,mscK, ftsK, yqhC, groSL, and xylA). We systemat-724

ically varied the number of convolutional layers and the number of filters within each layer, evalu-725

ating training and validation accuracy to balance model complexity and generalization. Figure S1A726

depicts the changes in training and validation accuracies as the number of convolutional layers727

increased from 2 to 6, with each layer comprising 16 channels. The results indicate that, while728

training accuracy increases monotonically, validation accuracy decreases monotonically, signaling729
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overfitting. This suggests that the optimal number of layers lies between 2 and 3. To mitigate po-730

tential overfitting when training the network on smaller datasets for other operons, we selected731

2 as the optimal number of layers. With the number of layers fixed, we further examined the732

impact of the number of channels per layer on training and validation accuracies. Figure S1B illus-733

trates the average training and validation accuracies across the same 10 operons as the number of734

channels per layer is varied. The optimal number of channels was determined to be 32, as this cor-735

responds to the maximum validation accuracy. Thus, the final architecture we converged on, with736

2 convolutional layers and 32 filter counts, achieved comparable training and validation accuracies,737

minimizing overfitting while preserving predictive power.738

The optimal architecture for DARSI network comprises 12 hidden layers and was designed,739

trained, and evaluated using the Matlab Deep Learning Toolbox (MathWorks, 2022). The network740

was trained using stochastic gradient descent with an initial learning rate of 0.001 (Bottou, 1998;741

Sra et al., 2011; Ruder, 2017). Training was performed for a maximum of 20 epochs with a mini-742

batch size of 32, and the learning rate was reduced by 20% every 5 epochs. The training dataset743

was shuffled at the start of each epoch to improve generalization. Table S2 outlines the layers of744

the optimized architecture, along with their descriptions, dimensions, and learnable parameters.745
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Figure S1. DARSI network architecture optimization. (A) The average training and validation accuracy forthe 10 operons, with the largest number of variants, used for network optimization (leuABCD, rumB, zupT,
yncD, uvrD, mscK, ftsK, yqhC, groSL and xylA) are plotted against the number of convolutional layers (given 16channels per layer). (B) Given an optimum of 2 convolutional layers, we assay network training and validationaccuracy as a function of the number of channels within each convolutional layer. The optimal architecturewas selected to achieve comparable or higher validation accuracies (red dots) relative to training accuracies(blue crosses). This criterion ensures a balance between model complexity and generalization, favoringarchitectures that capture the underlying patterns in the data effectively while minimizing the risk ofoverfitting. By prioritizing validation performance over excessive improvements in training accuracy, theselected architecture demonstrates robust generalization across diverse datasets.
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Table S2. Detailed description of all 12 layers of the optimized DARSI architecture along with their description,dimensions, and number of learnable parameters
Layer name Type Dimension Learnable

properties
Number of
learnable parameters

Sequence Input Image input 4x160x1x1 - 0
Conv_1 Convolution 4x5x1x32

stride [1 1]
padding same

Weights: 4x5x1x32
Biases: 1x1x32

672

Batchnorm_1 Batch Normalization 32 channels Offset: 1x1x32
Scale: 1x1x32

64
Relu_1 ReLU N/A - 0
Maxpool_1 Max Pooling 1×2

stride [2 2]
padding [0 0 0 0]

- 0

Conv_2 Convolution 1x5x32x64
stride [1 1]
padding same

Weights: 1x5x32x64
Biases: 1x1x64

10,304

Batchnorm_2 Batch Normalization 64 channels Offset: 1x1x64
Scale: 1x1x64

128
Relu_2 ReLU N/A - 0
Maxpool_2 Max Pooling 1x2

stride [2 2]
padding [0 0 0 0]

- 0

Fc Fully Connected 1x1x3 Weights: 3x1
Biases: 3x1

6
Softmax Softmax 1x1x3 - 0
Classoutput Classification Output 1x1x3 - 0
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Example of Saliency Map Computation Using Backpropagation746

In neural networks, computing the derivative of the output with respect to the input involves prop-747

agating gradients backward through the network—a process known as backpropagation. This task748

becomes increasingly complex as the number of hidden layers grows and the architecture incor-749

porates advanced components such as convolutional, pooling, and activation layers. To provide750

clarity and intuition about this process, we include a toy example in this section, illustrating how751

backpropagation operates specifically through convolutional layers. This example is intended to752

demystify themechanics of gradient computation and offer a simplified yet instructive view of how753

saliency maps are generated.754

Consider the sequence shown on the left of Figure S2A. To compute the derivative of the net-755

work’s loss function, 𝐿(𝑃 ) ∶ ℝ3 → ℝ, with respect to each position in the input sequence 𝑥𝑖, we use756

the cross-entropy loss function, defined as757

𝐿(𝑝, 𝑦) =
3
∑

𝑖=1
−𝑦𝑖 log 𝑝𝑖 = −(𝑦1 log 𝑝1 + 𝑦2 log 𝑝2 + 𝑦3 log 𝑝3), (S1)

where 𝑝𝑖 represents the probability that the sequencebelongs to expressionbin 𝑖, and 𝑦 = {𝑦1, 𝑦2, 𝑦3}758

is a binary one-hot encoded vector indicating the ground truth class. In 𝑦, only one element is 1,759

corresponding to the correct class, while the rest are 0. For this example, assume the sequence760

belongs to the low-expression class. This results in a ground truth vector of 𝑦 = {0, 1, 0}.761

As shown in Figure S2A, the input sequence is fed into the trained DARSI model to generate the762

value for 𝑝. We can, therefore, write this forward pass of the sequence through the network as763

𝑝 = 𝑓 (𝐱), (S2)
where 𝐱 represents the input sequence and 𝑓 (𝑥) ∶ ℝ4×160 → ℝ3 denotes all the layers of trained764

DARSI network, all lumped together in 𝑓 (𝐱).765

To compute the saliency map for the sequence image 𝐱, we calculate the gradient of the loss766

functionwith respect to each position 𝑥𝑖𝑗 in the input sequence by applying the chain rule iteratively767

from the output layer to the input layer of the network such that768

𝜕𝐿
𝜕𝑥𝑖𝑗

= 𝜕𝐿
𝜕𝑝

𝜕𝑝
𝜕𝑓

𝜕𝑓
𝜕𝑥𝑖𝑗

∀𝑖 ∈ {1, 2,… , 160} ∀𝑗 ∈ {1, 2, 3, 4}. (S3)
Because 𝑓 (𝐱) consists of multiple layers and transformations, computing this derivative requires769

an iterative approach. Starting from the loss function, we iteratively propagate gradients backward770

through the network using the chain rule of differentiation, layer by layer, until the input is reached.771

This procedure, known as backpropagation, emphasizes the reverse traversal of layers to compute772

the necessary gradients.773

To illustrate the computation of gradients through a convolutional layer, we present a detailed774

example. Consider amatrix𝐴 ∈ ℝ2×2 as the input to a two-dimensional convolutional layer towhich775

a single filter𝑊 ∈ ℝ1×2 is applied, resulting in an output 𝑦 = 𝑓 (𝐴), as depicted in Figure S2B. This ex-776

ample demonstrates the step-by-step process of propagating gradients through the convolutional777

layer.778

First, the convolution operation is performed using a filter with known parameters𝑊 = [𝑤1, 𝑤2],779

that were obtained in the training process. The resulting output is transformed by applying a non-780

linearity, in this case, the logarithmic function. The output of the convolution is expressed as781

𝐴 ∗ 𝑊 =

(

log(𝑎11𝑤1 + 𝑎12𝑤2) log(𝑎12𝑤1 + 𝑎13𝑤2) log(𝑎13𝑤1 + 𝑎14𝑤2)
log(𝑎21𝑤1 + 𝑎22𝑤2) log(𝑎22𝑤1 + 𝑎23𝑤2) log(𝑎23𝑤1 + 𝑎24𝑤2)

)

. (S4)
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The final output of this convolutional layer is a non-linear transformation 𝑦 = 𝑞(𝐴 ∗ 𝑊 ), where782

𝑞(.) denotes the logarithmic activation function. To compute the gradient of the output 𝑦 with783

respect to a specific input element 𝑎𝑖𝑗 , we apply the chain rule of differentiation. For instance, the784

derivative with respect to 𝑎11 is given by785

𝜕𝑦
𝜕𝑎11

=

( 𝑤1
𝑎11𝑤1+𝑎12𝑤2

0 0

0 0 0

)

(S5)
This calculation illustrates how convolutional layers integrate contributions from neighboring el-786

ements of the input matrix. For example, the value 𝑎12 contributes to the saliency computed for787

𝑎11, highlighting the localized yet interconnected nature of saliency computation in convolutional788

architectures. This same approach to backpropagation can be used to compute the saliency maps789

by propagating from the loss function as shown in Figure S2A.790

(A)

ATCGAACC

input sequence (x)

......

xj

f(x1,x2,...,xj,...,x160) p1,p2,p3

backpropagation example

L(p1,p2,p3)

trained DARSI model f(x) predicted 
probabilities

Loss 

compute derivatives

(B) convolution example

input sequence 
(matrix A)

a11 a12 a13 a14

a21 a22 a23 a24
* w1 w2

convolution filter

2D convolution

q(.)

non-linear function q

q(a11w1+a12w2) q(a12w1+a13w2) q(a13w1+a14w2)

q(a21w1+a22w2) q(a22w1+a23w2) q(a23w1+a24w2)

compute derivatives

output y

Figure S2. Illustration of the backpropagation process and convolution operation in the DARSI model.
(A) Example of backpropagation with an input DNA sequence processed by the trained DARSI model 𝑓 (𝑥),which predicts probabilities 𝑝1, 𝑝2, 𝑝3. The loss function 𝐿(𝑝1, 𝑝2, 𝑝3) is computed using the probability vector
𝑝 = [𝑝1, 𝑝2, 𝑝3]𝑇 . (B) Demonstration of a 2D convolution operation applied to a segment of the input sequenceusing a filter 𝑤1, 𝑤2, followed by a non-linear activation function 𝑞(𝑥) = log 𝑥.

Comparing the DARSI and Mutual Information Approaches791

Most peaks in DARSI saliency plots correspond to regions of high mutual information reported by792

Ireland et al. (2020), affirming the capacity of DARSI to detect key regulatory elements. Figure S4793
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highlights peaks for activating and repressing regions that show strong overlap between the two794

methods. Specifically, in Figure S4A we show how, for the dpiBA operon, DARSI identifies a clear795

peak which aligns with a region of high mutual information.796

While DARSI andmutual information footprints share similarities, there are notable differences797

between these twomeasures. For example, in Figure S4Bwe present a comparison betweenDARSI798

and mutual information for the coaA operon. The figure shows that, while there is a clear corre-799

spondence between peaks reported by DARSI andmutual information, a relative shift of the peaks800

can be observed. We speculate that these slight positional shifts can occur because the convo-801

lutional layers output values are processed by a maximum pooling layer. This layer selects the802

highest value within a 2 bp window, effectively averaging the signal over small regions and poten-803

tially shifting windows by 1 or 2 bp.804

The differences between DARSI and mutual information also become obvious in the context of805

the yqhC operon shown in Figure S4C. The figure shows how while some peaks are only identified806

through DARSI, some other peaks are only present through the mutual information description.807

Comparative plots, similar to Figure S4, for all 95 operons in this study can be found in the GitHub808

repository.809

Overall, Figure S4 suggests that peaks generated by DARSI tend to be broader, which may re-810

flect either a biologicallymeaningful characteristic—such as broader peaks capturing actual regula-811

tory sites—or a consequence of information diffusion through the network’s convolutional layers.812

Further, DARSI identifies more continuous regions of activation and repression, characterized by813

smooth and extended stretches of blue or red bars in the saliency plots, whereas mutual infor-814

mation plots often exhibit scattered, discrete regions of activity. These differences may reflect815

the assumption of independence between base pairs underlying mutual information analysis, or816

potential overfitting in DARSI’s predictions.817

Importantly, given the complexity of the DARSI architecture—and as the case with most neural818

networks—dissecting the inner workings of the network to explain the observed differences be-819

tween its outputs and those of conventional methods remains highly challenging and speculative.820

Indeed, because of the ultimate “black box” nature of DARSI, an important limitation of the saliency821

maps generated with this network is their lack of direct physical interpretation: they are unitless822

in contrast to the interpretable, information-theoretic units provided by mutual information (bits).823

Despite these drawbackswith interpretability, DARSI’s ability to incorporate nucleotide interactions824

offers a complementary perspective that extends beyond the scope of traditional methods.825
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Supplemental Figures826

Gene Expression Sensitivity to Mutation Plots827

Examples of gene expression sensitivity plots for three illustrative operons along with cartoon of828

their inferred regulatory architecture is given in Figure S3. Similar plots for all 95 operons can be829

found in the GitHub repository.830

Expression Plots Comparison831

Figure S4 shows examples of unfiltered expression sensitivity-to-mutation plots generatedbyDARSI832

stacked againstmutual information plots implemented as discussed in Ireland et al. (2020). Similar833

comparison plots for all 95 operons can be found in the GitHub repository.834
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Figure S3. Illustrative examples of expression sensitivity plots. Plots of raw expression sensitivity tomutation are presented for three illustrative operons selected to demonstrate distinct scenarios of theperformance of DARSI. Each raw sensitivity plot is accompanied by its filtered version (obtained using thetheshhold indicated by the dashed line), which was used to infer the location and type of binding sites(activators vs. repressors). Additionally, regulatory cartoons depict the predicted binding sites, theirsequences, and previous annotations based on RegulonDB (Tierrafría et al., 2022). It should be noted thatthe sequences are always presented in the 5’ to 3’ direction regardless of the strand. (A) Shows how DARSIsuccessfully identified, as well as missed, previously annotated binding sites in the dpiBA operon. (B)WhileDARSI identified an already known site in the xapAB operon, it failed to another already known binding site aswell as the promoter. (C) In the coaA operon, DARSI successfully identified the promoter as well as predicted anew repressor site.
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Figure S4. Illustrative DARSI gene expression sensitivity plots compared with mutual information.Gene expression sensitivity-to-mutation plots generated by DARSI and mutual information for threeillustrative operons. (A) The dpiBA exemplifies an agreement of some peaks detected by DARSI and by mutualinformation. (B) These peaks, however, can be displaced between these two measures as shown here for the
coaA operon. (C) Analysis of the data for the yqhC operon reveals that peaks can be found by one measurebut not the other one.
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