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SUMMARY

Robustness is the invariant development of phenotype despite environmental changes and genetic pertur-
bations. In the Arabidopsis flower bud, four sepals robustly initiate and grow to a constant size to enclose
and protect the inner floral organs. We previously characterized the mutant development-related myb-like
1 (drmy1), where 3–5 sepals initiate variably and grow to different sizes, compromising their protective func-
tion. Themolecularmechanismunderlying this loss of robustnesswas unclear. Here, we show that drmy1 has
reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction
decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARABIDOPSIS
HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), two cytokinin-signaling inhibitors that are normally
rapidly produced before sepal initiation. The resultant upregulation of cytokinin signaling disrupts robust
auxin patterning and sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous
cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.

INTRODUCTION

Robustness, or canalization, is the invariant, reproducible devel-

opment of phenotype, unchanged by environmental fluctua-

tions, genetic perturbations, or gene expression noise.1–4 Or-

gans initiate at well-defined positions, growing to a robust final

size and shape, which is crucial for fitness.2 For example, the

pair of wings in Drosophila develop to robust, precisely coordi-

nated final size and shape, which is required for flight.5–8 The

robust positioning of leaves around the stem, phyllotaxis, en-

sures optimal light capture.9–11 Whereas these examples of

developmental robustness have been well documented, the un-

derlying molecular mechanisms have just begun to be unveiled.

Earlier studies looking for genes involved inmaintaining robust-

ness identified HEAT SHOCK PROTEIN 90 (HSP90). The severity

of hsp90 mutant phenotypes varies between individuals, and

even between different parts of the same individual, indicating

that developmental robustness is disrupted.3,12,13 HSP90 en-

codes a protein chaperone with numerous clients.3 Mutation of

such a hub gene in the gene network thus has broad impacts.2

Similarly, genes involved in central cellular processes such as

chromatin remodeling,14–16 transcription,14,15 translation,17,18

and protein degradation19,20 are also hub genes important for

developmental robustness in various organisms. How these

broad-acting hub genes contribute to the robustness of tissue-

specific developmental phenotypes remains largely unclear.
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The Arabidopsis sepal is a system to elucidate the mecha-

nisms of developmental robustness.21–25 The four sepals of a

flower initiate at orthogonal positions and grow to a constant

size and shape, allowing them to enclose and protect the devel-

oping reproductive organs (Figure 1A). Such robustness stems

from the robust initiation of the four sepal primordia from the flo-

ral meristem23 (Figure 1A), which trades off with developmental

speed.25 The sepals attain robust final size and shape by spatio-

temporal averaging of cellular growth variability and synchro-

nous progression of a growth termination signal from tip to

base.21 In addition, noise in gene expression must be kept low

to ensure sepal size robustness.26 We previously characterized

the development-related myb-like 1 (drmy1) mutant.23,25 A

drmy1 flower develops 3–5 sepals, often mispositioned and

Figure 1. drmy1 has reduced ribosome abundance, translation rate, and TOR activity

(A) Top row, side view of stage 12 buds. Asterisk shows the gap between sepals. Middle row, top view of stage 12 buds. Arrowheads show sepals. Scale bars,

0.5 mm. Note that drmy1 has 5 sepals of unequal size, unevenly spaced. Bottom row, stage 5 buds. Arrowheads show sepal primordia. Scale bars, 25 mm.

(B) Top 8 GO terms and their enrichment p values for downregulated genes in inflorescences of drmy1 vs. WT in ap1 cal AP1-GR background. See Data S1.

Arrowheads highlight terms related to ribosome biogenesis or translation.

(C) Polysomal profiles of WT (blue) and drmy1 (red) inflorescences in ap1 cal AP1-GR background. n = 3. Additional replicates are in Data S2. M, monosomes; P,

polysomes.

(D) Puromycin labeling of WT vs. drmy1. Left, seedling samples. From left to right: WT pre-treated with CHX, two bio-reps of WT pre-treated with mock, and two

bio-reps of drmy1 pre-treated with mock. For seedlings to match in size, WT seedlings were 8 days old and drmy1 seedlings were 10 days old. Right, inflo-

rescence samples of ap1 cal AP1-GR background. From left to right: WT treated with CHX, three bio-reps of WT, and three bio-reps of drmy1. Loading control

(bottom): Ponceau S-stained RuBisCO large subunit. Ratio: between puromycin and Ponceau S signals, normalized by the mean of WT (p values are from two-

sided Student’s t test).

(E) Top 8 GO terms and their enrichment p values of differentially accumulated proteins in inflorescences of drmy1 vs. WT in ap1 cal AP1-GR background. See

Data S1. Arrowheads highlight terms related to ribosome biogenesis or translation.

(F and G) Coherent alteration of gene expression by drmy1 and TOR inhibition. (F) Scatterplot of RNA log2 fold change in drmy1 vs. WT (x axis), and WT + AZD-

8055 vs. WT + mock (y axis), in 8-day-old seedlings. Genes are color coded: genes in ‘‘structural constituents of the ribosome’’ (GO:0003735) and its offspring

terms (magenta); all other genes in translation (GO:0006412) and its offspring terms (orange); all other genes (gray). Blue line shows a linear regression of all points

(R2 = 0.1446, p < 2.2 3 10�16). (G) Of the 466 genes differentially expressed under both conditions, 439 (94%) are coherently regulated.

(H and I) Phosphorylation of the direct TOR substrate, S6K-pT449, in 8-day-old seedlings. (H) Top, S6K-pT449. Middle, total S6K protein. Bottom, Ponceau S

staining. Dashes, 55 kDamarker. Ratio between S6K-pT449 and Ponceau S signals normalized byWT, quantified in three experiments (I), shows that TOR activity

decreased by half in drmy1 (mean ± SD; *p < 0.05).

See also Figure S1 and Data S1, S2, and S3.
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variably sized, leaving gaps in the bud (Figure 1A). This variability

in the mature sepal phenotype originates during sepal initiation

(Figure 1A, bottom), driven by the loss of robust patterning of

auxin and cytokinin,23 two plant hormones critical for morpho-

genesis.27–29 However, how DRMY1 maintains robust hormone

patterning is unknown.

Here, we elucidate a mechanism through which DRMY1main-

tains robust hormone patterning and thus robust sepal initiation.

Specifically, we find that DRMY1 maintains proper activity of

TARGET OF RAPAMYCIN (TOR), a crucial regulator of ribosome

level and translation.30,31 When DRMY1 is mutated, the levels

of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and

ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6

(AHP6), two cytokinin inhibitor proteins, are drastically reduced.

Consequently, cytokinin signaling uniformly increases in the flo-

ral meristem periphery, causing variability in auxin patterning

and sepal initiation. Increasing cytokinin signaling may be a sur-

vival mechanism to alleviate reduced translation when ribosomal

content is limited. In summary, our work shows that the hub pro-

cesses of TOR signaling and translation, which occur ubiqui-

tously, have tissue-specific roles in maintaining robust organo-

genesis by sustaining the rapid synthesis of hormone signaling

proteins.

RESULTS

The drmy1 mutant has reduced TOR activity, ribosome
content, and translation rate
DRMY1 encodes a MYB/SANT domain protein that may exert

transcriptional regulation.23 To look for differentially expressed

genes in drmy1 that may be candidates underlying variable sepal

initiation, we performed RNA sequencing (RNA-seq) in drmy1

and wild-type (WT) inflorescences with flowers initiating sepal

primordia (apetala1 cauliflower AP1-GR; Figure S1A).32–34 We

detected transcripts from a total of 21,496 genes of which

1,042 (4.8%) were differentially expressed in drmy1 (Figure S1B;

Data S1). The 443 genes downregulated in drmy1 were enriched

in the Gene Ontology (GO) term ‘‘translation’’ and several other

ribosome-related GO terms (Figure 1B). Within translation,

genes encoding ribosomal components were most downregu-

lated (Figure S1C). We therefore hypothesized that ribosomal

abundance and translation are affected in drmy1, potentially

altering the accumulation of proteins critical for developmental

robustness.

To determine whether ribosomal abundance is affected in

drmy1, we performed polysome profiling. All peaks correspond-

ing to 40S, 60S, monosomes, and polysomes were drastically

reduced in drmy1 (Figure 1C; Data S2). To see whether this

reduction in ribosomal content affected the de novo protein syn-

thesis rate, we performed puromycin labeling.35,36 In both young

seedlings and inflorescences, the puromycin level detected in

the drmy1 mutant was much reduced compared with WT (Fig-

ure 1D), indicating a reduction in global translation rate. A

reduced global translation rate should result in globally

decreased protein levels; a ubiquitously expressed membrane

marker UBQ10::mCherry-RCI2A had a small (�25%) but signifi-

cant decrease in fluorescence intensity in drmy1 (Figures S1D

and S1E). This decrease in fluorescence intensity in drmy1 is

even greater than the decrease in ribosomal mutant ul4y

(rpl4d)37 (Figures S1F and S1G). Overall, these results show

that ribosomal content and translation are indeed reduced in

the drmy1 mutant.

To test how translational reduction in drmy1 impacts its prote-

ome, we performed proteomics. We identified a total of 5,077

proteins of which 548 (10.8%) were differentially accumulated

in drmy1 (Figure S1B; Data S1). These differentially accumulated

proteins were enriched in GO terms related to translation and ri-

bosomes (Figure 1E). Despite a reduction in ribosomal content

(Figure 1C), ribosomal component proteins were more abundant

in drmy1 (Figure S1H). Moreover, components of the 26S protea-

some were more abundant in drmy1, whereas poly(A) binding

proteins and tRNA synthetases were less abundant (Data S1).

Thus, the machinery responsible for maintaining protein homeo-

stasis is substantially dysregulated in drmy1.

TOR is a key regulator of growth-related processes, including

ribosome biogenesis and translation.30,31,38–42 TOR regulates

the translation of mRNAswith specific sequence features and in-

creases global protein synthesis by increasing ribosome

levels.31,42–49 We therefore hypothesized that the decrease in ri-

bosomal content and translation in drmy1 may reflect altered

TOR signaling. To test for transcriptomic signatures of TOR inhi-

bition,31,50,51 we performed RNA-seq on seedlings of WT,

drmy1, WT treated with AZD-8055 (a potent TOR inhibitor), and

mock-treated WT (Data S3). A significant portion of genes differ-

entially expressed under TOR inhibition vs. mock were also

differentially expressed in drmy1 vs. WT (466/2,044 = 22.8%; hy-

pergeometric test, p = 4.7 3 10�108; Figure 1F). Most of these

466 genes were coherently downregulated or upregulated

(439/466 = 94.2%, chi-squared test, p < 2.2 3 10�16;

Figures 1G and S1I). Genes coherently downregulated were en-

riched in GO terms related to translation and ribosomes

(Figures 1F and S1J). These similar transcriptomic changes sup-

port our hypothesis that TOR activity is reduced in drmy1. To

further test this hypothesis, we measured TOR activity in WT

and drmy1 by assaying the phosphorylation of its direct sub-

strate, RIBOSOMAL PROTEIN eS6 KINASE (S6K).52,53 S6K

phosphorylation drastically decreased in drmy1, demonstrating

reduced TOR activity (Figures 1H and 1I). Overall, these results

suggest that drmy1 has reduced TOR activity, which decreases

ribosomal content and global translation.

Defects in TOR activity, ribosome, and translation
disrupt robust sepal initiation
We next asked whether defects in TOR activity, ribosomes, or

translation have effects on robust sepal initiation like the drmy1

mutation does (Figures 2A and 2B).23 We imaged three ribo-

somal mutants, ul4z (rpl4a), ul4y (rpl4d), and ul18z (rpl5a),37

each mutated in a gene that is transcriptionally downregulated

in drmy1 (Figure S1C). The ul4z mutant bud showed reduced

size of the inner sepal primordia relative to the outer sepal

primordia (Figure 2C) and slightly more variable positioning of

sepal primordia (Figures 2I and 2J), although it always developed

four sepal primordia (Figure 2H). This is a weaker phenotype than

drmy1 but has similar characteristics. The ul4y and ul18z mu-

tants showed great variability in the number and position of sepal

primordia (Figures 2D, 2E, 2H, and 2J), more similar to drmy1. In

double mutants of drmy1 and these ribosomal mutants, we

observed some buds with more extreme phenotypes than either
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Figure 2. Defects in TOR activity, ribosome, and translation disrupt robust sepal initiation

(A–G) Stage 5 buds. Tissue morphology is visualized by a 35S::mCitrine-RCI2A membrane marker (A) and (B) or propidium iodide stain (C)–(G). Arrowheads

indicate sepal primordia that are variable in number, position, and size (same for K–P).

(legend continued on next page)
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single mutant (Figures S2A–S2H), although, on average, sepal

initiation was as variable as in the drmy1 single mutant

(Figures S2I and S2J). Homozygous drmy1 ul18z doublemutants

were embryo lethal (Figure S2K), supporting the idea that ribo-

somal mutations enhance the drmy1 phenotype.

We then imaged mutants with reduced TOR activity to deter-

mine whether sepal initiation is also less robust. lst8-1-1 is a

mutant of a TOR complex (TORC) component54 and is weakly

hypomorphic in TOR activity.We found that lst8-1-1 showed var-

iable sepal initiation in a small proportion of buds (4/41, 9.8%)

(Figures 2F, 2H, and 2J). The spaghetti-1 mutant, defective in

TOR complex 1 (TORC1) assembly,55 showed a level of vari-

ability comparable to the drmy1 mutant and the ribosomal mu-

tants ul4y and ul18z (Figures 2G, 2H, and 2J). Mutants with

more severe disruption of TOR activity were embryo lethal and

could not be analyzed.55,56 These results show that reduction

in TOR activity can cause variability in sepal initiation, similar

to drmy1.

To corroborate these findings, we inhibited translation by

in vitro culture of WT inflorescences on 2 mM cycloheximide

(CHX). This concentration does not completely block translation.

CHX-treated inflorescences developed buds that have 2–6 un-

evenly spaced sepal primordia with variable sizes (Figures 2K,

2L, 2Q, and 2R). These phenotypes were stronger than drmy1.

Similarly, we inhibited TOR activity by application of 100 mM

Torin2 or 3.2 mM AZD-8055 to the growing shoot apex and we

observed variable sepal initiation (Figures 2M–2R). Overall, these

data show that inhibition of TOR activity and translation can

disrupt the robustness of sepal initiation.

We previously showed that drmy1 buds develop sepals of

different sizes because of increased differences in the initiation

timing of sepal primordia within the same bud.23 We asked

whether TOR or ribosomal defects similarly disrupt the relative

timing of sepal initiation. In ul4y, the time between sepal initiation

within a bud was longer than that in WT, and these time differ-

ences were more variable across buds, indicating a loss of

robustness in organ initiation timing (Figures 3A–3C). Torin2

treatment on WT buds caused similar defects (Figures 3D–3F).

These results show that TOR and ribosomal defects can disrupt

the precisely orchestrated initiation timing of sepal primordia

within the same bud. In drmy1, variability in initiation timing

causes variable sizes and gaps in mature sepals.23 In contrast,

in ul4z, ul4y, ul18z, and lst8-1-1, sepals within the same flower

developed to the same mature length, leaving no (ul4z, ul4y, or

ul18z) or small gaps (lst8-1-1) (Figures S3A–S3N). Sepals that

initiated late, grew faster to catch up with the other sepals and

closed the gap (Figures S3O–S3Q). Our results suggest that

there exists a size-coordinating mechanism—which is indepen-

dent of TOR or ribosomal functions but requires DRMY1—that

allows sepals within the same bud to reach the same mature

length. Such a mechanism requires further investigation.

Inhibition of TOR activity and translation increases
cytokinin signaling and disrupts the robust spatial
pattern of auxin and cytokinin signaling
Auxin and cytokinin are plant hormones critical to develop-

ment,27–29 acting synergistically in the shoot apical meristem to

promote lateral organ initiation.11,57,58 Prior to sepal initiation,

auxin and cytokinin signaling concentrates at the four incipient

primordia, which is required for robust sepal initiation from these

regions (Figures 4A and S4A).23 In the drmy1 mutant, cytokinin

signaling becomes stronger and diffuse around the bud periph-

ery (Figures 4A and 4B). Auxin signaling also becomes more

diffuse, forming irregular auxin maxima that are less focused

than those in WT, except at the incipient outer sepal where it re-

mains robust (Figures 4A and S4B).23 These changes in hormone

signaling correlate with variable sepal initiation (Figure S4B).23

We wondered whether ribosomal mutations have similar effects

on auxin and cytokinin signaling. We imaged the auxin-signaling

reporter DR5::3xVENUS-N7 and the cytokinin-signaling reporter

TCS::GFP in floral meristems of the ribosomal mutant ul4y. Both

reporters lost their robust spatial pattern, except in the incipient

outer sepal (Figures 4A and S4C). WT buds showed four clear

DR5 and TCS peaks, with very little signal in between, whereas

in drmy1 and ul4y there was greater noise and variation all

around the bud (Figures 4C and 4D). Diffuse bands of auxin

signaling that typically occurred in the adaxial or lateral periphery

of drmy1 and ul4y buds later resolved into several distinct auxin

maxima at various positions, correlated with the initiation of

sepal primordia at these positions (Figures S4B and S4C).

We also tested whether drug treatments that inhibit TOR activ-

ity or translation can disrupt the robust hormone patterning.

Buds treated in vitro with the translation inhibitor CHX (2 mM)

for 3 days showed a 50% increase in cytokinin signaling, and

both auxin and cytokinin signaling became diffuse around the

bud periphery (Figures 4E–4H). By day 6, cytokinin signaling

was still diffuse and had doubled in total intensity (Figures 4I,

4J, and 4L). Auxin signaling formed maxima of variable number

at variable positions (Figures 4I arrowheads and 4K), correlated

with the variable initiation of sepal outgrowth at these positions

(Figures S4D and S4E). Similar changes in hormone patterning

occurred in buds treated in vitro with the TOR inhibitor

(H) Sepal primordium number, comparing drmy1 (n = 67 buds), ul4z (n = 52 buds), ul4y (n = 53 buds), ul18z (n = 52 buds), lst8-1-1 (n = 41 buds), and spaghetti-1

(n = 84 buds) with WT (n = 51 buds). *p < 0.05 in Fisher’s contingency table tests compared with WT.

(I) Illustration of robust vs. variable positioning of sepal primordia. Primordia are considered robustly positioned if they are evenly distributed around the bud

periphery. Within each bud, angles between adjacent primordia with respect to the bud center are measured, and coefficient of variation (CV) is calculated.

(J) Variability in primordium positioning (CV), following illustration in (I). *p < 0.05 in Wilcoxon’s rank sum tests compared with WT.

(K and L) Buds treated in vitro with mock (K) or 2 mM CHX (L) for 9–10 days.

(M and N) Buds treated in planta with mock (M) or 100 mM Torin2 (N) for 15 days.

(O and P) Buds treated in planta with mock (O) or 3.2 mM AZD-8055 (P) for 15 days.

(Q and R) Sepal primordium number (Q) and positional variability (R). Sample size: mock for CHX, n = 42 buds; CHX, n = 31 buds; mock for Torin2, n = 56 buds;

Torin2, n = 51 buds; mock for AZD-8055, n = 27 buds; AZD-8055, n = 24 buds.

*p < 0.05 in Fisher’s contingency table tests (Q) or Wilcoxon’s rank sum tests (R) compared with mock.

Scale bars, 25 mm.

See also Figure S2 and Data S4.
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Figure 3. TOR and ribosomal defects cause variability in sepal initiation timing

(A–C) Live imaging of sepal initiation in WT (A, n = 48 buds) and ul4y (B, n = 40), quantified in (C).

(D–F) Live imaging of sepal initiation in buds treated in planta with mock (D, n = 31) or 100 mM Torin2 (E, n = 15), quantified in (F).

(legend continued on next page)
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AZD-8055 (2 mM) for 6 days (Figures 4I–4L). Buds treated

in planta with 3.2 mM AZD-8055 or 100 mM Torin2 for

15 days showed similar changes, although to a lesser extent

(Figures S4F–S4M). Overall, these results suggest that defects

in TOR activity and translation cause hormone patterning

changes similar to the drmy1 mutant: an increase in cytokinin-

signaling level and a loss of the precise spatial patterning of cyto-

kinin and auxin signaling required for robust sepal initiation.

An increase in cytokinin signaling is necessary and
sufficient for variable auxin signaling and sepal initiation
under translation inhibition
We wondered what caused auxin to lose its robust patterning

during inhibition of TOR activity and translation. It was previously

reported that the ribosomal mutants ul4y, ul18z, and el24y

have reduced protein levels of AUXIN RESPONSE FACTOR

(ARF) 3, 5, and 7,59–61 key transcription factors that mediate

the auxin-signaling response,62 because they contain upstream

open reading frames (uORFs) requiring translation reinitia-

tion.59–61,63,64 We therefore tested translation of uORF-contain-

ing transcripts in drmy1. We found a small but significant

decrease in the protein-transcript ratio in drmy1 for the 724

genes containing at least 2 uORFs in their transcripts, supporting

the hypothesis that drmy1 has reduced translation reinitiation for

uORF-containing transcripts (Figure S5A; uORF data from Von

Arnim et al.64). Surprisingly, we saw no correlation between the

presence of uORFs and decrease in fluorescent intensity of

ARF reporters in drmy1 (Figures S5B–S5D). This result suggests

that the decrease in translation reinitiation of uORF-containing

ARFs is not the main factor explaining the loss of robust auxin-

signaling pattern in drmy1.

External application of cytokinin increases auxin biosyn-

thesis65 and changes the expression and polarity of PIN-

FORMED (PIN) polar auxin transport carriers.66,67 We previously

noticed that external application of 6-benzylaminopurine (BAP),

a synthetic cytokinin, induced additional convergence points of

PIN1 and increased variability in auxin signaling, causing vari-

ability in sepal initiation.23 Here, we confirmed that whereas

the mock-treated WT buds showed four clear peaks of DR5

signal with very little signal in between (Figures 5A and 5B), those

treated with BAP showed a less robust spatial pattern, with less

distinguishable peaks and larger variation (Figures 5C and 5D).

Thus, excessive cytokinin is sufficient for the variable spatial

pattern of auxin signaling.

We then wondered whether an increase in cytokinin signaling

(Figure 4) was the cause of the variable pattern of auxin signaling

under translation-limited conditions such as drmy1. To test this

hypothesis, we introduced mutations in B-type ARABIDOPSIS

RESPONSE REGULATORS (ARRs) and in a cytokinin receptor

WOODEN LEG (WOL)/ARABIDOPSIS HISTIDINE KINASE 4

(AHK4) into drmy1 to see whether they rescue the variability in

auxin patterning and sepal initiation. Although buds of

arr1,10,12 and wol did not show apparent phenotypic differ-

ences fromWT, drmy1 arr1,10,12 and drmy1 wol largely rescued

the drmy1 phenotype, with much less variability in sepal number,

position, and size (Figures 5E–5G and S6). Although the auxin-

signaling reporter DR5 was diffuse and variable in drmy1, except

in the incipient outer sepal (Figures 5H and 5I), in drmy1

arr1,10,12, it was focused in all the four incipient sepals that

were robustly positioned (Figures 5J and 5K). These results indi-

cate that cytokinin signaling is required for the increased vari-

ability in auxin signaling and sepal initiation patterns in drmy1.

The translation inhibitor CHX disrupted robustness in auxin

signaling and sepal initiation in WT (Figures 2L, 4E, and 4I). We

tested whether these effects were still present in arr1,10,12

and wol mutants. Unlike WT, sepal initiation remained mostly

robust in arr1,10,12 and wol after 2 mM CHX treatment

(Figures 5L–5N). Whereas DR5 in WT became diffuse and

occurred in variable positions after 3 days of CHX treatment

(Figures 5O and 5P, arrow), DR5 in arr1,10,12 remained robust

and concentrated at the four incipient sepal primordia

(Figures 5Q and 5R). These results suggest that an elevated

cytokinin-signaling level is the primary cause for variability in

auxin patterning under translation-inhibited conditions. Thus,

maintaining a low level and focused cytokinin signaling is crucial

for robust auxin patterning and sepal initiation.

Upregulation of cytokinin signaling is required to sustain
translation and fitness in drmy1

Under translation-inhibited conditions, why does the plant upre-

gulate cytokinin signaling at the cost of developmental robust-

ness? Previous studies revealed that cytokinin signaling can

stimulate translation.68–76 We therefore hypothesized that an in-

crease in cytokinin signaling under translation-inhibited condi-

tions (such as drmy1) sustains a survivable rate of translation in

a feedback loop. We first validated that increased cytokinin

signaling (arr1 35S::ARR1) increased global translation (Fig-

ure 6A; see also Karunadasa et al.68) in 14-day-old seedlings.

We then tested whether cytokinin signaling is required to sustain

global translation (Figures 6B and 6C). Compared with WT, the

cytokinin receptor single mutant wol had a mild reduction in

global translation rate at day 8 and a �50% reduction at day

14. The drmy1 singlemutant showed a drastically reduced global

translation rate at day 8, but, by day 14, the global translation

rate in drmy1 increased and matched WT. In the drmy1 wol dou-

ble mutant, however, the translation rate was unable to recover

at day 14 and remained lower than drmy1. Our data suggest

that, in drmy1 plants, the upregulated cytokinin signaling is

required to sustain global translation at near-WT levels.

We then hypothesized that an upregulation of cytokinin

signaling and the consequent restoration of global translation

would benefit fitness in drmy1. Thus, we expect that mutation

of the cytokinin receptor WOL in drmy1, and the consequent fail-

ure to sustain global translation, should affect plant vitality and

reproduction. We found that, at day 14, the drmy1 single mutant

was slightly smaller than WT, whereas drmy1 wol plants were

In (A), (B), (D), and (E), top rows show the 35S::mCitrine-RCI2A membrane marker, and bottom rows show Gaussian curvature heatmaps of the same images.

Asterisks indicate sepal initiation (a primordiumwith positive curvature adjacent to boundary with negative curvature). Scale bars, 25 mm. (C) and (F) show the time

between outer and inner sepal initiation (left) and between outer and lateral sepal initiation (right) within each bud. Bar plot shows mean ± SD. *p < 0.05 in

Wilcoxon’s rank sum test (for mean) or Levene’s test (for SD).

See also Figure S3 and Data S4.
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Figure 4. Inhibition of TOR activity and translation cause variability in auxin and cytokinin signaling

(A–D) The ribosomal mutant ul4y loses robustness in auxin and cytokinin signaling.

(A) Stage 2 buds of WT, drmy1, and ul4y, showing the auxin-signaling reporter DR5::3xVENUS-N7 in yellow, the cytokinin-signaling reporter TCS::GFP in cyan,

and both merged with chlorophyll (in WT) or UBQ10::mCherry-RCI2A (in drmy1 and ul4y) in magenta.

(B) TCS intensity (mean ± SD) normalized to mean of WT. *Two-tailed Student’s t tests (drmy1, p = 2.1 3 10�6; ul4y, p = 3.4 3 10�5).

(C and D) Circular histograms of DR5 and TCS signal distribution. In WT, the incipient outer sepal is near 45�, the incipient inner sepal near 225�, and the incipient

lateral sepals near 45� and 135� (vertical dotted lines). Solid line represents mean, and shaded area represents mean ± SD. WT, n = 12 buds; drmy1, n = 15 buds;

ul4y, n = 10 buds.

(E–H) 3 days of translation inhibition causes increased and diffuse cytokinin signaling and diffuse auxin signaling. (E) WT buds treated in vitro with mock or 2 mM

CHX for 3 days. (F) TCS intensity. *Two-tailed Student’s t test (p = 2.0 3 10�4). (G) and (H), circular histograms of DR5 and TCS. Mock, n = 10 buds; CHX,

n = 12 buds.

(I–L) 6 days of TOR or translation inhibition causes increased and diffuse cytokinin signaling, and randomly positioned auxin-signalingmaxima. (I)WT buds treated

in vitrowith mock, 2 mMCHX, or 2 mMAZD-8055 for 6 days. Arrowheads show randomly positioned auxin maxima. (J) TCS intensity. *Two-tailed Student’s t tests

(CHX, p = 1.03 10�3; AZD-8055, p = 1.23 10�4). (K) and (L), circular histograms of DR5 and TCS. Mock, n = 12 buds; CHX, n = 11 buds; AZD-8055, n = 10 buds.

Scale bars, 25 mm.

See also Figure S4 and Data S4.
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Figure 5. Cytokinin signaling is required for increased variability in auxin signaling and sepal initiation under translation inhibition

(A–D) Cytokinin treatment makes auxin signaling diffuse. Shown are WT buds under mock (A) and (B) or 5 mM cytokinin (BAP) treatment (C) and (D) for 4 days.

(A) and (C) auxin-signaling reporter DR5 in yellow, and DR5merged with chlorophyll in magenta. (B) and (D) Circular histograms (mean ± SD). Arrows show DR5

signal in variable positions. n = 10 buds each.

(legend continued on next page)
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extremely retarded compared with wol, with tiny and chlorotic

cotyledons and leaves (Figure 6D). In older plants, the drmy1 sin-

gle mutant had similar rosette size and slightly shorter inflores-

cences compared with WT. In contrast, drmy1 wol produced

tiny rosettes and stunted inflorescences, with a few chlorotic

buds that developed into short siliques (Figures 6E and S6F).

Similarly, growth of drmy1 arr1,10,12 was much retarded

compared with arr1,10,12 (Figures 6F and S6E) and all seeds

had aborted in the siliques (Figure 6G). Although it remains

possible that unknown effects of the cytokinin-signaling pathway

other than promoting translation are critical for the vitality of

drmy1, the data are consistent with our hypothesis that the upre-

gulation of global translation (Figure 6A) by increased cytokinin

signaling (Figure 4) maintains a survivable level of protein synthe-

sis in plants with reduced ribosomal content, such as drmy1.

TOR and translation inhibition decreases the protein
level of cytokinin-signaling inhibitors ARR7 and AHP6
What causes cytokinin signaling to increase in plants with

reduced TOR activity and translation? We first tested whether

drmy1 has more cytokinin levels than WT; however, we found

no significant difference in the levels of trans-Zeatin, cis-Zeatin,

isopentenyladenine, and their nucleosides (Figure S7A). Also, the

transcript levels of most cytokinin-signaling components did not

significantly differ between drmy1 and WT (Figure S7B). These

results suggest that TOR and translation inhibition increases

cytokinin signaling through post-transcriptional regulations,

including protein synthesis.

We considered the effects that a decrease in global translation

might have on the protein components of the cytokinin-signaling

pathway. In particular, A-type ARRs, which encode inhibitors

of cytokinin signaling,77–79 are rapidly induced upon cytokinin

application to dampen cytokinin response.80–82 Likewise,

AHP6 is highly expressed in lateral organ primordia downstream

of auxin signaling, which non-cell-autonomously represses and

restricts cytokinin signaling to robust spatial patterns.11 The

rapid synthesis of the A-type ARR and AHP6 proteins may be

crucial for maintaining the homeostasis of cytokinin signaling

during development. We therefore hypothesized that translation

defects in drmy1may cause reduced synthesis of these proteins,

decreasing them to a level insufficient to repress cytokinin

signaling (Figure 7A).

To visualize A-type ARR proteins, we employed LlamaTag,

a recently developed method to visualize the abundance of

nuclear-localized proteins with short half-lives.83 We used

LlamaTag because we were unable to detect fluorescence in

the inflorescence of a traditional GFP fusion (pARR4::ARR4-

GFP84) and A-type ARRs have low protein levels (not detected

in our proteomics dataset) and short half-lives.85 We focused

on ARR7, the most highly expressed A-type ARR in our inflores-

cence RNA-seq (Figure S7B), which is nuclear localized.86,87

ARR7 was fused to a fast-folding, anti-GFP LlamaTag (ARR7-

llama). Soon after translation, the fusion binds cytoplasm-local-

ized GFP (GFP-nes, with a nuclear exclusion signal) and translo-

cates it to the nucleus. Thus, GFP fluorescence in the nucleus

indicates ARR7 abundance (Figures 7B and 7C). Nuclear GFP

signal in ARR7-llama GFP-nes increased within 5 h of 200 mM

BAP treatment (Figures S7C and S7D), consistent with previ-

ously reported effect of cytokinin in increasing A-type ARR

expression and protein stability.85,88

We then compared ARR7-llama GFP-nes in floral meristems of

WT and drmy1 before sepal initiation. If increased cytokinin

signaling in drmy1 was at least in part caused by insufficient

ARR7 level, we would see reduced nuclear GFP signal in drmy1

ARR7-llama GFP-nes. Otherwise, we would see increased ARR7

level andnuclearGFPsignalbecausecytokinin signaling increases

the gene expression and protein stability of A-type ARRs.81,85,88,89

We found that nuclear ARR7 level was reduced in the drmy1

mutant, particularly in the bud periphery where sepals initiated

(Figures 7D and 7E).We next testedwhether this conclusion holds

in other translation-inhibited conditions. CHX treatment for 24 h

drastically reduced the nuclear ARR7 level (Figure 7F). AZD-8055

treatment for 72 h had a milder but similar effect (Figures 7G and

S7E–S7H). Thus,conditions thatdecreaseglobalprotein synthesis

greatly decrease the nuclear level of ARR7 protein.

We also tested whether TOR or translation inhibition alter the

protein level of AHP6. We imaged the pAHP6::AHP6-VENUS11

protein reporter under mock, CHX, or AZD-8055 treatment.

Whereas mock-treated buds highly accumulate the AHP6 pro-

tein in the four incipient sepal primordia, buds treated with

CHX or AZD-8055 abolished AHP6 accumulation within 72 h

(Figure 7H). The pAHP6::GFP-ER90 transcriptional reporter did

not change under these treatments (Figure 7I), in agreement

with our RNA-seq data of WT vs. drmy1 (Figure S7B), suggesting

that the change in AHP6 protein level is due to post-transcrip-

tional regulation such as altered translation.

To determinewhether inhibition of TOR and translation also re-

duces positive regulators of cytokinin signaling, we tested AHP3,

(E–G) Cytokinin signaling is required for variable sepal initiation in drmy1. (E) Stage 5 buds. Sepal primordia in drmy1 are variable (arrowheads), which does not

occur in drmy1 arr1,10,12 and drmy1 wol. (F) and (G) Sepal primordium number (F) and positional variability (G), comparing WT (n = 58) vs. drmy1 (n = 31),

arr1,10,12 (n = 24) vs. drmy1 arr1,10,12 (n = 20), and wol (n = 36) vs. drmy1 wol (n = 39). *p < 0.05 in Fisher’s contingency table tests (F) or Wilcoxon’s rank sum

tests (G).

(H–K) Cytokinin signaling is required for diffuse auxin signaling in drmy1. Shown are stage 2 buds of WT vs. drmy1 (H) and (I), and arr1,10,12 vs. drmy1 arr1,10,12

(J) and (K). Arrows in (H) and (I) show diffuse DR5 signal. Arrowheads in (J) show four robust auxin maxima. (I) and (K), circular histograms of theDR5 signal. Inset:

90�–360� are enlarged (y axis range 0–0.4). WT, n = 19; drmy1, n = 16; arr1,10,12, n = 13; drmy1 arr1,10,12, n = 9.

(L–N) Cytokinin signaling is required for variable sepal initiation under translation inhibition. (L) Stage 6 buds ofWT, arr1,10,12, andwol, treated with mock or 2 mM

CHX for 10 days. (M) and (N) Sepal primordium number (M) and positional variability (N). WT mock, n = 29; WT CHX, n = 19; arr1,10,12mock, n = 18; arr1,10,12

CHX, n = 19; wol mock, n = 15; wol CHX, n = 19. *p < 0.05 in Fisher’s contingency table tests (M) or Wilcoxon’s rank sum tests (N).

(O–R) Cytokinin signaling is required for diffuse auxin signaling under translation inhibition. Shown are stage 2 buds of WT (O) and (P) and arr1,10,12 (Q) and (R),

treated with mock or 2 mM CHX for 3 days. Arrows in (O) and (P) show diffuse DR5 signal. Arrowheads in (Q) show four robust auxin maxima. (P) and (R) Circular

histograms of the DR5 signal. WT mock, n = 17; WT CHX, n = 18; arr1,10,12 mock, n = 7; arr1,10,12 CHX, n = 7.

Scale bars, 25 mm.

See also Figures S5 and S6 and Data S4.
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a component of the cytokinin phosphorelay.91,92 CHX treatment

did not affect the level or spatial localization pattern of the pAH-

P3::AHP3-GFP reporter,93 whereas AZD-8055 treatment only

mildly decreased its level (Figure S7I). We also tested how the

levels of other, more generic proteins respond to TOR and trans-

lation inhibition. Unexpectedly, the level of pUBQ10::mCherry-

RCI2A increased upon 72 h of CHX or AZD-8055 treatments

(Figure S7J). Overall, these results show that TOR and translation

inhibition does not result in a uniform reduction in the level of all

proteins, but specific proteins such as ARR7 and AHP6 are more

dramatically decreased. Furthermore, these results are consis-

tent with our hypothesis that depletion of cytokinin-signaling

inhibitor proteins, including ARR7 and AHP6, may underlie the

upregulation of cytokinin signaling when the floral meristem is

under TOR or translation inhibition.

We next tested whether the reduction of A-type ARR or AHP6

proteins contributes to the variability in sepal initiation. High-

order mutants of A-type ARRs (arr3,4,5,6,7,8,9,1594) show

reduced size of the inner sepal primordium (Figures 7J and 7K)

and a minor but significant increase in the positional variability

of sepal primordia (Figure 7Q), although sepal primordium num-

ber remains robust (Figure 7P). The ahp6 mutant11 shows great

variability of sepal primordium number, position, and size,

although to a lower extent than drmy1 (Figures 7J, 7L, 7P, and

7Q). Similarly, if the reduction of ARR7 level in drmy1 contributes

to variability in sepal initiation, increasing ARR7 expression

should restore sepal initiation robustness. Introducing ARR7-

llama into drmy1 plants partially restored robustness in sepal

initiation, particularly in the positioning of sepal primordia

(Figures 7M–7Q) and sepal size (Figures S7K–S7N). Overall,

these results show that reducing the level of cytokinin-signaling

inhibitor proteins ARR7 and AHP6 creates variability in sepal pri-

mordium initiation, and increasing their level in drmy1 partially re-

stores robustness. We propose that, during hormone patterning

prior to sepal initiation, the rapid synthesis of these inhibitor pro-

teins in response to auxin and cytokinin signaling is crucial for

Figure 6. Upregulation of cytokinin signaling is required to maintain translation and fitness in drmy1

(A) Puromycin labeling ofWT seedlings with 4 h CHX pre-treatment (control), and three bio-reps ofWT and arr1 35S::ARR1 seedlings with 4 hmock pre-treatment.

(B and C) Puromycin labeling of WT seedlings with 4 h CHX pre-treatment (control), and two bio-reps of WT, drmy1,wol, and drmy1 wol seedlings with 4 h mock

pre-treatment.

For (A)–(C), age of seedlings is indicated on top. Loading control: RuBisCO large subunit, Ponceau S-stained. Ratio: between puromycin and Ponceau S,

normalized tomean ofWT. p value in (A) is from a two-sided Student’s t test. Letters in (B) and (C) show Tukey’s pairwise comparison in a one-way ANOVAmodel.

(D) 14-day-old seedlings of WT, drmy1, wol, and drmy1 wol. Scale bars, 5 mm.

(E) Aerial part of 42-day-old plants of WT, drmy1, wol, and drmy1 wol. Inset shows the magnified drmy1 wol plant. Scale bar, 5 cm. See also Figure S6F.

(F) Aerial part of 74-day-old plants of WT, drmy1, arr1,10,12, and drmy1 arr1,10,12. Inset shows the magnified drmy1 arr1,10,12 plant. Scale bar, 5 cm. See also

Figure S6E.

(G) Dissected siliques of arr1,10,12 (left) and drmy1 arr1,10,12 (right) showing developing seeds. Notice that whereas arr1,10,12 occasionally have aborted seeds,

all seeds in the drmy1 arr1,10,12 silique were aborted. Scale bars, 0.2 mm.

See also Data S4.
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Figure 7. ARR7 and AHP6 protein levels are reduced upon inhibition of TOR and translation

(A) Hypothesis: A-type ARR and AHP6 proteins are rapidly produced to dampen cytokinin signaling to a normal level. In drmy1, reduced protein synthesis causes

reduced levels of these inhibitor proteins, upregulating cytokinin signaling.

(legend continued on next page)
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maintaining the homeostasis of cytokinin signaling and, thus, the

robustness in sepal initiation.

We also considered other hormone-related proteins that are

dynamically regulated and thus may be depleted under transla-

tion defects. AUXIN/INDOLE-3-ACETIC ACID INDUCIBLE

(Aux/IAA) proteins are auxin-signaling inhibitors that are

rapidly induced by auxin.95,96 They bind auxin and are rapidly

degraded,97–100 dependent on domain II (DII).99–101 We hypoth-

esized that the level of Aux/IAAs would be drastically decreased

in translation-inhibited conditions because synthesis is unable to

keep up with degradation upon auxin signaling. To test this, we

used the R2D2 reporter,102 which contains a DII fused with

3xVENUS (pUS7Y::DII-n3xVENUS), and, as a control, a mutated

non-degradable DII fused with tdTomato (pUS7Y::mDII-

ntdTomato). DII-VENUS was not reduced in drmy1 but instead

slightly but significantly elevated (Figures S7O and S7P). Overall,

these results suggest that the level of DII-containing Aux/IAA

proteins is not reduced in drmy1, despite the high requirement

for synthesis due to their rapid turnover. Thus, not all proteins

that are dynamically regulated in response to hormone signaling

are equally affected by translation inhibition.

DISCUSSION

Robustness, the strikingly reproducible development of pheno-

type, has fascinated biologists for decades.2 The Arabidopsis

flower robustly develops four sepals of equal size. This stems

from the robust initiation of four sepal primordia from the floral

meristem, which is, in turn, dictated by the robust patterning of

auxin and cytokinin controlled by DRMY1.23 Here, we show

that DRMY1 sustains TOR activity, ribosomal content, and trans-

lation, which controls robust hormone patterning and thus robust

sepal initiation. We further show that inhibition of TOR activity or

translation is sufficient to cause variability in the initiation timing,

position, and number of sepal primordia, mimicking the drmy1

phenotype. Our findings agree with previous studies that have

shown robustness is often maintained by genes involved in cen-

tral cellular processes.2 In our case, the rate of translation in WT

maintains proper levels of ARR7 and AHP6, two cytokinin-

signaling inhibitor proteins, which need to be rapidly synthesized

to dampen cytokinin signaling. Homeostasis of cytokinin

signaling ensures robustness in auxin-signaling patterns and

thus robustness in sepal initiation (Figure 7R, top). In the drmy1

mutant, reduced TOR activity, ribosomal content, and translation

rate prevent rapid synthesis of these inhibitor proteins. Conse-

quently, cytokinin signaling is elevated, disrupting the robust

spatial pattern of auxin signaling, leading to variable sepal initia-

tion (Figure 7R, bottom). Blocking cytokinin signaling in drmy1 is

sufficient to restore robust initiation of four sepal primordia but

has severe consequences on the overall fitness of the plant.

Our results reveal how defects in hub cellular processes such

as TOR signaling and translation can have tissue-specific

phenotypic effects.

It was discovered long ago that cytokinin application to plant

tissue or cell-free extracts can promote translation,69–72 at least

in part mediated by the cytokinin-signaling pathway.68,76 Here,

we show that cytokinin signaling is upregulated in translation-in-

hibited conditions (Figure 4), which maintains the translation rate

at a level necessary for the survival and reproduction of the plant

(Figure 6). We propose that this represents a homeostasis mech-

anism where plants leverage increased cytokinin signaling to

rescue reduced translation rate (Figure 7R, bottom).

Although translation-inhibited plants likely upregulate cyto-

kinin signaling to maintain protein synthesis, this upregulation

negatively affects developmental robustness. Our results sug-

gest that cytokinin upregulation is necessary and sufficient for

variability in auxin patterning and sepal initiation, indicating

that the cytokinin-signaling changes are primary defects in

(B) Illustration of LlamaTag. Plants were co-transformed with ARR7-llama (pARR7::ARR7-linker-llama-ARR7ter) and GFP-nes (pUBQ10::sfGFP-nes-UBQ3ter).

Without ARR7-llama, GFP localizes to the cytosol due to the nuclear export sequence (nes). ARR7-llama is produced in the cytoplasm (C), binds GFP-nes, and

translocates into the nucleus (N,excluded from the nucleolus, NL). Thus, the amount of GFP in the nucleus shows ARR7-llama protein level.

(C) GFP-nes signal in the cytoplasm.

(D and E) GFP images of buds from two independent lines of ARR7-llama GFP-nes, 7-4 (D) and 7-6 (E), of WT (top) vs. drmy1 (bottom). Images represent n = 17

(line 7-4,WT), n = 40 (line 7-4, drmy1), n = 9 (line 7-6,WT), and n = 6 (line 7-6, drmy1) buds. Note that GFP ismore cytoplasm localized in drmy1, indicating reduced

ARR7-llama protein level.

(F) GFP images ofWTARR7-llamaGFP-nes buds treatedwithmock (top, n = 20 buds from three independent lines) or 2 mMCHX (bottom, n = 19 buds, same lines)

for 24 h.

(G) GFP images ofWT ARR7-llamaGFP-nes buds treated with mock (top, n = 13 buds from two independent lines) or 2 mMAZD-8055 (bottom, n = 11 buds, same

lines) for 72 h.

For (C)–(G), each image was brightened to reveal subcellular localization patterns of GFP. GFP intensity was quantified along a line in an enlarged square region

containing 5–10 cells. x axis, pixels (0–238). y axis, GFP intensity (smoothened by averaging 11-pixel neighborhoods; range 90–210 in gray value).

(H and I) Response of the AHP6 protein reporter (H) and transcriptional reporter (I) to mock, CHX, and AZD-8055 treatments for 72 h. For (H), images represent

n = 29 (mock), n = 29 (CHX), and n = 34 (AZD-8055) buds in three experiments. For (I), images represent n = 11 (mock), n = 9 (CHX), and n = 12 (AZD-8055) buds in

two experiments.

(J–Q) Reduction of A-type ARR and AHP6 protein levels contribute to the variability in sepal initiation. (J)–(O), stage 5–6 buds. Arrowheads, variably initiated sepal

primordia. The ARR7-llama GFP-nes constructs partially rescue the drmy1 phenotype in some buds (O, left) but not others (O, right). (P) Sepal primordium

number. Fisher’s exact test (WT vs. ahp6, p = 3.026 3 10�7; drmy1 vs. drmy1 ARR7-llama GFP-nes, p = 0.4389). (Q) Variability in sepal primordium position.

Wilcoxon rank sum test (WT vs. arr3,4,5,6,7,8,9,15, p = 2.9483 10�4;WT vs. ahp6, p = 2.1373 10�11; WT vs.ARR7-llama GFPnes, p = 1; drmy1 vs. drmy1 ARR7-

llama GFPnes, p = 1.538 3 10�7). Data for drmy1 were reused from Figures 2H and 2J. Data for ARR7-llama GFP-nes and drmy1 ARR7-llama GFP-nes were

pooled from two independent lines (7-4 and 76). WT, n = 78; arr3,4,5,6,7,8,9,15, n = 28; ahp6, n = 106; ARR7-llama GFPnes, n = 16; drmy1, n = 67; drmy1 ARR7-

llama GFP-nes, n = 20.

(R) Working model. DRMY1 maintains TOR activity and translation, which sustains the rapid production of cytokinin-signaling inhibitors (ARR7 and AHP6)

necessary for robust patterning of cytokinin and auxin signaling to initiate sepal primordia.

Scale bars, 25 mm.

See also Figure S7 and Data S4.
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drmy1 and the auxin-signaling changes are secondary. Our re-

sults suggest a mechanism different from that previously re-

ported, where ribosomal mutations affect auxin signaling

through reduced translation reinitiation of uORF-containing

mRNAs, including those of ARFs.59–61 Overall, our results sug-

gest that homeostasis in cytokinin signaling is crucial for main-

taining robust patterns of auxin signaling and sepal initiation.

Mutations affecting ribosome abundance or translation have

long attracted interest due to the surprisingly tissue-specific

phenotypes they cause.103 In humans, these mutations have

been associated with diseases collectively known as ribosomo-

pathies, where patients show abnormalities in a range of organs,

and such abnormalities vary between individuals.104–109 Ribo-

somal mutants have been characterized in numerous other spe-

cies, including both animals and plants, with similarly broad

and variable impacts.18,59,61,110–118 We propose that drmy1 is

an Arabidopsis ribosomopathy mutant like those previously

characterized.

Several mechanisms have been proposed to explain why ribo-

somopathies do not usually cause a general reduction in growth

but rather affect development in tissue-specific ways. These

include extra-ribosomal functions of certain ribosomal pro-

teins,119–123 altered translation behavior of ribosomal variants

on certain mRNAs,124 different competitiveness of mRNAs for

scarce ribosomes,59–61,125–128 and high translation-rate require-

ment for certain proteins.129,130 In our case, during lateral organ

initiation, ARR7 and AHP6 proteins need to be rapidly produced

downstream of cytokinin and auxin signaling, respectively,131,132

to ensure homeostasis of cytokinin signaling and thus develop-

mental robustness. The ribosomopathy mutant drmy1 cannot

rapidly produce these proteins, disrupting robustness in hor-

mone patterning and sepal initiation. Additionally, drmy1 shows

other phenotypic changes, such as enlarged shoot apical meri-

stem, reduced apical dominance, phyllotaxy defects, and

reduced root system, all of which are related to altered cyto-

kinin-/auxin-signaling activity.23 Thus, our work highlights how

downregulation of proteins with high translational requirements

can underlie the tissue-specific phenotypes of ribosomopathy.

Limitations of the study
Detailed molecular mechanisms through which DRMY1 main-

tains TOR signaling remain unknown. DRMY1 contains a MYB/

SANT domain23 and, therefore, could promote TOR signaling

by functioning as a transcription factor or chromatin remodeler.

Alternatively, DRMY1 could regulate TOR signaling by protein

binding. DRMY1 was shown to interact with microspherule pro-

tein 1 (MCRS1), whose human ortholog is important for mTORC1

activation on the lysosomal membrane,133,134 so DRMY1 could

promote TOR signaling by interacting with MCRS1 and acti-

vating TORC1. These hypotheses demand future studies.

Although we propose that reduced TOR activity and transla-

tion affects developmental robustness through reduced synthe-

sis of ARR7 and AHP6, we do not exclude other potential mech-

anisms that could contribute to the drmy1 phenotype. For

example, several subunits of the 26S proteasome are more

abundant in drmy1 vs. WT (Data S1), which could reflect or influ-

ence the accumulation of proteotoxic peptides and disrupt

protein homeostasis.135–139 This accumulation of 26S protea-

somes could function upstream and/or downstream of the

TOR defect.31,140–145 Substantial future research is needed to

comprehensively define howDRMY1 participates in the complex

interactions among TOR, translation, and proteolysis.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse-origin anti-puromycin monoclonal antibody Millipore Sigma Cat# MABE343; RRID: AB_2566826

Goat-anti-mouse HRP-conjugated secondary antibody Abcam Cat# ab6789; RRID: AB_955439

Deposited data

RNA-seq data for ap1 cal AP1-GR and drmy1 ap1

cal AP1-GR inflorescence tissue

This study NCBI GEO: GSE230100

RNA-seq data for WT and drmy1 seedlings treated

with mock or AZD-8055

This study NIH BioProject: PRJNA961813

Mass spectrometry data for proteomics This study ProteomeXchange Consortium via the

PRIDE partner repository: PXD041723

Mass spectrometry data for cytokinins This study NIH National Metabolomics Data

Repository (NMDR) website, the

Metabolomics Workbench: ST002571

Experimental models: Organisms/strains

Arabidopsis: Col-0: WT N/A RRID:NCBITaxon_3702

Arabidopsis: wol: wol-1 M€ahönen et al.148 N/A

Arabidopsis: spaghetti-1: tpr5-1 Sotta et al.149 N/A

Arabidopsis: ahp6: ahp6 Besnard et al.11 N/A

Arabidopsis: arr3,4,5,6,7,8,9,15: arr3,4,5,6,7,8,9,15 Zhang et al.94 N/A

Arabidopsis: ap1 cal AP1-GR: ap1 cal 35S::AP1-GR Yu et al.32 and Wellmer et al.33 N/A

Arabidopsis: arr1 35S::ARR1: arr1-1 35S::ARR1 Karunadasa et al.68 N/A

Arabidopsis: DR5: DR5::3xVENUS-N7 Heisler et al.150 N/A

Arabidopsis: TCS: TCS::GFP M€uller et al.151 N/A

Arabidopsis: pARF5::erYFP: pARF5::ER-EYFP-HDEL Brackmann et al.152 N/A

Arabidopsis: R2D2: pUS7Y-mDII-NtdTomato-

pUS7Y-DII-N3xVENUS

Liao et al.102 N/A

Arabidopsis: 35S::mCirtine-RCI2A:

35S::mCirtine-RCI2A

Zhu et al.23 N/A

Arabidopsis: UBQ10::mCherry-RCI2A:

UBQ10::mCherry-RCI2A

Zhu et al.23 N/A

Arabidopsis: pAHP3::AHP3-GFP:

pAHP3::AHP3-GFP

Feng et al.93 N/A

Arabidopsis: pAHP6::AHP6-VENUS:

pAHP6::AHP6-VENUS

Besnard et al.11 N/A

Arabidopsis: pAHP6::GFP-ER: pAHP6::GFP-ER Besnard et al.11 and M€ahönen et al.90 N/A

Arabidopsis: ul4z: ul4z Arabidopsis Biological Resource

Center (ABRC)

SALK_130595

Arabidopsis: ul4y: ul4y ABRC SALK_029203

Arabidopsis: ul18z: ul18z ABRC SALK_089798

Arabidopsis: arr1,10,12: arr1-3 arr10-5 arr12-1 Argyros et al.153; ABRC CS39992

Arabidopsis: lst8-1-1: lst8-1-1 ABRC SALK_002459

Arabidopsis: pARF3::N3xGFP: pARF3::N3xGFP Rademacher et al.154; ABRC CS67072

Arabidopsis: pARF6::N3xGFP: pARF6::N3xGFP Rademacher et al.154; ABRC CS67078

Arabidopsis: pARF8::N3xGFP: pARF8::N3xGFP Rademacher et al.154; ABRC CS67082

Arabidopsis: pARF10::N3xGFP: pARF10::N3xGFP Rademacher et al.154; ABRC CS67086

Arabidopsis: GFP-nes: pUBQ10::

sfGFP-NES:UBQ3ter

This study N/A

(Continued on next page)
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Plant material
Most Arabidopsis (Arabidopsis thaliana, RRID:NCBITaxon_3702) plants were in Col-0 background (WT). ap1 cal 35S::AP1-GRwas in

Ler background. drmy1 (Col-0) was backcrossed to Ler twice and then crossed with ap1 cal 35S::AP1-GR to obtain drmy1 ap1 cal

35S::AP1-GR. The ap1 cal AP1-GR inflorescence produces numerous tightly packed ball-shapedmeristems, which, upon induction,

synchronously initiate sepal primordia, allowing us to collect large quantities of floral meristems with sepal primordia initiating

(Stage 3)34 (Figure S1A). R2D2 was originally in Col-Utrecht background and was backcrossed twice into WT (Col-0) and drmy1

(Col-0). The following mutants and reporters were previously published: drmy1-2,23 wol-1,148 spaghetti-1 (tpr5-1),149 ahp6,11

arr3,4,5,6,7,8,9,15,94 ap1 cal 35S::AP1-GR (Ler),32,33 arr1-1 35S::ARR1,68 DR5::3xVENUS-N7,150 TCS::GFP,151 pARF5::ER-EYFP-

HDEL,152 pUS7Y-mDII-NtdTomato-pUS7Y-DII-N3xVENUS (R2D2),102 35S::mCirtine-RCI2A,23 UBQ10::mCherry-RCI2A,23 pAHP3::

AHP3-GFP,93 pAHP6::AHP6-VENUS,11 and pAHP6::GFP-ER.11,90 The following mutants and reporter lines were obtained from

Arabidopsis Biological Resource Center (ABRC): ul4z (SALK_130595), ul4y (SALK_029203), ul18z (SALK_089798), arr1-3 arr10-5

arr12-1153 (CS39992), lst8-1-1 (SALK_002459), pARF3::N3xGFP154 (CS67072), pARF6::N3xGFP154 (CS67078), pARF8::N3xGFP154

(CS67082), pARF10::N3xGFP154 (CS67086).

Llama-tagged ARR7 construct
For the LlamaTag system, we designed a construct with ARR7 fused with GFP-specific LlamaTag (pARR7::ARR7-llama-ARR7ter;

ARR7-llama for short). This construct was co-transformed with cytoplasm-localized GFP containing a nuclear exclusion signal

(pUBQ10::sfGFP-nes-UBQ3ter; GFP-nes for short; Figure 7C).

We first generated plasmid pVV13 containing linker-llama.We amplified the LlamaTag (from a plasmid containing vhhGFP4155) and

added a linker sequence of tccggagcagctgcggctgccgctgcggcagcggccactagt at its 5’ end by two rounds of overlap PCRs. Primers for

the first roundwere oVV64 and oVV53, and primers for the second roundwere oVV35 and oVV53. After the second round, we A-tailed

the PCR product according to the Promega manufacturer’s protocol. A-tailed product was ligated to the pGEMTeasy vector accord-

ing to the Promega ligation protocol, to create the plasmid pVV13.

To make pARR7::ARR7-llama, a genomic fragment of pARR7::ARR7minus the stop codon and terminator was amplified from the

Arabidopsis (Col-0) genome using the primers oSK197 and oSK198. The linker-llama fragment was PCR-amplified from pVV13 using

the primers oSK199 and oSK200. The ARR7 stop codon, 3’ UTR, and terminator was amplified from the Arabidopsis (Col-0) genome

using the primers oSK201 and oSK202. pMLBART backbone was digested with NotI, and all fragments were assembled into

pMLBART using NEBuilder according to the manufacturer’s protocol.

To make pUBQ10::sfGFP-NES:UBQ3ter, sfGFP sequence was amplified from the 35S-sfGFP-nosT plasmid156 (Addgene # 80129)

using primers UsfGM-F1 and UsfGnes-R1. The UBQ10 promoter was amplified from the UPG plasmid157 (Addgene # 161003) using

primers OutALFd and UsfGM-R1. The UBQ3 terminator was amplified from the UPG plasmid157 (Addgene # 161003) using primers

UsfGnes-F1 and OutALRb. Primer overhangs spanning the junction between sfGFP and the UBQ3 terminator contain the sequence

of themouse PKIaNES. pCambia1300 backbonewas digested with BamHI and KpnI, and all fragments were Gibson-assembled into

the backbone. Sequences of primers, pARR7::ARR7-llama, and pUBQ10::sfGFP-NES:UBQ3ter can be found in Data S5.

Col-0 plants were co-transformed with pARR7::ARR7-llama and pUBQ10::sfGFP-NES:UBQ3ter, and selected with Basta (for

pARR7::ARR7-llama) + Hygromycin (for pUBQ10::sfGFP-NES:UBQ3ter). Surviving T1 plants were screened for clear nuclear signal

in the inflorescence, and 5 independent T1 plants were selected and crossed into drmy1. F2 plants fromeach linewere again selected

with Basta +Hygromycin and genotyped. One line showed co-segregation with theDRMY1 locus. Two lines showed severe silencing

in the F2 and could not be used. Two lines (7-4 and 7-6), though with minor silencing in F2, were used for imaging and image analysis.

F3 plants of 7-4 and 7-6 had severe silencing, and therefore only F2 were imaged.

Plant growth conditions
For most experiments, seeds were sown in wetted Lamber Mix LM-111 soil and stratified at 4�C for 3-5 days. For experiments

including drmy1 wol and drmy1 arr1,10,12, all seeds were sown onto ½ MS plates with 0.05% (w/v) MES, 1% (w/v) sucrose,

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Arabidopsis: ARR7-llama GFP-nes:

pARR7::ARR7-llama pUBQ10::

sfGFP-NES:UBQ3ter

This study N/A

Oligonucleotides

Primers See Data S5 N/A

Recombinant DNA

pARR7::ARR7:Llama See Data S5 N/A

pUBQ10::sfGFP:NES:UBQ3ter See Data S5 N/A
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1.2% (w/v) agar, pH 5.7, and stratified at 4�C for a week. They were grown for 7-10 days before being transplanted to soil (for imaging

of inflorescence or aerial part of the plant) or left on the plates until desired time of the experiment (for seedling imaging or puromycin

labeling).

Most plants were grown under 16 h – 8 h light-dark cycles (fluorescent light,�100 mmolm-1 s-1) at 22�C in a Percival walk-in growth

chamber. We found that the drmy1 phenotype is more pronounced in this condition than under continuous light. The ap1 cal

35S::AP1-GR and drmy1 ap1 cal 35S::AP1-GR plants were grown in soil under continuous light at 16�C to prevent premature floral

induction.

We note that we have used different tissue of different age in different experiments. 2-month-old induced inflorescences of ap1 cal

AP1-GR background were used in transcriptomics (Figures 1B, S1B, S1C, S5A, S5B, and S7B), proteomics (Figures 1E, S1B, S1H,

and S5A), polysome profiles (Figure 1C), and puromycin labeling (Figure 1D). Inflorescences that just bolted (6–10 weeks depending

on the genotype) were used for confocal imaging. 8-day-old seedlings were used in TOR-inhibition transcriptomics (Figures 1F, 1G,

S1I, and S1J) and TOR activity assay (Figures 1H and 1I) as these were established protocols in the lab. For puromycin labeling,

8-day-old WT seedlings and 10-day-old drmy1 mutant seedlings were used in Figure 1D to match in size. 8- and 14-day-old seed-

lings were used in Figures 6A–6C as the cytokinin signaling mutant wol and drmy1 wol were extremely small and unable to match in

size with WT and drmy1 seedlings. These differences in plant tissue used were noted in the figure legends and also discussed below

in the method details section.

METHOD DETAILS

Flower staging
Flower buds were staged as follows.34 Stage 1 is when the floral meristem emerges, but not yet separated, from the inflorescence

meristem. Stage 2 is when the floral meristem separates from the inflorescencemeristem but with no floral organs initiated. Stage 3 is

when sepal primordia initiate. Stage 4 is when sepal primordia bend to cover part of the floral meristem. Stage 5 is when stamen

primordia initiate. Stage 6 is when sepal primordia completely cover the floral meristem.

RNA-seq data collection and analysis
For RNA-seq in the inflorescence, bolting ap1 cal 35S::AP1-GR and drmy1 ap1 cal 35S::AP1-GR plants were induced daily with an

aqueous solution containing 10 mM dexamethasone (Sigma-Aldrich), 0.01% (v/v) ethanol, and 0.015% (v/v) Silwet L-77 (Rosecare.

com). When sepals initiated from the floral meristems, usually on the fourth day after three daily inductions, three inflorescence sam-

ples per genotype (including inflorescence meristems and buds under stage 6) were collected and immediately ground in liquid ni-

trogen. RNA was extracted using RNeasy Plant Mini Kit (Qiagen, cat. no. 74904) following manufacturer’s instructions. For library

preparation, mRNA was isolated using Dynabeads (Invitrogen, cat. no. 61006) and fragmented in first strand buffer for 6 min at

94�C. First strand cDNA was synthesized with random hexamers (Invitrogen, cat. no. 48190011) and Superscript II (Invitrogen,

cat. no. 18064014), and second strand DNA was synthesized with DNA Pol I (Fermentas, cat. no. EP0041) and RNase H (Invitrogen,

cat. no. 18021071). End repair was performed using NEBNext End Repair Enzyme Mix (NEB, cat. no. E6050S) and Klenow DNA po-

lymerase (NEB, cat. no. M0210S). A-tailing was performed using Klenow 3’ to 5’ exonuclease (Fermentas, cat. no. EP0421). DNAwas

ligated to NEBNext adaptors (NEB, cat. no. E7335L) using Mighty Mix Ligase (Clonetech, cat. no. TAK6023). Libraries were size

selected using AMPure XP beads (Beckman Coulter, cat. no. A63880). PCR enrichment and barcoding was performed using

NEBNext Multiplex Oligos for Illumina Index Primers (NEB, cat. no. E7335L) for 15 cycles using Phusion polymerase (NEB, cat.

no. M0530L). Entire libraries were run on a 1.2% agarose gel in TAE buffer and size-selected in the 200-500 bp range. RNA-seq

was performed in a NextSeq 500 machine (run length 75, single barcode) at Cornell Genomics Facility.

RNA-seq reads were quality-filtered using a custom Perl script (https://github.com/SchwarzEM/ems_perl/blob/master/illumina/

quality_trim_fastq.pl) with parameters ‘‘-q 33 -u 84’’, and then trimmed using Trimmomatic (version 0.36)158 with parameters ‘‘SE

-phred33 [...] ILLUMINACLIP:[...]/sepal_ adapters_09dec2016.trimmomatic.fa:2:30:10 LEADING:3 TRAILING:3 SLIDING-

WINDOW:4: 15 MINLEN:84’’. Trimmed reads were mapped to cDNA sequences of Arabidopsis (TAIR10) and quantified using

Salmon (version 0.14.1).159 Salmon arguments for indexing were ‘‘–no-version-check index -k 31 –perfectHash –type quasi –keep-

Duplicates’’. Salmon arguments for computing gene expression levels were ‘‘–no-version-check quant –seqBias –gcBias –validate-

Mappings –libType A –geneMap TAIR10_cdna_20101214_updated_w_ GFP.tx2gene.tsv.txt –numBootstraps 200’’. Genes with at

least two raw reads in at least two biological replicates in either WT or drmy1 were kept for downstream analysis. DESeq2 (version

1.18.1)160 was used to find differentially expressed genes, with a log2 fold change threshold of ±1 and a BH-adjusted p-value

threshold of 0.05. For GO term enrichment, gene-GO mapping data was obtained from TAIR (https://www.arabidopsis.org /down-

load_files/GO_and_PO_Annotations/Gene_Ontology_Annotations/ATH_GO_GOSLIM.txt). The R package ‘‘topGO’’161 (version

2.38.1) was used for the enrichment, with statistic ‘‘fisher’’, algorithm ‘‘weight01’’, annotation function ‘‘annFUN.gene2GO’’, andmin-

imum node size 10. The results were ranked by their p-value, and the first 8 terms were plotted.

For RNA-seq in seedlings, WT and drmy1 seedlings were grown to quiescence (7 days) in ½ MS liquid media.31 After 7 days, the

media was replaced with ½ MS liquid media containing 15 mM glucose and incubated for 24 hours to activate TOR. Seedlings were

then incubated with or without AZD-8055 in addition to 15mM glucose in ½MS liquid media for 2 hours before collecting tissue. RNA

was extracted from 100 mg pooled seedlings using the Spectrum Plant Total RNA Kit (Sigma). This RNA was used as a template for

RNA-Seq library synthesis and sequencing, which was performed by Novogene. RNA-seq data for AZD-8055 treatedWT and drmy1
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seedlings were preprocessed with fastp (version 0.22.0) using default parameters. Preprocessed reads were then mapped to the

TAIR10 reference genome using STAR (version 2.7.10z_alpha_220314). Following alignment, BAM output files from STAR were

used to generate feature counts for transcripts using subread-featureCounts (version 2.0.3) and the Araport11 transcriptome.

TPMs were generated using TPMCalculator (version 0.0.3). Differential expression analysis was performed using feature count

data and DESeq2 (version 1.36.0).

A list of genes with uORFs based on gene models of the TAIR10 Arabidopsis genome assembly were downloaded from von Arnim

et al.64 For each gene, within each genotype, protein-transcript ratio was calculated as the ratio between mean protein abundance

and mean transcript TPM across all bio-reps in our proteomics and RNA-seq datasets, respectively. This was log2-transformed, and

the difference between drmy1 and WT was calculated. This was used as an indicator of translation rate difference between drmy1

and WT, although we acknowledge that other factors such as protein stability may affect this number. This was plotted against the

number of uORFs in each gene model (0, 1, or R 2).

Proteomics
Five induced inflorescence samples of WT and drmy1 in ap1 cal AP1-GR background were collected as described above. Samples

were ground in liquid nitrogen. Total soluble proteins were extracted in ice-cold extraction buffer (50mMPBS-HCl (pH 8.0) buffer with

150 mMNaCl, 2%NP-40, 1 mM PMSF, 1x Roche cOmplete protease inhibitor cocktail (Sigma 11697498001), and 1x Halt TM Phos-

phatase inhibitor cocktail (ThermoFisher 78420)) and filtered through Pierce�Micro-Spin Columns (30 mm pore size; Thermo Scien-

tific 89879). Extracts were RuBisCO-depleted using Seppro Bubisco Kit (Sigma SEP070-1KT), concentrated, denatured, reduced,

cysteine blocked, trypsin-digested, and TMT 10-plex labeled. Then, mass spectrometry was done using an UltiMate 3000

RSLCnano / Orbitrap Fusion system (Thermo Scientific). Raw data was searched against the NCBI protein database using PD 2.3

(Thermo Scientific) with Sequest HT searching engine. Precursor-based protein identification and relative quantification was done

using the standard processing workflow in PD 2.3, with an additional node of Minora Feature Detector. Proteins with at least 2 sup-

porting peptides were kept for downstream analysis. For each protein, data was fit with an ANOVA model and a p-value was calcu-

lated. Proteins with a p-value < 0.05 were considered differentially accumulated in drmy1. GO term enrichment was done as above,

using genes corresponding to the differentially accumulated proteins.

Polysome extraction and profiling
Three induced inflorescence samples of WT and drmy1 in ap1 cal AP1-GR background were collected as described above. For poly-

some extraction,162 samples were ground in liquid nitrogen, mixed with an extraction buffer twice the volume of pulverized tissue

(0.2 M Tris pH 9.0, 0.2 M KCl, 0.025 M EGTA, 0.035 M MgCl2, 1% (w/v) Brij-35, 1% (v/v) Triton X-100, 1% (v/v) Igepal CA-630,

1% (v/v) Tween-20, 1% (w/v) Sodium deoxycholate, 1% (v/v) Polyoxyethylene 10 tridecyl ether, 5 mM Dithiothreitol, 1 mM Phenyl-

methylsulfonyl fluoride, 100 mg/ml cycloheximide, 100 mg/ml chloramphenicol, 40 U/ml RNasin, 10 U/ml DNase I), and let sit on ice for

10min. Samples were centrifuged at 4�C4,000 g for 5min, supernatant was transferred to a new tube, centrifuged at 4�C16,000 g for

15 min, and supernatant was filtered through Miracloth.

For profiling of polysome extracts,163 600 ml of each sample were loaded onto a 15%–45% sucrose density gradient and centri-

fuged at 4�C 32,000 rpm in a SW41 rotor. Separated samples were fractionated at a rate of 0.375 mL/min in an Isco fractionation

system, and absorbance at 254 nm was recorded.

Puromycin labeling
In seedlings, when comparing WT and drmy1, in order to control for plant size, WT seedlings were grown for 8 days and drmy1

seedlings were grown for 10 days (Figure 1E). When comparing WT, drmy1, wol, and drmy1 wol, we were unable to control for

plant size because wol and drmy1 wol seedlings were too small. We therefore controlled for plant age, and seedlings were grown

to specified age (8 days for Figure 6B and 14 days for Figure 6C). Seedlings were harvested from plates and incubated with an

incubation buffer (½ MS, 0.05% (w/v) MES, 1% (w/v) sucrose, 0.1% (v/v) Tween-20, 0.1% (v/v) DMSO, 1x Gamborg vitamin mix,

pH 5.7), with or without 50 mM CHX, for 4 hours in an illuminated growth chamber. Then, the buffer was replaced with a fresh

incubation buffer (which is same as above, but contains 50 mM puromycin (GoldBio P-600-100)), and incubation continued for

another 45 min.

In inflorescences of WT and drmy1 in ap1 cal AP1-GR background, inflorescences were DEX-induced as described above. Inflo-

rescence sampleswere collected and put in an incubation buffer (½MS, 1% (w/v) sucrose, 0.02% (v/v) Silwet L-77, 0.1% (v/v) DMSO,

50 mMpuromycin, 1xGamborg vitaminmix, pH 5.7), with or without 100 mMCHX. Sampleswere vacuum infiltrated for 15minutes and

then put on a rocking shaker in an illuminated growth chamber for 45 minutes.

In both cases, at the end of the incubation, samples were washed three times with water, blot dry, weighed, and frozen in liquid

nitrogen. Soluble proteins were extracted as described above. Puromycin incorporated into the proteins were detected in a Western

blot using a mouse-origin anti-puromycin monoclonal antibody (12D10, Sigma MABE343, lot # 3484967) and a goat-anti-mouse

HRP-conjugated secondary antibody (Abcam ab6789, lot # 3436981). RuBisCO large subunit in Ponceau S-stained membrane

was used as a loading control. Quantification was done in ImageJ. A background signal was determined using blank regions, and

subtracted from all quantified signals (separately for puromycin and Ponceau S).
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TOR activity assay
WTand drmy1 seedlingswere grown in a six-well plate containing½MS liquidmedia. After 7 days, themediawere replacedwith half-

strengthMS liquidmedia plus 15mMglucose and incubated for 24 hours. At least 120 quiescent seedlings per samplewere collected

and frozen in liquid nitrogen. Protein was then extracted from the plant tissue in 100 mM MOPS (pH 7.6), 100 mM NaCl, 5% SDS,

0.5% b-mercaptoethanol, 10% glycerin, 2 mM PMSF, and 1x PhosSTOP phosphatase inhibitor (Sigma). S6K-pT449 was detected

by Western blot using a phosphospecific antibody (Abcam ab207399) and an HRP-conjugated goat anti-rabbit IgG secondary anti-

body (Jackson Immuno Research 111-035-003). Total S6K was detected using a custommonoclonal antibody.164 Total protein visu-

alized in Ponceau S-stained membrane was used as a loading control.

Confocal microscopy
Main inflorescences (not side branches) were cut and dissected with a Dumont tweezer (Electron Microscopy Sciences, style 5, no.

72701-D) to remove buds older than stage 9 or 10. The inflorescences were then inserted upright into a small petri dish (VWR, 60 x

15 mm) containing inflorescence culture medium (1/2 MS, 1% (w/v) sucrose, 1x Gamborg vitamin mixture, 0.1% (v/v) plant preser-

vative mixture (Plant Cell Technology) 1% (w/v) agarose, pH 5.8), leaving most of the stem inside the medium and the buds outside.

They were then further dissected to reveal stage 6 and younger buds, immersed with water, and imaged under a Zeiss710 upright

confocal microscope with a 20x Plan-Apochromat water-dipping lens (1.0 NA). For live imaging experiments, inflorescence samples

were put in a continuous-light growth chamber between time points. To prevent bacterial growth, samples were transferred onto

fresh media every 2 to 3 days, and for live imaging experiments lasting longer than 6 days, once in the middle, plants were incubated

with an aqueous solution of 100 mg/ml Carbenicillin (GoldBio, C-103-5, lot # 0129.091814A) for 30 minutes.

To visualize tissue morphology of inflorescence samples without a reporter, samples were stained for 5 minutes with an aqueous

solution of 0.1 mg/ml propidium iodide (PI) and 0.1% (v/v) Tween-20, washed three times with water, and imaged.

The following laser and wavelength were used in confocal imaging. Chlorophyll, excitation 488 nm, emission 647-721 nm. PI, exci-

tation 514 nm, emission 566-659 nm.mCherry, excitation 594 nm, emission 600-659 nm. tdTomato, excitation 561 nm, emission 566-

595 nm. For EYFP/VENUS/mCitrine, in 35S::mCirtine-RCI2A, excitation 514 nm, emission 519-580 nm; in DR5::3xVENUS-N7, exci-

tation 514 nm, emission 519-569 nm; in pARF5::ER-EYFP-HDEL, excitation 514 nm, emission 519-550 nm; in R2D2, excitation

488 nm, emission 493-551 nm. For GFP/sfGFP, in pARR7::ARR7-llama UBQ10::sfGFP-NES, excitation 488 nm, emission 493-

569 nm; in pARF3::N3xGFP, pARF6::N3xGFP, pARF8::N3xGFP, and pARF10::N3xGFP, excitation 488 nm, emission 493-564 nm;

in TCS::GFP, excitation 488 nm, emission 493-513 nm.

Visualization of tissue morphology
For single-channel image stacks intended for the visualization of tissue morphology (35S::mCitrine-RCI2A or PI), stacks were 3D-

rendered using the ZEN confocal software (Processing -> 3D). Parameters were set to best visualize tissue morphology, typically,

minimum 5-10, ramp 60-80, maximum 100. Buds were rotated to desired orientation, and screenshots were taken using the ‘‘Create

Image’’ button. For fluorophores that are dimmer, less sharp, or have a noisy background (UBQ10::mCherry-RCI2A or Chlorophyll),

stacks were converted from LSM to TIF using ImageJ,165,166 loaded into MorphoGraphX,167 and screenshots were taken using the

built-in screenshot function in MorphoGraphX.

To aid visualizing tissue morphology and determine the timing of sepal initiation, each stack was fitted with a surface, and a

Gaussian curvature heatmap was calculated from the surface (see below). We consider a sepal primordium as initiated when we

see a dark red band of positive Gaussian curvature (primordium) separated from the center of the floral meristem by a dark blue

band of negative Gaussian curvature (boundary).23

To generate Gaussian curvature heatmaps, stacks underwent the following processes in MorphoGraphX: Gaussian blur (3 times;

X/Y/Z sigma = 1 mm for the first 2 times, and 2 mm for the third time), edge detection (threshold = 2000-8000 depending on the bright-

ness of the stack, multiplier = 2.0, adapt factor = 0.3, fill value = 30000), marching cube surface (cube size = 8 mm, threshold = 20000),

subdivide mesh, smooth mesh (passes = 5), subdivide mesh, smooth mesh (passes = 5), project mesh curvature (type = Gaussian,

neighborhood = 10 mm, autoscale = no, min curv = -0.0015, max curv = 0.0015). For ease of visualization, the lookup table ‘‘jet’’ was

applied to the mesh.

Quantification of sepal initiation robustness
For sepal primordium number, screenshots were taken of stage 3-6 buds of indicated genotypes, in either ZEN or MorphoGraphX.

The number of sepal primordia initiated were counted from these screenshots.

For variability in sepal primordium positioning, within each bud, an angular distance was measured between each pair of adjacent

sepal primordia (with vertex at the center of the bud), using ImageJ. Note that the last pair was not measured – the angular distance

was calculated as the sum of all other angular distances subtracted from 360�. A CV value (standard deviation divided by mean) was

calculated from all the measured or calculated angular distances. Buds with sepal primordia evenly distributed around the bud pe-

riphery should have a small CV value, i.e. all angles are around 90� for four-sepal buds (or 72� for five-sepal buds, etc.). Buds whose

sepal primordia distributed variably or randomly around the bud periphery will have widely varying angular distances between adja-

cent sepal primordia, and thus large CV values.

To quantify relative sepal initiation timing, dissected inflorescence samples were live-imaged every 6 hours. A Gaussian curvature

heatmap was generated for each sample at each time point and was used to determine the time point at which a sepal primordium
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initiates. A sepal primordium is considered initiated at time point Tn if it is absent at time point T(n-1) but becomes present at time

point Tn. Within the same bud, we counted the number of time points between outer and inner sepal initiation, and between outer

and lateral sepal initiation, and multiplied them by 6 hours to get the relative initiation timing of these sepals.

Quantification of fluorescent reporters
For TCS::GFP, pARF3::N3xGFP, pARF5::ER-YFP-HDEL, pARF6::N3xGFP, pARF8::N3xGFP, pARF10::N3xGFP, pUS7Y::mDII-

NtdTomato, pUS7Y::DII-N3xVENUS, and UBQ10::mCherry-RCI2A, total signal (integrated density) was quantified from maximum

intensity projection images using ImageJ.165,166 Fluorescence intensity was measured in pixel intensity units (0-255 range). Signal

intensity was calculated as total signal divided by area.

For both TCS::GFP and DR5:3xVENUS-N7, circular histogram analysis was performed as follows. Individual buds were cropped

out of image stacks, channels were split using ImageJ and saved in TIF format, and TIF stacks were imported into MorphoGraphX.

Signal from outside the buds (e.g. inflorescence meristem, parts of other buds within the same image) was manually removed using

the Voxel Edit function. Buds were positioned so that the incipient sepal primordia are in the XY plane: the incipient outer sepal is at

45�, the incipient inner sepal and the inflorescencemeristem are at 225�, and the incipient lateral sepals are at 135� and 315�, respec-
tively. Each budwas divided into 360 sectors of 1� each; within each sector, signal measured in pixel intensity units (0-255 range) was

summed. A circular histogram was generated starting at 0� (between the incipient outer and right sepals) going counterclockwise.

Multiple circular histograms of the same reporter and genotype were pooled; mean was plotted as a solid line, and mean±SD

was plotted as a shaded area.

For GFP signal in plants carrying pUBQ10::sfGFP-nes-UBQ3ter and pARR7::ARR7-linker-llama-ARR7ter reporters, screenshots

were taken in MorphoGraphX as described above. Screenshots were subtracted of a background determined using blank regions

with no tissue, and brightened to the same level to reveal differences in GFP distribution patterns. A square region containing 5-10

cells were taken from each screenshot, and GFP intensity (in gray value ranging from 0 to 255) along a straight line of 239 pixels in

length was quantified using ImageJ165,166 (Analyze -> Plot profile). For ease of visualization, the curves were smoothed by taking the

average of the gray value of 11 neighboring pixels (including itself) as the value of each pixel.

For VENUS or GFP signal in pAHP6::AHP6-VENUS, pAHP6::GFP-ER, pAHP3::AHP3-GFP, and pUBQ10::mCherry-RCI2A under

mock, CHX, or AZD-8055 treatment, total signal at 24 hours (for CHX) or 72 hours (AZD-8055) was normalized by bud area in the

2D projection to get the signal intensity. To account for bud-to-bud differences in signal intensity prior to treatment, the signal inten-

sity was normalized to the 0-hour time point (pre-treatment). Relative level between treatment and mock was calculated by normal-

izing this value to the mean of mock.

In vitro drug treatments on inflorescence samples
For cycloheximide (CHX) treatment, a stock solution of 10mMCHXwasmade frompowder (SigmaC1988) in pH 4.0 water. The stock

was filter-sterilized and stored in -20�C, and added to autoclaved inflorescence culture medium to a final concentration of 2 mM just

before use. For AZD-8055 treatment, a stock solution of 16 mM AZD-8055 was prepared from powder (Cayman Chemical 16978) in

DMSO within days of use, and stored in -80�C. The stock was added to autoclaved inflorescence culture medium to a final concen-

tration of 2 mM. 0.0125% (v/v) DMSO was added to the mock medium. For 6-benzylaminopurine (BAP) treatment, a stock solution of

50 mMBAPwas prepared from powder (Alfa Aesar A14678) in DMSO, and stored in -80�C. The stock was added to autoclaved inflo-

rescence culture medium to a final concentration of 5 mM. 0.01% (v/v) DMSO was added to the mock medium.

Inflorescences were dissected and inserted into regular inflorescence culture medium without drugs, and pre-treatment image

stacks were captured. Then, they were transferred into specified treatment or mock media, and imaged at the specified time points.

For live imaging, inflorescence samples were transferred onto new medium after each imaging session.

Torin2 and AZD-8055 treatment in planta
Starting at 14 days after germination, twice each day for 15 days, 20 ml of 100 mM Torin2 (Cayman Chemical 14185) or 3.2 mM AZD-

8055 (Cayman Chemical 16978) containing 0.5%DMSO and 0.5% Tween-20 was applied to the center of the rosette using a pipette.

For mock, 20 ml water containing 0.5% DMSO and 0.5% Tween-20 was applied. At the end of the 15-day treatment period, inflores-

cences were dissected and put in the inflorescence culture medium for imaging. To prevent drug degradation, throughout the dura-

tion of this experiment, the AZD-8055 and Torin2 stock solutions was kept in -80�C and replaced each week, and the treatment and

mock solutions were kept in 4�C and replaced each day.

Imaging of whole plant, whole inflorescence, silique, and mature sepals
For whole-plant imaging, aerial parts of the plants were removed from the pots, flattened, put on a dark cloth, and imaged with a cell

phone (iPhone 12, iOS 16.2).

For whole-inflorescence imaging, inflorescences consisting of open flowers and unopened buds were removed from the plant and

held with forceps. Images were taken under a Zeiss Stemi 2000-C Stereo Microscope with a cell phone (iPhone 12, iOS 16.2).

For silique imaging, siliques on inflorescences sufficiently distant from the shoot apex that were developed and started to ripen

were picked with forceps, opened with a razor blade, and imaged under a Zeiss Stemi 2000-C Stereo Microscope with a cell phone

(iPhone 12, iOS 16.2).
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For mature sepal imaging, mature sepals from stage 15 flowers (10th to 25th flower on the inflorescence) were dissected and sand-

wiched between two slides to flatten. Images were taken using a Canon Powershot A640 camera attached to a Zeiss Stemi 2000-C

Stereo Microscope. Minor damages were manually fixed, and undesired objects such as pollen grains were manually removed from

these images. Sepals with major damages were discarded. Then, a contour was extracted from each sepal using custom python

scripts.21 This gave usmeasurements such as length, width, area, etc. of each sepal. Tomeasure between-flower variability of length,

within each genotype and for each of outer, inner, and lateral positions, a CV (standard deviation divided by mean) of all sepals was

calculated (for example, a CV of length of all outer sepals in WT). To determine statistical significance, genotypes were compared

pairwise using permutation tests. To measure within-flower variability of length, a CV was calculated for all sepals within each flower

(for example, a CV of length of outer, inner, and two lateral sepals in WT bud #10). For accurate calculation of CV, flowers with length

data of at least four sepals were included in the analysis. To determine statistical significance, genotypes were compared pairwise

using Wilcoxon rank sum tests.

Cytokinin extraction and measurement
For cytokinin extraction,168 five inflorescence samples of induced ap1 cal 35S::AP1-GR, and six inflorescence samples of induced

drmy1 ap1 cal 35S::AP1-GRwere collected as described above. Samples were ground in liquid nitrogen and twice extracted inmeth-

anol: water: formic acid (15:4:1). 200 pg of BAP per sample was added as an internal control. Extracts were centrifuged at 14,650 rpm

in -4�C for 30 min, and supernatant was evaporated of methanol and reconstituted in 1% (v/v) acetic acid. Samples were passed

through an Oasis MCX SPE column (Waters 186000252), washed with 1% acetic acid, washed with methanol, and eluted with

0.35 M ammonia in 70% methanol. Eluents were evaporated to complete dryness, reconstituted in 5% acetonitrile, and sent for

LC-MS.

For LC-MS,169 1 ml of each sample was injected into a Thermo Fisher Scientific Vanquish Horizon UHPLC System coupled with a

Thermo Q Exactive HF hybrid quadropole-orbitrap high-resolution mass spectrometer equipped with a HESI ion source. Samples

were separated on a C18 ODS column (AQUITY UPLC BEH C18, 1.7 mm, 2.1 3 100 mm, Waters), at a flow rate of 0.3 ml/min,

with linear gradients of solvent A (0.1% formic acid) and solvent B (0.1% formic acid in methanol) according to the following profile:

0 min, 99.0% A + 1.0% B; 4.0 min, 55.0% A + 45.0% B; 7 min, 30.0% A + 70.0% B; and then with isocratic conditions: 8 min, 1.0%

A + 99.0% B; 12 min, 99.0% A + 1.0% B. Cytokinins were detected using the positive ion mode.

For tZ, tZR, iP, iPR, and the internal control BAP, peaks were identified from an external standard mix composed of 0.1 mg/ml each

of BAP (Alfa Aesar A14678), tZ (Sigma Z0876), tZR (Sigma Z3541), iP (CaymanChemical 17906), and iPR (Cayman chemical 20522) in

5% acetonitrile. For cZ and cZR, peaks were identified based on previously reported precursor m/z and retention time.170 Using

Xcalibur (Thermo Scientific), peak area was quantified for each cytokinin in each sample, normalized against the peak area of

BAP (internal control) and sample fresh weight, and then normalized against the average abundance of tZ in WT samples.

Image processing software
Image processing was done in ImageJ (version 2.9.0/1.53t, build a33148d777)165,166 andMorphoGraphX (version 2.0, revision 1-294,

CUDA version 11.40).167 Figures were assembled in Adobe Illustrator (version 25.4.1). An RGB color profile ‘‘Image P3’’ was used for

all the figures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests
Pairwise numerical differences in mean were determined using Student’s two-sided t-tests (Figures 1D, 1I, 4B, 4F, 4J, 6A–6C, S4G,

and S4K), Wilcoxon’s rank sum tests (Figures 2J, 2R, 3C, 3F, 5G, 5N, 7Q, S2J, S3N, S5A, S5D, S7A, and S7P), or permutation tests

(Figure S3M). Pairwise numerical differences in variation were determined using Levene’s tests (Figures 3C and 3F). Categorial dif-

ferences were determined using Fisher’s contingency table test (Figures 2H, 2Q, 5F, 5M, 7P, and S2I) or Chi-square test (Figure S1I).

Two factor data were fit using ANOVA (Figure S1G). Gene ontology enrichment was determined using Fisher’s exact test (Figures 1B,

1E, and S1J). Correlation was assessed using linear regression (Figure 1F). Statistical details can be found in the figures, figure leg-

ends, and main text.

Statistical software
Data processing was done in RStudio (R version 4.0.5 ‘‘Shake and Throw’’ (2021-03-31)).171 Graphs were made using the package

ggplot2 (version 3.3.3).172 Differential gene expression in RNA-seq was determined in DESeq2.160 Gene ontology enrichment tests

were done using the topGOpackage161 (version 2.38.1). Fisher’s contingency table tests were done using the function fisher.test in R.

Wilcoxon rank sum tests were done using the function wilcox.test in R. Levene’s tests were done using the function leveneTest in the

car package in R. Hypergeometric tests were done using the function phyper in R. Data fitting with ANOVA was done using the func-

tion aov in R.

ll
Article

Developmental Cell 59, 1–20.e1–e7, December 2, 2024 e7

Please cite this article in press as: Kong et al., DRMY1 promotes robust morphogenesis in Arabidopsis by sustaining the translation of cytokinin-
signaling inhibitor proteins, Developmental Cell (2024), https://doi.org/10.1016/j.devcel.2024.08.010


	ELS_DEVCEL5989_annotate.pdf
	DRMY1 promotes robust morphogenesis in Arabidopsis by sustaining the translation of cytokinin-signaling inhibitor proteins
	Introduction
	Results
	The drmy1 mutant has reduced TOR activity, ribosome content, and translation rate
	Defects in TOR activity, ribosome, and translation disrupt robust sepal initiation
	Inhibition of TOR activity and translation increases cytokinin signaling and disrupts the robust spatial pattern of auxin a ...
	An increase in cytokinin signaling is necessary and sufficient for variable auxin signaling and sepal initiation under tran ...
	Upregulation of cytokinin signaling is required to sustain translation and fitness in drmy1
	TOR and translation inhibition decreases the protein level of cytokinin-signaling inhibitors ARR7 and AHP6

	Discussion
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Plant material
	Llama-tagged ARR7 construct
	Plant growth conditions

	Method details
	Flower staging
	RNA-seq data collection and analysis
	Proteomics
	Polysome extraction and profiling
	Puromycin labeling
	TOR activity assay
	Confocal microscopy
	Visualization of tissue morphology
	Quantification of sepal initiation robustness
	Quantification of fluorescent reporters
	In vitro drug treatments on inflorescence samples
	Torin2 and AZD-8055 treatment in planta
	Imaging of whole plant, whole inflorescence, silique, and mature sepals
	Cytokinin extraction and measurement
	Image processing software

	Quantification and statistical analysis
	Statistical tests
	Statistical software





